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Abstract. We investigate the influence that s-dimensional lower and upper Hausdorff
densities have on the geometry of a Radon measure in Rn when s is a real number
between 0 and n. This topic in geometric measure theory has been extensively studied
when s is an integer. In this paper, we focus on the non-integer case, building upon a
series of papers on s-sets by Mart́ın and Mattila from 1988 to 2000. When 0 < s < 1,
we prove that measures with almost everywhere positive lower density and finite upper
density are carried by countably many bi-Lipschitz curves. When 1 ≤ s < n, we identify
conditions on the lower density that ensure the measure is either carried by or singular
to (1/s)-Hölder curves. The latter results extend part of the recent work of Badger and
Schul, which examined the case s = 1 (Lipschitz curves) in depth. Of further interest,
we introduce Hölder and bi-Lipschitz parameterization theorems for Euclidean sets with
“small” Assouad dimension.
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1. Introduction

The study of the measure-theoretic geometry of Euclidean sets of integral dimension
was initiated by Besicovitch [Bes28, Bes38] in the 1920s and 1930s. Among many original
results, Besicovitch proved that any 1-set E ⊆ R2 (that is, an H1-measurable set with
0 < H1(E) <∞) decomposes into a regular set, Er, and an irregular set, Epu, where

lim
r↓0

H1(Er ∩B(x, r))

2r
= 1 for H1-a.e. x ∈ Er

and

lim inf
r↓0

H1(Epu ∩B(x, r))

2r
≤ 3/4 for H1-a.e. x ∈ Epu.

Throughout this paper, Hs denotes s-dimensional Hausdorff measure (see §6 below).
When s = 1, H1 extends the Lebesgue measure of subsets of the line to a measure of
“length” on arbitrary subsets of Rn. The result quoted above says that there is a strict
gap between measure-theoretic densities on regular and irregular sets, where the Lebesgue
density theorem holds precisely for regular sets. Besicovitch established several striking
characterizations of regular and irregular sets in terms of global geometry (intersection
with curves, projections onto lines) and asymptotic geometry (existence of tangent lines)
of sets. In particular, in the first category of results, Besicovitch proved that regular sets
are subsets of countable unions of rectifiable curves plus a set of H1 measure zero, whereas
irregular sets are sets which intersect any rectifiable curve in a set of H1 measure zero.
For a modern presentation of Besicovitch’s theory of 1-sets, see [Fal86, Chapter 3].

Extensions of Besicovitch’s program have now been made in three different directions:
expanding the range of dimensions, broadening the class of measures, and developing
quantitative analogues of the qualitative theory. The decomposition of m-sets in Rn for
arbitrary pairs of integers 1 ≤ m ≤ n−1 and the characterizations of regular and irregular
sets in terms of measure-theoretic densities, global geometry, and asymptotic geometry
were established over a number of years, with principal contributions by Federer [Fed47],
Marstrand [Mar61], Mattila [Mat75], and Preiss [Pre87]. Analogues of these results for
a larger class of “absolutely continuous” measures satisfying µ� Hm were developed by
Morse and Randolph [MR44], when m = 1, and by Preiss [Pre87], when 2 ≤ m ≤ n− 1.
Very recently, an extension of Morse and Randolph’s results to arbitrary Radon measures
in Rn was completed by Badger and Schul [BS17]. For related recent developments in this
direction, see [AT15], [ENV16], and [Ghi17]. A parallel quantitative theory of Ahlfors
regular m-sets (and further results) was developed by Jones [Jon90] and Okikiolu [Oki92],
when m = 1, and extensively by David and Semmes [DS91, DS93], when 1 ≤ m ≤ n− 1.
A generalization of Jones’ and Okikiolu’s traveling salesman theorems, which identify
subsets of rectifiable curves in Rn, to a theorem identifying subsets of certain higher
dimensional surfaces in Rn has recently been furnished by Azzam and Schul [AS18].

In [MM88, MM93, MM00], Mart́ın and Mattila initiated a Besicovitch-style study of
measure-theoretic densities, global geometry, and asymptotic geometry of s-sets E ⊆ Rn,
with 0 < s < n not necessarily an integer.1 One important finding in [MM88] is that

1A related investigation on the Hausdorff dimension of projections of s-sets onto lower dimensional
subspaces was carried out earlier by Marstrand [Mar54].
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several geometric properties, which each characterize regular s-sets when s is an integer,
no longer describe the same classes of s-sets for fractional s.

Definition 1.1 (rectifiability of s-sets). Let 1 ≤ m ≤ n − 1 be integers and 0 ≤ s ≤ m.
Let E ⊆ Rn be an s-set (i.e. an Hs measurable set with 0 < Hs(E) <∞). We say that

(1) E is countably (Hs,m) rectifiable if there exist countably many Lipschitz maps
fi : Rm → Rn such that f Hs(E \

⋃
i fi(Rm)) = 0;

(2) E is countably (Hs,m) graph rectifiable if there are countably many m-dimensional
Lipschitz graphs Γi ⊆ Rn (that is, isometric copies of graphs of Lipschitz functions
g : Rm → Rn−m) such that Hs(E \

⋃
i Γi) = 0; and,

(3) E is countably (Hs,m) C1 rectifiable if there exist countably many m-dimensional
embedded C1 submanifolds Mi ⊆ Rn such that Hs(E \

⋃
iMi) = 0.

From the definition it is immediate that (3)⇒ (2)⇒ (1) for every s-set. When s = m,
the three variations of rectifiability in Definition 1.1 are in fact equivalent and furthermore
hold if and only if E is regular in the sense that

lim
r↓0

Hm(E ∩B(x, r))

ωmrm
= 1 at Hm-a.e. x ∈ E,

where ωm is the m-dimensional Hausdorff measure on the unit ball in Rm (see [Mat95]).
However, Mart́ın and Mattila (see [MM88, §§5.3 and 5.4]) constructed compact s-sets in
the plane that show (1) 6⇒ (2) 6⇒ (3) when 0 < s < 1.

Another principal result from [MM88] is that s-sets with positive lower density are
always countably (Hs,m) rectifiable when s < m. This is in stark contrast with the
situation when s ≥ m; see the discussion between Theorems 1.5 and 1.6 below.

Theorem 1.2 ([MM88, Theorem 4.1(1)]). Let 1 ≤ m ≤ n− 1 be integers and let s < m.
If E ⊆ Rn is an s-set and

lim inf
r↓0

Hs(E ∩B(x, r))

rs
> 0 at Hs-a.e. x ∈ E,

then E is countably (Hs,m) rectifiable.

In [MM93, MM00], Mart́ın and Mattila explore a notion of fractional rectifiability based
on images of Hölder continuous maps. Recall that a map f : A→ Rn defined over A ⊆ Rm

is (1/γ)-Hölder for some 1 ≤ γ <∞ if

Höld1/γ f := sup
x,y∈A
x 6=y

|f(x)− f(y)|
|x− y|1/γ

<∞.

Every (1/γ)-Hölder map defined over A ⊆ Rm admits an extension to a (1/γ)-Hölder map
defined over Rm, and trivially, restrictions of (1/γ)-Hölder maps are (1/γ)-Hölder. It is
also well known that a (1/γ)-Hölder map does not increase Hausdorff dimension of a set
by more than a factor of γ, and moreover,

Hγt(f(B)) . Ht(B) for all t ≥ 0 and B ⊆ A,

where the implicit constant depends only on (Höld1/γ f)t and the normalization used in
the definition of the Hausdorff measures Ht and Hγt. In particular, for any integers
1 ≤ m ≤ n − 1 and s ∈ [m,n], images of (m/s)-Hölder maps f : [0, 1]m → Rn—which
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Figure 1.1. Generators for a snowflake curve and four-corner Cantor set
of Hausdorff dimension s, where q = 4−1/s.

to shorten terminology, we call (m/s)-Hölder m-cubes—are connected, compact sets with
finite Hs measure. Where Besicovitch used rectifiable curves (images of Lipschitz maps
f : [0, 1] → Rn) as a basis for studying the structure of 1-sets, Mart́ın and Mattila use
(m/s)-Hölder m-cubes as a basis to examine the structure of s-sets when s ∈ [m,n].

From general considerations (see Appendix A), it follows that for every s-set E ⊆ Rn,
with s ∈ [m,n], we can write E as

E = Em→s ∪ E⊥m→s, with Hs(Em→s ∩ E⊥m→s) = 0,

where

• Em→s is countably (Hs,m→ s) rectifiable in the sense that Em→s is covered up to
a set of Hs measure zero by countably many (m/s)-Hölder m-cubes, and
• E⊥m→s is purely (Hs,m → s) unrectifiable in the sense that E⊥m→s intersects any

(m/s)-Hölder m-cube in a set of Hs measure zero.

The decomposition of E into its countably (Hs,m→ s) rectifiable and purely (Hs,m→ s)
unrectifiable parts is unique up to redefinition of the parts on sets of Hs measure zero.
Note that, when s = m, the countably (Hm,m → m) rectifiable m-sets are precisely the
countably (Hm,m) rectifiable m-sets, which are by now well understood (e.g. see [Mat95]).
It is an open problem to characterize countably (Hs,m→ s) rectifiable s-sets in terms of
projections, measure-theoretic densities, and/or asymptotic geometry when s > m.

Example 1.3 (snowflake curves). Let Γs ⊆ R2 be a self-similar snowflake curve of Hausdorff
dimension 1 < s < 2 (see Figure 1.1). Then there exists a (1/s)-Hölder homeomorphism
[0, 1]→ Γs (e.g. see [SS05, Chapter VII, §2]). In particular, Γs is (Hs, 1→ s) rectifiable.

Example 1.4 (space-filling curves). The existence of Hölder space-filling (Peano) curves
is well known. For example, see [SS05, Chapter VII, §3] for a friendly exposition of
the construction of a (1/2)-Hölder surjection [0, 1] � [0, 1]2. More generally, there exist
(j/k)-Hölder surjections [0, 1]j � [0, 1]k for any pair of integer dimensions 1 ≤ j ≤ k;
this follows by taking scaling limits of Stong’s (j/k)-Hölder bijections Zj → Zk from
[Sto98] (for an outline of the argument, see [Sem03, §9.1]). Thus, in the language above,
a k-dimensional cube [0, 1]k × {0}n−k is (Hk, j → k) rectifiable for all 1 ≤ j ≤ k ≤ n.
Precomposing Lipschitz maps g : [0, 1]k → Rn with the space-filling map [0, 1]j � [0, 1]k,
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one sees that every countably (Hk, k) rectifiable set E ⊆ Rn is countably (Hk, j → k)
rectifiable whenever 1 ≤ j ≤ k.

The following theorem from [MM93] provides a necessary condition on the lower density
for an s-set to be countably (Hs,m→ s) rectifiable.

Theorem 1.5 ([MM93, Theorem 3.2]). Let 1 ≤ m ≤ n− 1 be integers and let s ∈ [m,n],
let A ⊆ Rm be Hm measurable, and let f : A→ Rn be (m/s)-Hölder. If E ⊆ f(A) is Hs

measurable, then

lim inf
r↓0

Hs(E ∩B(x, r))

rs
> 0 for Hs-a.e. x ∈ E.

When s = m, it is well known that not all m-sets with positive lower m-density are
countably (Hm,m) rectifiable. For example, in [Hut81, §5.4], Hutchinson proved that
m-dimensional self-similar sets K with disjoint parts have positive lower density2, but
intersect images of Lipschitz maps f : Rm → Rn in sets of Hm measure zero. In [MM93],
Mart́ın and Mattila confirm that this behavior persists for self-similar s-sets when s > m.
Also see [MM00], where Theorem 1.6 is extended to more general sets, including cylinders
K × Rk, where K is a self-similar Cantor set.

Theorem 1.6 ([MM93, Corollary 3.5]). Let 1 ≤ m ≤ n− 1 be integers and let s ∈ [m,n].

Let K be a compact self-similar subset of Rn, K =
⋃N
i=1 Si(K), such that the different

parts Si(K) are disjoint. If A ⊆ Rm is Hm measurable and f : A→ Rn is (m/s)-Hölder,
then

Hs(K ∩ f(A)) = 0.

In this paper, we redevelop Mart́ın and Mattila’s framework in the general setting of
Radon measures in Rn. In particular, we investigate the connection between lower and
upper Hausdorff densities of a measure and its interaction with (m/s)-Hölder m-cubes.
The main results and methods will be described momentarily. Before continuing, we first
record an extension of Theorem 1.2, which follows from Theorems B and C.

Theorem 1.7. Let 1 ≤ m ≤ n−1 be integers, let s ∈ [m,n], and let t ∈ [0, s). If E ⊆ Rn

is a t-set and

lim inf
r↓0

Ht(E ∩B(x, r))

rt
> 0 at Ht-a.e. x ∈ E,

then E is countably (Ht,m→ s) rectifiable, i.e. there exist countably many (m/s)-Hölder
m-cubes Γi such that Ht(E \

⋃
i Γi) = 0.

Moreover, if t ∈ [0, 1), then E is countably (Ht, 1) bi-Lipschitz rectifiable, i.e. there
exist countably many bi-Lipschitz embeddings fi : [0, 1]→ Rn such that Ht(E \

⋃
i Γi) = 0.

Example 1.8 (2n-corner Cantor sets). Let Et ⊆ [0, 1]n be the self-similar 2n-corner Cantor
set of Hausdorff dimension 0 < t < n, which is obtained via similarities that dilate the
unit cube by a factor q = 2−n/t (see Figure 1.1 for the case n = 2).

• If 1 ≤ m ≤ n− 1 and m ≤ t < m+ 1, then Et is purely (Ht,m→ t) unrectifiable
by Theorem 1.6.

2In fact, K is Ahlfors regular in the sense thatHm(K∩B(x, r)) ∼ rm when x ∈ K and 0 < r ≤ diamK,
because K is self-similar.
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• If 1 ≤ m ≤ n− 1 and m ≤ t < m+ 1, then Et is countably (Ht,m→ s) rectifiable
for all s > t by Theorem 1.7.
• If t < 1, then Et is countably (Ht, 1) bi-Lipschitz rectifiable by Theorem 1.7.

1.1. Main results and organization of the paper. Let 1 ≤ m ≤ n − 1 be integers
and let s ∈ [m,n]. Recall that we define a (m/s)-Hölder m-cube to be the image of a
Hölder continuous map f : [0, 1]m → Rn with exponent (m/s). When m = 1, we refer to
a (1/s)-Hölder 1-cube as a (1/s)-Hölder curve. By Proposition A.2, every Radon measure
(that is, a locally finite Borel regular outer measure) µ on Rn can be written uniquely as

µ = µm→s + µ⊥m→s,

where

• µm→s is carried by (m/s)-Hölder m-cubes in the sense that there exist countably
many (m/s)-Hölder m-cubes Γi ⊆ Rn such that µm→s(Rn \

⋃
i Γi) = 0, and

• µ⊥m→s is singular to (m/s)-Hölder m-cubes in the sense that µ(Γ) = 0 for every
(m/s)-Hölder m-cube Γ ⊆ Rn.

When m = s = 1, Badger and Schul [BS17, Theorem A] gave a full characterization of
the 1-rectifiable µ1→1 and purely 1-unrectifiable µ⊥1→1 parts of a Radon measure. When
s = n, the existence of space-filling curves implies that for every Radon measure µ on Rn,
µ = µm→n for all 1 ≤ m ≤ n− 1. No other case of the following fundamental problem in
geometric measure theory has been completely solved. When s = m is an integer and the
measure a priori satisfies µ � Hm, several solutions to Problem 1.9 have been given by
Federer [Fed47], Preiss [Pre87], Azzam and Tolsa [AT15], and Tolsa and Toro [TT15].

Problem 1.9 (identification problem). Let 1 ≤ m ≤ n − 1 be integers and let s ∈ [m,n].
Find geometric or measure-theoretic characterizations of being carried by or singular to
(m/s)-Hölder m-cubes that identify µm→s and µ⊥m→s for every Radon measures µ on Rn.

In our principal result, we show that extreme behavior of the lower s-density is sufficient
to detect that a measure is carried by or singular to (1/s)-Hölder curves. In the statement,
µ E denotes the restriction of the measure µ to the set E ⊆ Rn, defined by the rule

µ E(F ) = µ(E ∩ F ) for all F ⊆ Rn.

Theorem A (Behavior at extreme lower densities). Let µ be a Radon measure on Rn

and let s ∈ [1, n). Then the measure

(1.1) µs
0

:= µ

{
x ∈ Rn : lim inf

r↓0

µ(B(x, r))

rs
= 0

}
is singular to (1/s)-Hölder curves. At the other extreme, the measure

(1.2) µs∞ := µ

{
x ∈ Rn :

∫ 1

0

rs

µ(B(x, r))

dr

r
<∞ and lim sup

r↓0

µ(B(x, 2r))

µ(B(x, r))
<∞

}
is carried by (1/s)-Hölder curves.

Remark 1.10. Note that Theorem A extends Theorem 1.5 to arbitrary Radon measures;
see Corollary 6.5. In (1.2), if the Dini-type condition

∫ 1

0
[rs/µ(B(x, r))] r−1dr < ∞ holds

at some x, then limr↓0 r
−sµ(B(x, r)) =∞. Thus, Theorem A identifies diverse behaviors

of a measure on the points of vanishing lower density and the points of “rapidly” infinite
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density. It is possible to remove the doubling condition in (1.2) by using dyadic cubes;
see Theorem 6.9. The special case s = 1 of Theorem A first appeared in [BS15, BS16].

The following corollary of Theorem A is immediate.

Corollary A. Let µ be a Radon measure on Rn, let s ∈ [1, n), and let t ∈ [0, s). Then
the measure

(1.3) µt+ := µ

{
x ∈ Rn : 0 < lim inf

r↓0

µ(B(x, r))

rt
≤ lim sup

r↓0

µ(B(x, r))

rt
<∞

}
is carried by (1/s)-Hölder curves.

Our next pair of results gives sharpened versions of Corollary A, depending on the values
of s and t. Recall that a set Γ ⊆ Rn is a bi-Lipschitz curve provided that Γ = f([0, 1]) for
some map f : [0, 1]→ Rn such that

L−1|x− y| ≤ |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ [0, 1], for some 1 ≤ L <∞.
In line with the terminology above, we say that a measure µ is carried by bi-Lipschitz
curves if there exist countably many bi-Lipschitz curves Γi such that µ(Rn \

⋃
i Γi) = 0.

Theorem 1.7 is an immediate consequence of Theorems B and C and the basic fact that
lim supr↓0 r

−tHt(E∩B(x, r)) ≤ C(t) <∞ atHt-a.e. x, for every t-set E (e.g. see [Mat95]).

Theorem B (Improvement to bi-Lipschitz curves). Let µ be a Radon measure on Rn and
let t ∈ [0, 1). Then the measure µt+ is carried by bi-Lipschitz curves.

Theorem C (Improvement to (m/s)-Hölder m-cubes). Let µ be a Radon measure on Rn,
let 1 ≤ m ≤ n − 1 be an integer, let s ∈ [m,n), and let t ∈ [0, s). Then the measure µt+
is carried by (m/s)-Hölder m-cubes.

Example 1.11. Garnett, Killip, and Schul [GKS10] examined a family of Radon measures
{µδ : 0 ≤ δ ≤ 1/3} on Rn (n ≥ 2) such that

0 < µδ(B(x, 2r)) ≤ Cδ µδ(B(x, r)) <∞ for all x ∈ Rn and r > 0 (0 < δ ≤ 1/3),

where µ0 is a discrete measure and µ1/3 is Lebesgue measure. They proved that there
exists δ0 = δ0(n) ∈ (0, 1/3) such that for all 0 < δ ≤ δ0, the measure µδ is simultaneously
carried by Lipschitz curves and singular to bi-Lipschitz curves (see the introduction of
either [BS15] or [BS16]). As a consequence, Badger and Schul (see [BS15, Example 1.15])
showed that for all 0 < δ ≤ δ0,

lim
r↓0

µδ(B(x, r))

r
=∞ at µδ-a.e. x ∈ Rn.

By Theorem B, we may conclude in addition that for all 0 < δ ≤ δ0 and for all 0 < t < 1,

lim inf
r↓0

µδ(B(x, r))

rt
∈ {0,∞} or lim sup

r↓0

µδ(B(x, r))

rt
∈ {0,∞} at µδ-a.e. x ∈ Rn.

The remainder of the paper is organized into two parts. In Part I (§§2–5), we develop
several Hölder and bi-Lipschitz parameterization theorems for a variety of “small” sets,
which are of separate interest (see especially Theorems 3.2 and 3.4). In Part II (§§6–7),
we derive Theorems A, B, and C using geometric measure theory techniques combined
with the technology of Part I. Because it is focused on metric geometry of Euclidean sets,
Part I may be read independently from the introduction and Part II.
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Part I. Parameterizations

In this part of the paper, we develop several parameterization theorems, which identify
certain “small” sets as subsets of “regular” curves or surfaces. In §2, we give a rather
simple criterion for the leaves of a tree of sets to be contained in a (1/s)-Hölder curve.
This result (see Theorem 2.3) extends the special case s = 1 (Lipschitz curves), which was
described by Badger and Schul in [BS16, §3]. In §3–§5, we prove that a Euclidean set with
Assouad dimension t strictly less than s is always contained in a (m/s)-Hölder m-plane,
where m = bsc. In other words, sets with small Assouad dimension are contained in
Hölder surfaces (see Theorem 3.2). In addition, we prove under an a priori quantitative
topological assumption that sets with small Assouad dimension are in fact contained in
bi-Lipschitz surfaces (see Theorem 3.4). The proof of this pair of results incorporates and
builds on ideas from MacManus’ construction of quasicircles in [Mac99].

2. Drawing Hölder curves through the leaves of summable trees

Definition 2.1. We define a tree of sets T =
⊔∞
k=0 Tk to be a nonempty collection of

bounded sets in Rn with

(i) unique root: #T0 = 1,
(ii) parents: for all k ≥ 1 and E ∈ Tk, there is an associated set E↑ ∈ Tk−1 called the

parent of E,
(iii) geometric diameters: there exist constants 0 < ρ < 1 and P1, P2 > 0 such that

P1ρ
k ≤ diamE ≤ P2ρ

k

for all k ≥ 0 and E ∈ Tk, and
(iv) gap-diameter bound: there exists P3 > 0 such that

gap(E,E↑) := inf
x∈E

inf
y∈E↑
|x− y| ≤ P3 diamE

for all k ≥ 1 and for all E ∈ Tk.
Let Top(T ) denote the unique set in T0, which we call the top of T . An infinite branch

of T is a sequence (Ek)
∞
k=0 in T with E0 = Top(T ) and E↑k = Ek−1 for all k ≥ 1. A point

x ∈ Rn is called a leaf of T if there exists an infinite branch (Ek)
∞
k=0 and a sequence

(xk)
∞
k=1 with xk ∈ Ek for all k ≥ 0 such that x = limk→∞ xk. We let

Leaves(T ) = {x ∈ Rn : x is a leaf of T }
denote the set of leaves of T .

Remark 2.2. Definition 2.1 is loosely modeled on a tree of dyadic cubes, but designed
with additional flexibility for applications (e.g. see Theorem 6.7). Axioms (iii) and (iv)
in the definition ensure that every infinite branch admits a unique leaf of T : For every
infinite branch (Ek)

∞
k=0 of T , there exists x ∈ Leaves(T ) such that x = limk→∞ xk for

every sequence (xk)
∞
k=0 with xk ∈ Ek for all k ≥ 0.

In the main result of this section, we prove that the leaves of a tree of sets with
summable diameters are contained in a Hölder curve. The special case of Lipschitz curves
(see the proof of [BS16, Lemma 3.3]) is easier, because of the special fact that every
connected, compact set in Rn of finite H1 measure is necessarily the image of a Lipschitz
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map f : [0, 1] → Rn (see [AO17, Theorem 4.4]). For higher dimensional curves, we must
construct the Hölder parameterization by hand.

Theorem 2.3. Let T be a tree of sets in the sense of Definition 2.1. If s ≥ 1 and

(2.1) Ss(T ) :=
∑
E∈T

(diamE)s <∞,

then Hs(Leaves(T )) = 0 and there exists a (1/s)-Hölder map f : [0, 1] → Rn such that
Leaves(T ) ⊆ f([0, 1]). Moreover, the (1/s)-Hölder constant of f can be taken to depend
only on Ss(T ) and the geometric parameters of the tree (ρ, P1, P2, P3).

Proof. Assume that (2.1) holds for some s ≥ 1. Replacing each set in T with its closure,
we may assume without loss of generality that the sets in T are closed. By deleting sets
from T if necessary, we may also assume without loss of generality that every set in T
belongs to an infinite branch. For all k ≥ 0 and for all E ∈ Tk, choose a point xk,E ∈ E.
Construct a connected set Γ◦ by drawing a line segment from xk,E to xk−1,E↑ for all k ≥ 1
and E ∈ Tk, and let Γ denote the closure of Γ◦. By Remark 2.2, Γ contains Leaves(T ).
Our present goal is to show that Γ admits a (1/s)-Hölder parameterization by a closed
interval. More specifically, for each k ≥ 0 and E ∈ Tk, define

Mk,E := 2
∞∑

j=k+1

∑
F∈Tj

F ↑...=E

|xj,F − xj−1,F ↑ |s,

where the sum is over all descendants of E in T . Note that M := M0,Top(T ) <∞, because:

1

2
M0,Top(T ) ≤

∞∑
j=1

∑
F∈Tj

(diamF + gap(F, F ↑) + diamF ↑)s

≤
∞∑
j=1

∑
F∈Tj

((
1 + P3 +

P2

P1ρ

)
diamF

)s
<

(
1 + P3 +

P2

P1ρ

)s
Ss(T ) <∞

by (2.1), where P1, P2, P3, and ρ are the geometric parameters of T (see Definition 2.1).
We will construct a (1/s)-Hölder continuous map g : [0,M ]→ Rn such that Γ = g([0,M ])
by defining a sequence gk : [0,M ]→ Rn of piecewise linear maps whose limit is g.

For each k ≥ 1, the image of gk is the “truncated tree” Γk :=
⋃k
j=1

⋃
E∈Tj [xj,E, xj−1,E↑ ].

Roughly speaking, gk is defined by starting at the root x0,Top(T ) and then touring each of
the edges [xj,E, xj−1,E↑ ] in Γk twice (once “down the tree”, once “up the tree”) at speed∣∣xj,E − xj−1,E↑

∣∣1−s ,
with the additional rule that whenever reaching a point xk,E in the “lowest level” of Γk,
we pause for Mk,E time units in the domain of gk before continuing the tour. By defining
the maps g1, g2, . . . inductively, one can ensure that gk(t) = gk+1(t) for all times t where
g′k(t) 6= 0 (that is, for all times where the tour of Γk is not paused). Or, in other words,
one can construct gk+1 from gk by modifying the definition of gk only in the intervals
where the tour of Γk was paused. We leave it to the reader to give a precise definition of
the maps gk if desired. The salient facts of any such construction are these:

• gk([0,M ]) = Γk for all k ≥ 1;
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• |gk(x)− gk(y)| ≤ Ak|x− y| for all k ≥ 1 and x, y ∈ [0,M ], where

Ak := sup
1≤j≤k

sup
E∈Tj

∣∣xj,E − xj−1,E↑
∣∣1−s ≤ (P2(1 + P3 + ρ−1)

)1−s
ρk(1−s); and,

• |gk(x)− gk+1(x)| ≤ Bk for all k ≥ 1 and x ∈ [0,M ], where

Bk := sup
E∈Tk+1

|xk+1,E − xk,E↑| ≤ P2(ρ+ P3ρ+ 1)ρk.

Define g : [0,M ]→ Rn pointwise by g(t) := limk→∞ gk(t) = g1(t) +
∑∞

k=1(gk+1(t)− gk(t)).
The existence and continuity of g are immediate, since

∑∞
k=1Bk < ∞. From this point,

it is a standard exercise to show that g is (1/s)-Hölder continuous with Hölder constant
depending on at most P1, P2, P3, ρ, and M (hence on Ss(T )); cf. [SS05, Lemma VII.2.8].
It is also easy to check that g([0,M ]) = Γ.

It remains to show that Hs(Leaves(T )) = 0. If E,E1 ∈ T and E1 is a descendent of E

(i.e. E↑1 = E), then

sup
x∈E1

dist(x,E) ≤ gap(E1, E) + diamE1 ≤ (P3 + 1) diamE1 ≤ (P3 + 1)
P2

P1

ρ diamE.

More generally, if E,Ek ∈ T and Ek is a kth descendent of E (i.e. E↑k = Ek−1, . . . ,

E↑2 = E1, and E↑1 = E), then

sup
x∈Ek

dist(x,E) ≤ sup
x∈Ek

dist(x,Ek−1) + · · ·+ sup
x∈E1

dist(x,E)

≤ (P3 + 1)
P2

P1

(ρk + · · ·+ ρ) diamE.

Thus, for all E ∈ T , the set

Ẽ :=

{
x ∈ Rn : dist(x,E) ≤ (P3 + 1)

P2

P1

ρ

1− ρ
diamE

}
contains all descendants of E. Hence Leaves(T ) ⊆

⋃
T∈Tk T̃ for all k ≥ 1. In particular,

we can bound the s-dimensional Hausdorff content

Hs
∞(Leaves(T )) ≤

∑
E∈Tk

(diam Ẽ)s ≤ C(P1, P2, P3, ρ)
∑
E∈Tk

(diamE)s for all k ≥ 1.

Letting k →∞, we obtain Hs(Leaves(T )) = 0, because
∑

E∈T (diamE)s <∞. �

3. Drawing surfaces through sets with small Assouad dimension

In this section, we present four related parameterization theorems, which draw surfaces
through “small” and/or uniformly disconnected sets; see Theorems 3.2, 3.4, 3.7, and 3.8.
The notion of size that we use for this purpose is Assouad dimension; for an in depth
survey of this concept, see [Luu98].

Definition 3.1 (Assouad dimension). Let X be a metric space, let β > 0, and let C > 1.
We say X is (C, β)-homogeneous (or simply, X is β-homogeneous) if for every bounded
set A ⊆ X and for every δ ∈ (0, 1), there exist sets A1, . . . , AN ⊆ X such that

A1 ∪ · · · ∪ AN ⊇ A, diamAi ≤ δ diamA, and card{A1, . . . , AN} ≤ Cδ−β.
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The Assouad dimension of X, denoted dimAX, is defined by

dimAX := inf{β > 0 : X is β-homogeneous} ∈ [0,∞].

The first parameterization theorem extends [MM00, Theorem 3.4], a measure-theoretic
condition for an s-set to be contained in a Hölder surface, which is stated without a proof.
For the connection between Assouad dimension and the condition in [MM00], see Lemma
7.1 below. We supply a proof of Theorem 3.2 in §4.

Theorem 3.2 (Hölder parameterization). Let 1 ≤ m ≤ n− 1 be integers, let s ∈ [m,n),
and let E ⊆ Rn. If dimAE < s, then there exists an (m/s)-Hölder continuous map
f : Rm → Rn such that E ⊆ f(Rm).

In order to obtain bi-Lipschitz parameterizations or even bi-Hölder parameterizations,
it is natural to impose topological assumptions on the set. To wit, it is well known that
if E ⊆ Rn is a totally disconnected closed set, then E is homeomorphic to a subset of
the standard ternary Cantor set (e.g. see [Kec95, Theorem 7.8]). Furthermore, for every
positive integer m < n, there exists a topological embedding f : Rm → Rn whose image
contains E (e.g. see [Rus73]). To ensure that f satisfies additional regularity properties,
we employ a scale-invariant version of total disconnectedness, which was introduced by
David and Semmes [DS97, §15].

Definition 3.3 (uniformly disconnected spaces). Let X be a metric space. We say that
X is c-uniformly disconnected for some c ≥ 1 if for all x ∈ X and for all 0 < r ≤ diamX,
there exists Ex,r ⊆ X containing x such that diamEx,r ≤ r and gap(Ex,r, X \Ex,r) ≥ r/c.
To suppress dependence on c, we may simply say that X is uniformly disconnected.

The second parameterization theorem states that under the additional assumption of
uniform disconnectedness, the Hölder parameterization in Theorem 3.2 upgrades to a
bi-Lipschitz parametrization. We provide a proof of Theorem 3.4 in §5.

Theorem 3.4 (bi-Lipschitz parameterization). Let 1 ≤ m ≤ n−1 be integers. If E ⊆ Rn

is uniformly disconnected and dimAE < m, then there exists a bi-Lipschitz embedding
f : Rm → Rn such that E ⊆ f(Rm).

When dimAE < 1, the set E is uniformly disconnected by [MT10, Proposition 5.1.7]
(also see [DS97, Lemma 15.2]). Thus, Euclidean sets of Assouad dimension strictly less
than one are always contained in a bi-Lipschitz line.

Corollary 3.5. Let E ⊆ Rn. If dimAE < 1, then there exists a bi-Lipschitz embedding
f : R→ Rn such that E ⊆ f(R).

Remark 3.6. The upper bound on the Assouad dimension in Theorem 3.4 is necessary
in that there do not exist bi-Lipschitz embeddings f : X → Rn when dimAX ≥ n.
This assertion follows from the well-known fact that Assouad dimension is a bi-Lipschitz
invariant (see [Luu98, Theorem A.5]) and the fact that uniformly disconnected sets in Rn

are porous and have Assouad dimension strictly less than n (see [Luu98, Theorem 5.2]).

In the event that E is uniformly disconnected and dimAE ≥ m, one may expect that the
bi-Lipschitz embedding of Theorem 3.4 could be replaced by a (1/γ)-bi-Hölder embedding
of Rm provided that dimAE < γm. However, (1/γ)-bi-Hölder embeddability of Rm into
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Rn when γm < n is a formidable problem, which has been solved only in special cases
such as when m = 1 [BH04, RV17], when 1

γ
is sufficiently close to 1 [DT99, DT12], or

when n is much bigger than γm [Ass83]. By modifying the proof of Theorem 3.4 using
the snowflaking techniques for polygonal paths from [BH04, RV17], one can obtain the
following bi-Hölder variant of the bi-Lipschitz parameterization theorem when m = 1.
Because we do not need Theorem 3.7 for our applications in Part II, we leave details of
the proof of the theorem to the interested reader.

Theorem 3.7 (bi-Hölder parameterization). Let n ≥ 2 be an integer and let s ∈ [1, n).
If E ⊆ Rn is uniformly disconnected and dimAE < s, then there exists a (1/s)-bi-Hölder
embedding f : R→ Rn (that is, both f and f−1 are (1/s)-Hölder) such that E ⊆ f(R).

MacManus [Mac99] proved that if E ⊆ Rn is uniformly disconnected, then there exists
a quasisymmetric3 embedding f : R→ Rn whose image contains E. Note that this result
does not require a bound on the dimension of E, which is natural in view of the fact
that quasisymmetric maps may increase the dimension of sets. Arguments similar to ones
used in the proof of Theorem 3.4 (also see the proof of [V8̈1, Theorem 6.3]) can be used
to obtain the following extension of MacManus’ result. We leave details of the proof of
Theorem 3.8 to the interested reader; see Remark 5.4.

Theorem 3.8 (quasisymmetric parameterization). Let 1 ≤ m ≤ n−1 be integers. If E ⊆
Rn is uniformly disconnected, then there exists a quasisymmetric embedding f : Rm → Rn

such that E ⊆ f(Rm).

Remark 3.9. It is natural to ask to what extent do Theorems 3.2, 3.4, 3.7, and 3.8 hold
with other metric spaces. We leave this question open for future research.

In the remainder of this section, we fix some basic notation used in our construction
of the surfaces appearing in Theorems 3.2 and 3.4. Section 4 (the proof of Theorem 3.2)
and section 5 (the proof of Theorem 3.4) may be read independently of each other.

Cubes. Given l ∈ (0,∞) and integers 0 ≤ k ≤ n, a k-cube of side length l,

K := I1 × · · · × In ⊆ Rn,

is a product of bounded, closed intervals Ii ⊆ R such that the length |Ii| = l for k indices
and |Ii| = 0 for n− k indices. If K is an n-cube, then the topological boundary ∂K of K
is the union of 2n-many (n−1)-cubes, which are called the (n−1)-faces of K. In general,
for all 1 ≤ k ≤ n, every k-face of K is the union of 2k-many (k − 1)-cubes, which are
called the (k − 1)-faces of K. The 0-faces and 1-faces of a cube K are commonly called
the vertices ane edges, respectively, of K. For each (n− 1)-face F of an n-cube K, there
is a unique face F̃ of K such that

F ∩ F̃ = ∅;
we call F̃ the antipodal face of F .

For all x = (x1, . . . , xn) ∈ Rn and r > 0, let Cn(x; r) ⊆ Rn denote the n-cube centered
at x of side length 2r > 0 with edges parallel to the coordinate axes; that is,

Cn(x; r) := [x1 − r, x1 + r]× · · · × [xn − r, xn + r].

3For the definition of and background on quasisymmetric maps, we refer the reader to [Hei01].
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For all x ∈ Rn and 0 < r < R, let An(x; r, R) ⊆ Rn denote the closed annular region
between Cn(x; r) and Cn(x;R),

An(x; r, R) := Cn(x;R) \ Cn(x; r).

Grids. For all δ > 0, let Gδ denote the grid of cubes of side length δ,

Gδ := {[m1δ, (m1 + 1)δ]× · · · × [mnδ, (mn + 1)δ] : m1, . . . ,mn ∈ Z}.
For all integers 0 ≤ k < n, define the k-skeleton of Gδ,

G k
δ :=

⋃
{F : F is a k-face of some K ∈ Gδ} .

For instance, G 0
δ is the set of all vertices of cubes in Gδ, while G 1

δ is the union of all edges
of cubes in Gδ.

Remark 3.10 (length bound). Suppose that M is a union of cubes in Gd with diamM = Dδ
and γ ⊆ G 1

δ is an arc with endpoints in G 0
δ such that γ ⊆M . Then M is formed from at

most Dn distinct cubes in Gδ, each of which has n2n−1-many edges. Thus, since an arc
contained in G 1

δ traverses each edge at most once,

H1(γ) ≤ Dn2n−1nδ = C(n)
[
δ−1 diamM

]n
δ.

Tubes. Given 0 < ε ≤ δ and an oriented polygonal arc γ ⊆ G 1
δ with initial endpoint

y1 ∈ G 0
δ and terminal endpoint y2 ∈ G 0

δ , define

Tubeε(γ) =
⋃
{Cn(x; ε/2) : x ∈ γ and dist(x, {y1, y2}) ≥ ε/2} ,

the tube around γ of width ε, where the union is taken over all points x ∈ γ whose distance
from the endpoints of γ are at least ε/2. Distinguishing between the initial endpoint y1

and terminal endpoint y2 of γ, we can split the topological boundary ∂T of T = Tubeε(γ)
into three distinguished pieces:

• Entrance(T ) is the (n− 1)-cube in ∂T of side length ε that contains y1;
• Exit(T ) is the (n− 1)-cube in ∂T of side length ε that contains y2; and,
• Side(T ) is closure of the remainder of ∂T , i.e.

Side(T ) := ∂T \ (Entrance(T ) ∪ Exit(T )).

Lemma 3.11 (straightening tubes). Let 0 < ε ≤ δ/(8
√
n), let γ ⊆ G 1

δ be a simple
oriented polygonal arc with distinct endpoints in G0

δ , and let T denote Tubeε(γ). Then
there exists L = L(n, δ−1H1(γ)) > 1 and an L-bi-Lipschitz orientation preserving map

φ : T → [0,H1(γ)]× [−ε/2, ε/2]n−1

such that the restrictions of φ to Entrance(T ) and Exit(T ) are isometries with

φ(Entrance(T )) = {0} × [−ε/2, ε/2]n−1,

φ(Exit(T )) = {H1(γ)} × [−ε/2, ε/2]n−1.

Proof. We start by breaking up T into canonical tubes. Consider the two arcs

Γ1 := [0, 1
2
]× {0}n−1 and Γ2 := ([0, 1

2
]× {0}n−1) ∪ ({1

2
} × [0, 1

2
]× {0}n−2).

Then γ can be written as a concatenation of consecutive arcs (see Figure 3.1) γ1, . . . , γm

such that for each i = 1, . . . ,m either γi is congruent to Γ1 and H1(γi) = 1
2
δ or γi is
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Figure 3.1. Proof of Lemma 3.11

congruent to Γ2 and H1(γi) = δ. Thus, we can decompose T as an almost disjoint union
of consecutive tubes

Tubeε(γ
1), Tubeε(γ

2), . . . , Tubeε(γ
m−1), Tubeε(γ

m),

intersecting in (n− 1)-cubes congruent to {0} × [−ε/2, ε/2]n−1 (see Figure 3.1).
In view of the possible, simple geometric configurations, there exists L0 = L0(n) > 1

such that for each Tubeε(γ
j), there exists an L0-bi-Lipschitz map

φj : Tubeε(γ
j)→ [λj−1, λj]× [−ε/2, ε/2]n−1,

where λ0 = 0 and λj − λj−1 = H1(γj) for all 1 ≤ j ≤ m. Moreover, working sequentially,
we are plainly free to choose the maps so that

• φj maps Entrance(Tubeε(γ
j)) and Exit(Tubeε(γ

j)) isometrically onto

{λj−1} × [−ε/2, ε/2]n−1 and {λj} × [−ε/2, ε/2]n−1,

respectively, for all 1 ≤ j ≤ m, and
• φj|Entrance(Tubeε(γj)) = φj−1|Exit(Tubeε(γj−1)) for all 2 ≤ j ≤ m.

Thus, we can define a map

φ : Tubeε(γ)→ [0,H1(γ)]× [−ε/2, ε/2]n−1

by setting φ|Tubeε(γj) = φj for all 1 ≤ j ≤ m.
To see that φ is bi-Lipschitz, let x, y ∈ T . If there exists j ∈ {2, . . . ,m} such that x, y ∈

Tubeε(γ
j−1) ∪ Tubeε(γ

j), then—once again—in view of the possible, simple geometric
configurations, the restriction of φ to Tubeε(γ

j) ∪ Tubeε(γ
j) is L1-bi-Lipschitz for some

L1 = L1(n) > 1. Alternatively, if x ∈ Tubeε(γ
j) and y ∈ Tubeε(γ

i) for some j > i + 1,
then

|x− y| ≥ gap(Tubeε(γ
j),Tubeε(γ

i)) ≥ gap(γi, γj)−
√
nε ≥ δ/2− δ/4 = δ/4,

because γ has distinct endpoints and 0 < ε ≤ δ/(8
√
n). Hence

|φ(x)− φ(y)| ≤
√
H1(γ)2 + nε2 < 1.5H1(γ) ≤ 6

δ
H1(γ)|x− y|,
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again because 0 < ε ≤ δ/(8
√
n). A similar argument shows that |φ(x)− φ(y)| ≥ δ/2 and

|x− y| ≤ 3

δ
H1(γ)|φ(x)− φ(y)|.

Therefore, φ is L-bi-Lipschitz for some L = L(n, δ−1H1(γ)). �

4. Proof of Theorem 3.2 (Hölder surfaces)

We first treat the case that m = n− 1 of Theorem 3.2 in Proposition 4.1. Afterwards,
we derive the proof of Theorem 3.2 in general codimension.

Proposition 4.1 (Hölder parametrization in codimension one). For every choice of n ≥ 2,
s ∈ [n− 1, n), C > 1, and 0 ≤ β < s, there exist constants

C ′(n, s, C, β) > 1 and L = L(n, s, C, β) > 1

such that for every (C, β)-homogeneous, closed set E ⊆ Rn, there exists a (C ′, (n−1)β/s)-
homogeneous, closed set E ′ ⊆ Rn−1 and a (n− 1)/s-Hölder map f : E ′ → E such that

Höld(n−1)/s f ≤ L and f(E ′) = E.

Proof of Proposition 4.1. Let us abbreviate (n−1)/s =: α. SinceE is (C, β)-homogeneous,
there exists C0 = C0(n,C, β) with the following property:

For all k ∈ N, x ∈ Rn, and r > 0, if the cube Q := Cn(x; r) is divided into
kn essentially disjoint subcubes Q1, . . . , Qkn of side length 2r/k, then

card {i ∈ {1, . . . , kn} : Qi ∩ E 6= ∅} ≤ C0k
β.

Fix a number ε ∈ (0, 1) so that ε−1 is an integer and

ε ≤ (3n−1C0)
1

β−s .

Finally, set N = 1 + bC0ε
−βc. We split the argument into two steps.

Step 1. Assume that E is bounded. Composing with appropriate similarities on the
domain and target of f , we may assume that E ⊆ [−1, 1]n. Our goal is to construct a
(C ′, βα)-homogeneous, closed set E ′ ⊆ [−1, 1]n−1 and a α-Hölder map f : E ′ → Rn with
f(E ′) = E.

Define M∅ := [−1, 1]n. By way of induction, assume that a cube Mw has been defined
for some finite word w with letters drawn from {1, . . . , N}. Divide Mw into ε−n-many
subcubes with side lengths 2ε|w|+1 and mutually disjoint interiors; label the subcubes that
intersect E as Mw1, . . . ,MwNw . Note that Nw ≤ N . Let W denote the set of all words,
for which Mw has been defined.

Define M ′
∅ = [−1, 1]n−1. Inductively, given a cube M ′

w = Cn−1(zw; ε|w|/α), the upper
bound of Nw and the choice of ε allow us to find cubes

M ′
wi = Cn−1(zwi; ε

(|w|+1)/α) ⊆M ′
w (i ∈ {1, . . . , Nw})

such that for all distinct i, j ∈ {1, . . . , Nw},
gap(M ′

wi,M
′
wj) ≥ ε(|w|+1)/α.

Set
E ′ :=

⋂
k∈N

⋃
w∈W,|w|=k

M ′
w.
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Then E ′ is compact and (C ′, αβ)-homogeneous for some C ′ = C ′(n, s, C, β).
For each x ∈ E ′, there exists a growing sequence (wk) of words in W (i.e. for each k,

the word wk+1 = wki for some i ∈ {1, . . . , N}) such that⋂
k∈N

M ′
wk

= {x}.

Given a point x ∈ E ′ and an associated sequence (wk), define f(x) to be the unique point
in
⋂
k∈NMwk . To show that f is α-Hölder continuous, fix x, y ∈ E ′ and let w denote the

longest word such that x, y ∈M ′
w. Then

|f(x)− f(y)| ≤ diamMw = 2
√
nε|w| ≤ ε−1(gap(M ′

wi,M
′
wj))

α ≤ ε−1|x− y|α.
Thus, f is α-Hölder continuous and f(E ′) ⊆ E. In fact, because every point in E can be
represented as the unique point in

⋂
k∈NMwk for some growing sequence (wk) of words in

W , we have f(E ′) = E.

Step 2. Assume that E is unbounded. For each k ≥ 0, let

Ek := E ∩ [−ε−k, ε−k]n,
where ε continues to denote the parameter chosen above. By adding the origin to the set E
if necessary, we may assume that Ek 6= ∅ for all k ≥ 0. Each set Ek is (C, β)-homogeneous,
because E is (C, β)-homogeneous and homogeneity is inherited by subsets.

By Step 1, there exists a (C ′, αβ)-homogeneous set E ′0 ⊆ Rn−1, a constant L0 =
L0(n, s, C, β) > 1, and a α-Hölder continuous map f0 : E0 → Rn such that

Höldα f ≤ L0 and f0(E ′0) = E0.

Inductively, suppose that for some k ≥ 0, we have defined a (C ′, αβ)-homogeneous
set E ′k ⊆ [−ε−k/α, ε−k/α]n−1 and a α-Hölder map fk : E ′k → Rn such that Höldα f ≤ L
and fk(E

′
k) = Ek. Divide Qk+1 = [−ε−k−1, ε−k−1]n into ε−n-many cubes with mutually

disjoint interiors and side lengths 2ε−k and denote by Qk+1 this collection of cubes. Let
Qk,1, . . . Qk,mk be those cubes in Qk+1 that intersect with E. Set Qk,1 = [−ε−k, ε−k]n.
Since mk ≤ N , we can find, cubes Q′k,1, . . . , Q

′
k,mk

in Q′k+1 = [−ε−(k+1)/α, ε−(k+1)/α]n−1

such that Q′k,1 = [−ε−k/α, ε−k/α]n−1 and

gap(Q′k,i, Q
′
k,j) ≥ (2ε)−k/α for i 6= j.

Set E ′k,1 = E ′k. For each i ∈ {2, . . . ,mk} (if any) let ζk,i be a similarity of Rn that maps

Qk,i onto [−1, 1]n and ζ ′k,i be a similarity of Rn−1 that maps Q′k,i onto [−1, 1]n−1. Let also

E ′′k,i and gk,i : E ′′k,i → Rn be the (C ′, αβ)-homogeneous subset of [−1, 1]n−1 and α-Hölder

map, respectively, of Case 1 for ζk,i(Qk,i ∩ E). Set E ′k,i = (ζ ′k,i)
−1(E ′′k,i) and

E ′k+1 =

mk⋃
i=1

E ′k,i.

Define fk+1 : E ′k+1 → Rn with fk+1|E′k,1 = fk|E′k,1 and for i = 2, . . . ,mk (if any)

fk+1|E′k,i = (ζk,i)
−1 ◦ gk,i ◦ ζ ′k,i|E′k,i .

It is easy to see that the map fk+1 : E ′k+1 → Rn is α-Hölder with Höldα f = L1(n,C, β, s).
Furthermore, the set E ′k+1 is (C1, αβ)-homogeneous for some constant C1 = C1(n,C, β, s).
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Thus, we construct a nested sequence of (C1, αβ)-homogeneous sets E ′1 ⊆ E ′2 ⊆ · · · in
Rn−1 and a sequence of α-Hölder maps fk : E ′k → Rn such that for each k ∈ N,

Höldα fk = L1, fk+1|E′k = fk|E′k and fk(E
′
k) = Ek.

Set E ′ =
⋃
k∈NEk. Since the Hölder constant is uniform, the sequence fk converges

uniformly on compact sets to a map f : E ′ → Rn which is α-Hölder. Moreover, E ′ is
(C1, αβ)-homogeneous and f(E ′) = E. �

Now we are ready to show Theorem 3.2.

Proof of Theorem 3.2. Let us abbreviate m/s =: α. Since Hölder maps extend to the
closure of their domains with the same Hölder constant, and since dimA(E) = dimA(E)
we may assume for the rest that E is closed. By McShane’s extension theorem (see e.g.
[Ste70, VI 2.2, Theorem 3]), it is enough to construct a set E ′ ⊆ Rm and a α-Hölder map
f : E ′ → E such that E = f(E ′). Let k = dse be the smallest integer, bigger or equal to
s. Fix β ∈ (k − 1, s) such that β > dimA(E). Then there exists C > 1 such that E is
(C, β)-homogeneous.

If k < n then by Proposition 4.1 there exists a β-homogeneous set A1 ⊆ Rn−1 and a
Lipschitz surjective map g1 : A1 → E. Proceeding inductively, for i = 2, . . . , n − k there
exists β-homogeneous sets Ai ⊆ Rn−i and Lipschitz surjective maps maps gi : Ai → Ai−1.
Thus, g = g1 ◦ · · · ◦ gn−m is a Lipschitz map of An−k ⊆ Rk onto E and it remains to
produce a αβ-homogeneous set E ′′ ⊆ Rm and a α-Hölder surjective map f : E ′′ → An−k.
Hence, we may assume for the rest that k = n.

Suppose that k = n. Fix a number α1 ∈ (0, 1) such that

n− 1

s
< α1 <

n− 1

β
.

Inductively, assuming we have defined numbers α1, . . . , αi ∈ (0, 1) for some i ∈ {1, . . . , n−
m− 1}, fix a number ai+1 ∈ (0, 1) such that

n− i− 1

n− i
< αi+1 < min

{
1,
n− i− 1

α1 · · ·αiβ

}
.

An induction on i shows that each αi is well defined and that for each i ∈ {1, . . . , n−m}
n− i
s

< α1 · · ·αi <
n− i
β

.

Applying Proposition 4.1, there exists a α1β-homogeneous set E1 ⊆ Rn−1 and a α1-Hölder
map f1 : Rn−1 → Rn with f1(E1) = E. Inductively, for i = 2, . . . , n −m there exists a
α1 · · ·αiβ-homogeneous set Ei ⊆ Rn−i and a αi-Hölder map fi : Ei → Ei−1 such that
fi(Ei) = Ei−1. Let φ : Rm → Rm with

φ(x) = |x|α/(α1···αn−m)−1x.

Set E ′ = φ−1(En−m) and f : E ′ → E with

f = f1 ◦ · · · ◦ fn−m ◦ φ|E′ .

Since φ is α/(α1 · · ·αn−m)-Hölder, it follows that f is α-Hölder and f(E ′) = E. �



18 MATTHEW BADGER AND VYRON VELLIS

5. Proof of Theorem 3.4 (bi-Lipschitz surfaces)

To lay the groundwork for the proof of Theorem 3.4, we first recall MacManus’ cubical
approximation of uniformly disconnected sets. For every compact set E ⊆ Rn and δ > 0,
let Dδ(E) denote the collection of n-manifolds with boundary Mn ⊆ Rn such that

∂M ⊆ G n−1
δ and gap(∂M,E) = inf

x∈∂M
inf
y∈E
|x− y| ≥ δ,

where G n−1
δ denotes the union of (n − 1)-faces of cubes of side length δ defined in §3.

MacManus stated and proved the following lemma in the case n = 2 on [Mac99, p. 272],
and then commented on the general case in the first paragraph of [Mac99, p. 276].

Lemma 5.1 ([Mac99, Lemma 2.3]). For all n ≥ 2 and c > 1, there exists a constant
C = C(n, c) > 1 with the following property. If E ⊆ Rn is compact and c-uniformly
disconnected, then for all δ > 0, there exists a finite collection M ⊆ Dδ(E) of pairwise
disjoint manifolds intersecting E such that

E ⊆
⋃

M∈M

M,

δ ≤ diamM ≤ Cδ for all M ∈M, and

δ ≤ dist(x,E) ≤ Cδ for all M ∈M and x ∈ ∂M.

Corollary 5.2. For all n ≥ 2 and c > 1, there exist constants C0 = C0(n, c) > 1
and ε0 = ε0(n, c) > 0 with the following property. If E ⊆ Rn is compact and c-uniformly
disconnected, then for all ε ∈ (0, ε0), with ε−1 ∈ N, there is an integer N = N(n, c, ε) ≥ 1,
a set W of finite words in {1, . . . , N}, and a family {Mw : w ∈ W} of n-manifolds with
boundary such that:

(1) The empty word is inW, and for every word w ∈ W, there exists Nw ∈ {1, . . . , N}
such that wi ∈ W for all i ∈ {1, . . . , Nw}.

(2) For all w ∈ W, the associated manifold Mw ∈ Dε|w| diamE(E) and

diamMw ≤ C0ε
|w| diamE,

where |w| denotes the length of w.
(3) For all distinct w,w′ ∈ W with |w| = |w′|,

gap(Mw,Mw′) ≥ ε|w| diamE.

(4) For all w ∈ W and for all i ∈ {1, . . . , Nw}, we have Mwi ⊆Mw and

gap(Mwi, ∂Mw) ≥ C−1
0 ε|w| diamE.

(5) For all w ∈ W, the intersection E ∩Mw 6= ∅ and gap(∂Mw, E) ≥ ε|w| diamE.
(6) The set E is the limit of the k-th level approximations:

E =
⋂
k≥0

⋃
w∈W
|w|=k

Mw.

Proof. Let n ≥ 2 and c > 1. We will prove that the corollary holds with

ε0 = (2C)−1, C0 = 10
√
nC and N = (dC0eε−1)n,

where C is the constant in Lemma 5.1.
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Let E ⊆ Rn be compact and c-uniformly disconnected, and let ε ∈ (0, ε0). To ease
notation, we may assume without loss of generality that diamE = 1. Choose an n-cube
M∅ ⊆ D1(E) of side length 10 such that M∅ contains E and

gap(E, ∂M∅) ≥ 1.

Then M∅ satisfies properties (2) and (5).
Suppose that Mw has been defined for some word w so that Mw satisfies both properties

(2) and (5). Applying Lemma 5.1 to E∩Mw with δ = ε|w|+1, we can find a finite collection
{Mw1, . . . ,MwNw} ⊆ Dε|w|+1(E ∩Mw) such that

(5.1) E ∩Mw ⊆
Nw⋃
i=1

Mwi,

(5.2) ε|w|+1 ≤ diamMwi ≤ Cε|w|+1 for all 1 ≤ i ≤ Nw, and

(5.3) ε|w|+1 ≤ dist(x,E ∩Mw) ≤ Cε|w|+1 for all 1 ≤ i ≤ Nw and x ∈ ∂Mwi.

By property (2), Mw consists of at most dC0en cubes in Gε|w| diamE. Since ε−1 is an
integer, each cube in Gε|w| diamE consists of exactly ε−n cubes in Gε|w|+1 diamE. Therefore,
there are at most (dC0eε−1)n cubes Q ∈ Gε|w|+1 diamE contained in Mw. Since each Mwi

is a union of cubes Q ∈ Gε|w|+1 diamE contained in Mw, and Mw1, . . . ,MwNw are mutually
disjoint, we have Nw ≤ N .

Furthermore, for eachMwi, property (2) follows from (5.2) and property (3) follows from
the fact that the sets Mwi are disjoint and belong in Dε|w|+1(E ∩Mw). Since ε < (2C)−1,
by (5.3)

gap(Mwi, ∂Mw) ≥ gap(∂Mw, E ∩Mw)− sup
x∈∂Mwi

dist(x,E ∩Mw)

≥ gap(∂Mw, E)− sup
x∈∂Mwi

dist(x,E ∩Mw)

≥ ε|w| − Cε|w|+1 >
1

2
ε|w|

and property (4) holds. For property (5),

gap(∂Mwi, E) = min{gap(∂Mwi, E ∩Mw), gap(∂Mwi, E \Mw)}
≥ min{gap(∂Mwi, E ∩Mw), gap(Mwi, ∂Mw)} ≥ ε|w|+1.

Finally, each Mw intersects E and by (5.1), E ⊆
⋃

w∈W
|w|=k

Mw. Therefore, property (6)

holds and the proof is complete. �

We first prove Theorem 3.4 in the special case that m = n− 1 and E is compact.

Proposition 5.3 (bi-Lipschitz parameterization for compact sets, in codimension one).
For all n ≥ 2, c > 1, C > 1, and 0 ≤ s < n−1, there exists a constant L = L(n, c, C, s) ≥√

2 with the following property. If E ⊆ Rn is compact, c-uniformly disconnected, and
(C, s)-homogeneous, then there is an L-bi-Lipschitz embedding f : Rn−1 → Rn such that
E ⊆ f([−1, 1]n−1) and f |Rn−1\[−1,1]n is an isometric embedding.
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Proof. Let n ≥ 2, c > 1, C > 1, s ∈ [0, n − 1), and assume that E ⊆ Rn is compact,
c-uniformly disconnected, and (C, s)-homogeneous. Applying similarities to the domain
and range of the embedding, we may assume without loss of generality that E contains
the origin and has diameter 1. For the rest of the proof, fix an integer k0 such that

2k0 ≥ 8
√
n.

The proof now breaks up into three steps. In Step 1, we construct a surface containing
the set E. In Step 2, we build a homeomorphism between the surface and Rn−1. Then,
in Step 3, we verify that the homeomorphism is bi-Lipschitz.

Step 1. We will use Corollary 5.2 to build a tree-like surface4 S that contains E. Set

ε−1 := 1 + max{d(3n−1(2C0)βC)
1

n−1−β e, dε−1
0 e},

where ε0 and C0 are the constants of Corollary 5.2. By the (C, β)-homogeneity of E and
choice of ε,

(5.4) C

(
2C0ε

k

εk+1

)β
= C(2C0)βε−β ≤ (3ε)1−n.

Let {Mw : w ∈ W} be the family of manifolds with boundary associated to ε given by
Corollary 5.2. By our assumption on the size and position of E, we may assume without
loss of generality that the initial manifold M∅ = [−5, 5]n (see the proof of Corollary 5.2).
Define

A∅ := [−5, 5]n−1 × {5} ⊆ ∂M∅,

and for each word w ∈ W with |w| ≥ 1, choose an (n− 1)-cube

Aw ⊆ G n−1
ε|w|
∩ ∂Mw

of side length ε|w| and boundary in G n−2
ε|w|

. Let xw denote the center of Aw. By properties
(2) and (6) of {Mw : w ∈ W}, the set

E = lim
l→∞

⋃
w∈W
|w|=l

Aw

in the Hausdorff topology. Thus, we aim to constructing a sequence of intermediate
surfaces that pass through successive generations of the (n− 1)-cubes Aw.

Base Case. Define

x∅ := (0, . . . , 0, 5) and y∅ := (0, . . . , 0, 10).

Note that x∅ is the center of A∅. Let γ∅ denote the line segment from y∅ to x∅ and let τ∅
denote the tube around γ∅ of width δ∅ = 2−k0

τ∅ = Tubeδ∅(γ∅) = [−2−k0−1, 2−k0−1]n−1 × [5, 10].

With the specified orientation on γ∅,

Entrance(τ∅) = [−2−k0−1, 2−k0−1]n−1 × {10}, Exit(τ∅) = [−2−k0−1, 2−k0−1]n × {5} = A∅.

Next, define the punched-out plane,

(5.5) P := (Rn−1 \ [−1, 1]n−1)× {10}
4Constructions of tree-like surfaces are by now classical. For instance, see [Rus73, Figure 2.4.16].
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Figure 5.1. The subtree of S inside Mw.

and an auxiliary (n− 1)-cube, S∅ := [−1, 1]n−1 × {10}. The union

S(0) := P ∪ (S∅ \ Entrance(τ∅)) ∪ ∂τ∅
denotes the 0th level approximation of surface S.

Inductive Step. Let w ∈ W and assume that we have defined τw = Tubeδw(γw) for some
arc γw and δw < ε|w|/3 such that

τw ∩Mw = Exit(τw) ⊆ Aw ⊆ ∂Mw.

First, divide Aw into 3n−1 congruent (n− 1)-cubes of side length 1
3
ε|w|, and let Âw denote

the central subcube in the division. Define Kw to be the unique n-cube contained in Mw,
which has Âw as an (n− 1)-face. Let Ãw denote the (n− 1)-face in Kw that is antipodal

to Âw. Second, divide Ãw into (3N)n−1-many (n − 1)-cubes of side length (1/9N)ε|w|,
and choose subcubes Sw1, . . . , SwNw in the division that are mutually disjoint and satisfy
Swi ∩ (∂Kw \ Ãw) = ∅. Thus, the (n− 1)-cubes Swi lie on the relative interior of Ãw,

gap(Swi, Swj) ≥
1

9N
ε|w| when i 6= j, and

gap(Swi, ∂Ãw) ≥ 1

9N
ε|w| for all i ∈ {1, . . . , Nw}.

For each i = 1, . . . , Nw, let ywi denote the center of Swi.
We now select a sequence of arcs connecting the points ywi to the centers xwi of the next

generation (n− 1)-cubes Awi; see Figure 5.1. First, choose a polygonal arc γw1 ⊆ G 1
ε|w|+1/2

with endpoints in G 0
ε|w|+1/2

that lies (except at its endpoints) in the interior of the manifold

Mw \

(
Kw ∪

Nw⋃
j=1

Mwj

)
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and joins yw1 to xw1. Proceeding inductively, for each i = 2, . . . , Nw, choose a polygonal
arc γwi ⊆ G 1

2−i−1ε|w|+1 with endpoints in G 0
2−i−1ε|w|+1 that lies (except at its endpoints) in

the interior of the manifold

Mw \

(
Kw ∪

Nw⋃
j=1

Mwj ∪
i−1⋃
j=1

γwj

)

and joins ywi to xwi. Since each γwi ⊆ G 1
2−N−1ε|w|+1 , γwi ⊆ Mw and diamMw ≤ C0ε

|w|, by
Remark 3.10, the length of each γwi is uniformly bounded:

(5.6) H1(γwi) ≤ C1ε
|w|

for some C1 > 0 depending only on ε, N and C0 (thus, only on n, c, C and s).
For each i = 1, . . . , Nw, let δwi = 2−N−k0ε|w|+1 and τwi = Tubeδwi(γwi), oriented so that

Entrance(τwi) lies on Swi, while Exit(τwi) lies on ∂Mwi. Define ∆w to be a punched-out
(n− 1)-cube, with Nw-many (n− 1)-cubical holes, say

(5.7) ∆w := Ãw \
Nw⋃
i=1

Swi.

Also, define the topological (n− 1)-annulus,

(5.8) Aw := (Sw \ Entrance(τw)) ∪ Side(τw) ∪ (∂Kw \ (Ãw ∪ Exit(τw))).

The k-th level approximation of S is

S(k) := P ∪
⋃
w∈W
|w|≤k

(∆w ∪ Aw).

End Step. Define S to be the closure of
⋃∞
k=0 S(k); that is,

S := E ∪ P ∪
⋃
w∈W

(∆w ∪ Aw).

See (5.5), (5.7), and (5.8).

Step 2. We will construct a homeomorphism f : Rn−1 → S that maps Rn \ [−1, 1]n−1

onto the punched-out plane P , isometrically, and maps [−1, 1]n−1 onto S\P . Afterwards,
in Step 3, we verify that f is actually bi-Lipschitz.

Let us decompose [−1, 1]n into subsets corresponding to the preimages of parts of S \P .
First, assign M ′

∅ := [−1, 1]n−1. We proceed by induction. Suppose that for some w ∈ W ,

we have defined sets M ′
w = Cn−1(zw; ε|w|). By (C, β)-homogeneity of E and (5.4), we have

Nw ≤ (3ε)1−n. Thus, we can locate cubes M ′
wi := Cn−1(zwi; ε

−|w|−1) for all i = 1, . . . , Nw

so that for all distinct i, j ∈ {1, . . . , Nw},
• M ′

wi ⊆M ′
w,

• gap(M ′
wi,M

′
wj) ≥ ε|w|+1, and

• gap(M ′
wi, ∂M

′
w) ≥ ε|w|+1.
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For each w ∈ W , let

∆′w = (M ′
w \ A′w) \

Nw⋃
i=1

M ′
wi and A′w = An−1(zw; ε|w| − 1

2
ε|w|+1, ε|w|).

Finally, define E ′ :=
⋂∞
n=0

⋃
w∈W,|w|=nM

′
w.

By (5.6) and Lemma 3.11 (replacing n with n− 1), there exists L1 = L1(n, c, C, β) > 1
such that for every w ∈ W , there exists a homeomorphism φw : An−1(0; 1 − ε

2
, 1) → Aw

such that

• ε−|w|φw is L1-bi-Lipschitz and orientation preserving;
• φw|∂Cn−1(0;1) is a similarity that maps ∂Cn−1(0; 1) onto the relative boundary of Sw;
• φw|∂Cn−1(0;1− ε

2
) is a similarity that maps ∂Cn−1(0; 1− ε

2
) onto Aw ∩∆w.

Now define f |A′w : A′w → Aw by setting

f |A′w(x) := φw(ε−|w|(x− zw)).

Then f |A′w is an L1-bi-Lipschitz orientation preserving homeomorphism of A′w onto Aw.
Applying a standard extension argument (e.g., see [Vel16, Proposition 3.6]), one can show
that there exists L2 = L2(n, c, C, β) > 1 so that f extends to a L2-bi-Lipschitz map on
each ∆′w, with f(∆′w) = ∆w. Finally, since E is contained in the closure of S, the map f
extends uniquely on E ′ as a homeomorphism and maps E ′ onto E.

Therefore, we have obtained a homeomorphism f : Rn−1 → S such that f([−1, 1]n−1) =
S \ P and f(E ′) = E. For each w ∈ W , define

Sw := Aw ∪∆w and S ′w := A′w ∪∆′w.

By construction, f(S ′w) = Sw.

Step 3. It remains to show that f is L-bi-Lipschitz for some L = L(n, c, C, β) > 1.
By the previous steps, there exists L0 = L0(n, c, C, β) > 1 such that for all w ∈ W and
distinct i, j ∈ {1, . . . , Nw}:

(1) The restrictions f |S′w∪S′wi and f |
Rn−1\

⋃N∅
i=1M

′
i

are L0-bi-Lipschitz.

(2) L−1
0 ε|w| ≤ diamS ′w ≤ L0ε

|w| and L−1
0 ε|w| ≤ diamSw ≤ L0ε

|w|.
(3) L−1

0 ε|w| ≤ diamM ′
w ≤ L0ε

|w| and L−1
0 ε|w| ≤ diamMw ≤ L0ε

|w|.
(4) L−1

0 ε|w| ≤ gap(M ′
wi,M

′
wj) ≤ L0ε

|w| and L−1
0 ε|w| ≤ gap(Mwi,Mwj) ≤ L0ε

|w|.

Below, we say that two points x, y ∈ Rn−1 are separated by S ′w for some w ∈ W if neither
x nor y is contained in S ′w and any curve in Rn−1 joining x and y intersects S ′w. Also,
given a, b > 0, we write a . b to denote that a ≤ C∗b for some C∗ = C∗(n, c, C, β) > 1
and a ∼ b to denote that a . b and b . a.

To show that f is bi-Lipschitz, fix x, y ∈ Rn−1. First suppose that x ∈ Rn−1\ [−1, 1]n−1.
On one hand, if y ∈ S ′∅, then

|x− y| ∼ |f(x)− f(y)|
by (1). On the other hand, if y ∈

⋃N∅
i=1M

′
i , then

|x− y| ∼ 1 + dist(x,M ′
∅) ∼ 1 + dist(f(x),M∅) ∼ |f(x)− f(y)|

by (2). In both cases, |f(x)− f(y)| ∼ |x− y|. Therefore, to complete the proof, we may
assume that x, y ∈ [−1, 1]n−1. There are two alternatives.
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Case 1. Suppose that x and y are not separated S ′w for any w ∈ W . Then there exists
w ∈ W and i ∈ {1, . . . , Nw} such that x, y ∈ S ′w ∪ S ′wi. Hence

|f(x)− f(y)| ∼ |x− y|

by (1).
Case 2. Suppose that x and y are separated by Sw for some w ∈ W . Let w0 be the

minimal word with the property that Sw0 separates x and y. That is, if Sw separates x
and y, then w = w0u. Since x, y ∈ [−1, 1]n−1, we have w0 6= ∅. Hence

|x− y| ∼ ε|w0| ∼ |f(x)− f(y)|

by (2), (3), and (4). This completes the proof that f is bi-Lipschitz. �

We now derive Theorem 3.4 from Proposition 5.3.

Proof of Theorem 3.4. Let E ⊆ Rn be c-uniformly disconnected and (C, β)-homogeneous
for some n,m ∈ N, C > 1, c > 1 and β < m ≤ n− 1. Since bi-Lipschitz maps extend to
the closure of their domain and E is also (C, β)-homogeneous, E can be assumed closed.

Suppose first that m = n−1. By Proposition 5.3 we may assume that E is unbounded.
Fix distinct points x1, x2 ∈ E. For each k ∈ N, let Ek be the set Ex1,2k|x1−x2| appearing
in the definition of uniform disconnectedness. Note that each Ek is compact, c-uniformly
disconnected and (C, β)-homogeneous. For each k ∈ N, by Proposition 5.3, there exists an
L-bi-Lipschitz embedding fk : Rn−1 → Rn with L = L(n, c, C, β) > 1 and Ek ⊆ fk(Rn−1).
Applying appropriate similarities, we may assume that fk(0, . . . , 0) = x1 for all k ∈ N.
By the Arzelà-Ascoli Theorem, there exists a subsequence fkj that converges uniformly
on compact sets to an L-bi-Lipschitz embedding f : Rn−1 → Rn. For each x ∈ E, the
sequence f−1

kj
(x) converges to a point f−1(x) in Rn−1, and consequently, E ⊆ f(Rn−1).

Suppose now that m < n− 1. Set c0 = c and C0 = C. By the codimension 1 case, for
each k = 1, . . . , n−m, there exist Lk = Lk(n, ck−1, Ck−1, s) > 1, ck = ck(n, ck−1, Ck−1, s) >
1, Ck = Ck(n, ck−1, Ck−1, s) > 1, an Lk-bi-Lipschitz embedding fk : Rn−k → Rn−k+1 and
a ck-uniformly disconnected and (Ck, β)-homogeneous set Ek ⊆ Rn−k such that f(Ek) =
Ek−1. The map f : Rm → Rn with f = f1 ◦ · · · ◦ fn−m is (Ln−m · · ·L1)-bi-Lipschitz and
maps En−m onto E. �

Remark 5.4. Assume that E ⊆ Rn is compact and c-uniformly disconnected. It is possible
to modify the proof of Proposition 5.3 to produce a quasisymmetric map f : Rn−1 → Rn

whose image contains E. To carry this out, first repeat the construction of the surface in
Step 1 with the alternative parameter

ε−1 := 1 + max{d2C0 + 1e, dε−1
0 e}.

Then use arguments similar to [Mac99] or [V8̈1, Theorem 6.3] to parameterize the surface
containing E by a quasisymmetric map. To extend the proof to unbounded sets, apply an
the Arzelà-Ascoli Theorem for quasisymmetric maps [Hei01, Corollary 10.30]. Theorem
3.8 may be derived from the codimension 1 case in the same way that Theorem 3.4 is
derived from Proposition 5.3.
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Part II. Geometry of measures

In this part of the paper, we prove Theorems A, B, and C, which identify conditions on
the lower and upper Hausdorff densities that guarantee a Radon measure is either carried
by or singular to Hölder curves or surfaces. For the statements of these theorems, see
§1.1 in the introduction. The main tools that we use are three parameterization theorems
from Part I: Theorem 2.3, Theorem 3.2, and Theorem 3.4 (in the form of Corollary 3.5).
The proof of Theorem A is given in §6 and the proof of Theorems B and C is given in §7.

6. Points of extreme lower density (Proof of Theorem A)

The proof of the first part of Theorem A—Radon measures are singular to Hölder
curves on sets of vanishing lower density—uses the relationship between lower Hausdorff
densities and packing measures. The argument that we present below closely follows
[BS15, §2], which focused on Lipschitz images. To fix conventions, we recall the definition
of s-dimensional Hausdorff measure Hs and s-dimensional packing measure Ps, each of
which are Borel regular metric outer measures on Rn. In the top dimension (s = n), the
measures Hn and Pn coincide and are a constant multiple of Lebesgue measure on Rn.
For a proof of these facts and further background, see [Fal86] or [Mat95].

Definition 6.1 (Hausdorff and packing measures in Rn). Let s ≥ 0 be a real number.
Let E,E1, E2, . . . denote sets in Rn. The s-dimensional Hausdorff measure Hs is defined
by Hs(E) = limδ→0Hs

δ(E), where

Hs
δ(E) = inf

{∑
i

(diamEi)
s : E ⊆

⋃
i

Ei, diamEi ≤ δ

}
.

The s-dimensional packing premeasure P s is defined by P s(E) = limδ→0 P
s
δ (E), where

P s
δ (E) = sup

{∑
i

(2ri)
s : xi ∈ E, 2ri ≤ δ, i 6= j ⇒ B(xi, ri) ∩B(xj, rj) = ∅

}
.

The s-dimensional packing measure Ps is defined by

Ps(E) = inf

{∑
i

P s(Ei) : E =
⋃
i

Ei

}
.

Lemma 6.2 (see [Fal86, Proposition 2.2]). Let A ⊆ Rn be a Borel set, let ν be a finite
Borel measure on Rn, and let 0 < λ <∞.

• If lim supr↓0
ν(B(x, r))

rs
≤ λ for all x ∈ E, then Hs(E) ≥ ν(E)/λ.

• If lim supr↓0
ν(B(x, r))

rs
≥ λ for all x ∈ E, then Hs(E) ≤ 2sν(E)/λ.

• If lim infr↓0
ν(B(x, r))

rs
≤ λ for all x ∈ E, then Ps(E) ≥ 2sν(E)/λ.

• If lim infr↓0
ν(B(x, r))

rs
≥ λ for all x ∈ E, then Ps(E) ≤ 2sν(E)/λ.

It is well known that Hölder continuous maps do not increase Hausdorff measures too
severely. The same phenomenon is also true for packing measures. We include a proof of
the following lemma for the reader’s convenience.



26 MATTHEW BADGER AND VYRON VELLIS

Lemma 6.3. Let E ⊆ Rm. If f : E → Rn is (1/s)-Hölder, then

P st(f(E)) ≤ 2(s−1)t(Höld1/s f)st P t(E) and Pst(f(E)) ≤ 2(s−1)t(Höld1/s f)stP t(E),

where Höld1/s f denotes the (1/s)-Hölder constant of f .

Proof. Assume that P t(E) <∞ and f : E → Rn satisfies |f(x)− f(y)| ≤ H|x− y|1/s for
all x, y ∈ E. Given ε > 0, pick η > 0 such that P t

η(E) ≤ P t(E) + ε. Fix δ > 0 such that

21−s
(
δ

H

)s
≤ η

and let {Bn(f(xi), ri) : i ≥ 1} be an arbitrary disjoint collection of balls in Rn centered
in f(E) such that 2ri ≤ δ for all i ≥ 1. By the Hölder condition on f ,

f(Bm(xi, (ri/H)s)) ⊆ Bn(f(xi), ri) for all i ≥ 1.

Thus {Bm(xi, (ri/H)s) : i ≥ 1} is a disjoint collection of balls with centers in E with

2
( ri
H

)s
≤ 21−s

(
δ

H

)s
≤ η.

Hence
∞∑
i=1

(2ri)
st = 2(s−1)tHst

∞∑
i=1

(
2
( ri
H

)s)t
≤ 2(s−1)tHstP t

η(E) ≤ 2(s−1)tHst(P t(E) + ε).

Taking the supremum over all δ-packings of f(E), we obtain

P st
δ (f(E)) ≤ 2(s−1)tHst(P t(E) + ε).

Therefore, letting δ → 0 and ε → 0, P st(f(E)) ≤ 2(s−1)tHstP t(E). The corresponding
inequality for the packing measure Ps follows immediately from the inequality for P s. �

The following lemma contains the first half of Theorem A. The special case s = m
appeared previously in [BS15, Lemma 2.7]. When the measure is of the form µ = Hs E
for some s-set E ⊆ Rn, this result also follows from [MM93, Theorem 3.2].

Lemma 6.4. Let 1 ≤ m ≤ n− 1 be integers and let s ∈ [m,n]. If µ is a Radon measure
on Rn, then

µs
0

:= µ

{
x ∈ Rn : lim inf

r↓0

µ(B(x, r))

rs
= 0

}
is singular to (m/s)-Hölder m-cubes.

Proof. For a large radius R > 0, let AR = {x ∈ B(0, R) : lim infr↓0 r
−sµ(B(x, r)) = 0}

and νR = µ AR. Then νR is a finite Borel measure. Let f : [0, 1]m → Rn be an arbitrary
(m/s)-Hölder continuous map. By Lemma 6.3,

Ps(f([0, 1]m)) ≤ 2((s/m)−1)m(Höldm/s f)sPm([0, 1]m) <∞.

Let λ > 0. Because lim infr↓0 r
−sµ(B(x, r)) = 0 ≤ λ for all x ∈ AR ∩ f([0, 1]m), we have

2sµ(AR ∩ f([0, 1]m)) ≤ λPs(AR ∩ f([0, 1]m)) ≤ λPs(f([0, 1]m))
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by Lemma 6.2. Then, letting λ → 0, we obtain νR(f([0, 1]m)) = µ(AR ∩ f([0, 1]m)) = 0.
Therefore, since measures are continuous from below,

µs
0
(f([0, 1]m)) = lim

R↑∞
νR(f([0, 1]m)) = 0

for every (m/s)-Hölder continuous map f : [0, 1]m → Rn. In other words, the measure µs
0

is singular to (m/s)-Hölder m-cubes. �

Corollary 6.5. Let 1 ≤ m ≤ n − 1 be integers, let s ∈ [m,n], and let µ be a Radon
measure on Rn. If µ is carried by (m/s)-Hölder m-cubes, then

lim inf
r↓0

µ(B(x, r))

rs
> 0 for µ-a.e. x ∈ Rn.

Proof. Let µ = µm→s + µ⊥m→s denote the decomposition of µ given by Proposition A.2,
where µm→s is carried by (m/s)-Hölder m-cubes and µ⊥m→s is singular to (m/s)-Hölder
m-cubes. Then µ is carried by (m/s)-Hölder m-cubes if and only if µ⊥m→s(Rn) = 0. Hence

µ

({
x ∈ Rn : lim inf

r↓0

µ(B(x, r))

rs
= 0

})
= µs

0
(Rn) ≤ µ⊥m→s(Rn) = 0,

where the inequality holds by Lemma 6.4. Thus, the lower s-density is positive at µ-almost
every x ∈ Rn. �

We now switch focus to the second half of Theorem A—points of rapidly infinite density
of a Radon measure are carried by Hölder curves. To that end, for every Radon measure
µ on Rn and 1 ≤ s <∞, define the quantity

Ss(µ, x) :=

∫ 1

0

rs

µ(B(x, r))

dr

r
∈ [0,∞] for all x ∈ Rn.

Note that if Ss(µ, x) <∞, then limr↓0 r
−sµ(B(x, r)) =∞.

Lemma 6.6. Let µ be a Radon measure on Rn. Given parameters 1 ≤ s ≤ n, 0 ≤ N <∞,
1 ≤ P <∞, θ > 0, and x0 ∈ Rn, consider the sets

A := {x ∈ B(x0, 1/2) : Ss(µ, x) ≤ N and µ(B(x, 3r)) ≤ Pµ(B(x, r)) for all 0 < r ≤ 1}
and

A′ := {x ∈ A : µ(A ∩B(x, r)) ≥ θµ(B(x, r)) for all 0 < r ≤ 1} .
Then there exists a tree of sets T whose elements are balls centered in A′ such that

Leaves(T ) ⊇ A′

and ∑
E∈T

(diamE)s ≤ 2s+1sNPµ(A)

θ
<∞.

Proof. For each k ≥ 0, let A′k be a maximal 2−k separated subset of A′ and define

Tk := {B(y, 2−k) : y ∈ A′k}.
For each k ≥ 1 and each B(y, 2−k) ∈ Tk, choose y↑ ∈ A′k−1 such that |y − y↑| < 2−(k−1)

and set B(y, 2−k)↑ = B(y↑, 2−(k−1)). Then T =
⋃∞
k=0 Tk is a tree of sets in the sense of

Definition 2.1 and Leaves(T ) ⊇ A′.
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To estimate the sum of diameters, note that

Nµ(A) ≥
∫
A

Ss(µ, x) dµ(x) =

∫
A

∫ 1

0

rs

µ(B(x, r))

dr

r
dµ(x)

=
∞∑
k=0

∫ 2−k

2−(k+1)

rs
∫
A

1

µ(B(x, r))
dµ(x)

dr

r
,

(6.1)

where we used Tonelli’s theorem to exchange the order of integration. Our task will be
to bound the right hand side of (6.1) from below by a constant times

∑
E∈T (diamE)s.

To that end, fix an integer k ≥ 0 and r ∈ [2−(k+1), 2−k]. Since A′k is a 2−k separated set
in A′ and A′ ⊆ A, it follows that∫

A

1

µ(B(x, r))
dµ(x) ≥

∑
y∈A′k

∫
A∩B(y,2−(k+1))

1

µ(B(x, 2−k))
dµ(x).

By the triangle inequality, B(x, 2−k) ⊆ B(y, 3·2−(k+1)) whenever x ∈ B(y, 2−(k+1)). Hence

µ(B(x, 2−k)) ≤ µ(B(y, 3 · 2−(k+1))) ≤ Pµ(B(y, 2−(k+1))),

where the P is the doubling parameter. Thus,

(6.2)

∫
A

1

µ(B(x, r))
dµ(x) ≥

∑
y∈A′k

1

P

∫
A∩B(y,2−(k+1))

1

µ(B(y, 2−(k+1)))
dµ(x) ≥

∑
y∈A′k

θ

P
.

We have shown that (6.2) holds for all integers k ≥ 0 and r ∈ [2−(k+1), 2−k]. Combining
(6.1) and (6.2), we obtain

PNµ(A)

θ
≥

∞∑
k=0

∑
y∈A′k

∫ 2−k

2−(k+1)

rs
dr

r
=

1− 2−s

s

∞∑
k=0

∑
y∈A′k

(2−k)s ≥ 1

2s

∑
E∈T

(
diamE

2

)s
,

as desired. �

The second half of Theorem A is contained in the following theorem.

Theorem 6.7. Let µ be a Radon measure on Rn and let 1 ≤ s ≤ n. Then

µs∞ := µ

{
x ∈ Rn : Ss(µ, x) <∞ and lim sup

r↓0

µ(B(x, 2r))

µ(B(x, r))
<∞

}
is carried by (1/s)-Hölder curves. Moreover, there exist countably many (1/s)-Hölder
curves Γi ⊆ Rn and compact sets Ki ⊆ Γi with Hs(Ki) = 0 such that µs∞(Rn \

⋃
iKi) = 0.

Proof. By writing the set{
x ∈ Rn : Ss(µ, x) <∞ and lim sup

r↓0

µ(B(x, 2r))

µ(B(x, r))
<∞

}
as a countable union of sets of the form

A := {x ∈ B(x0, 1/2) : Ss(µ, x) ≤ N and µ(B(x, 3r)) ≤ Pµ(B(x, r)) for all 0 < r ≤ 1} ,
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we see that it suffices to prove µ A is carried by compact Hs null subsets of (1/s)-Hölder
curves for each choice of parameters 0 ≤ N < ∞, 1 ≤ P < ∞, and x0 ∈ Rn. Fix values
for N , P , and x0, and for all θ ∈ (0, 1) define

A′θ := {x ∈ A : µ(A ∩B(x, r)) ≥ θµ(B(x, r)) for all 0 < r ≤ 1} .
By a standard density theorem for Radon measures (e.g. see [Mat95, Corollary 2.14]),

lim
r↓0

µ(A ∩B(x, r))

µ(B(x, r))
= 1 for µ-a.e. x ∈ A.

Note that {
x ∈ A : lim

r↓0

µ(A ∩B(x, r))

µ(B(x, r))
= 1

}
⊆
∞⋃
k=1

A′1/k.

Hence µ(A \
⋃∞
k=1A

′
1/k) = 0, and so to prove µ A is carried by compact Hs null subsets

of (1/s)-Hölder curves, it suffices to prove µ A′θ has that same property for all θ ∈ (0, 1).
Fix θ ∈ (0, 1) and apply Lemma 6.6 to find a tree of sets T such that Leaves(T ) ⊇ A′θ and∑

E∈T

(diamE)s <∞.

By Theorem 2.3, Hs(Leaves(T )) = 0 and there exists a (1/s)-Hölder curve Γ such that

Γ ⊇ Leaves(T ) ⊇ A′θ.

It follows that

µ A′θ(Rn \ Γ) ≤ µ A′θ(Rn \ Leaves(T )) ≤ µ A′θ(Rn \ A′θ) = µ(A′θ \ A′θ) = 0.

Thus, µ A′θ is carried by a compact Hs null subset (Leaves(T )) of a (1/s)-Hölder curve.
The theorem follows by taking a suitable choice of countably many parameter values. �

We now observe that it is possible to remove the doubling condition from Theorem 6.7
by working with dyadic density ratios instead of spherical density ratios. For every Radon
measure µ on Rn and 1 ≤ s <∞, define the quantity

Ss∆(µ, x) :=
∑
Q∈∆

(diamQ)s

µ(Q)
χQ(x) ∈ [0,∞] for all x ∈ Rn,

where ∆ denotes a system of half-open dyadic cubes in Rn of side length at most 1.
The following localization lemma is a particular instance of [BS17, Lemma 5.6].

Lemma 6.8. Let µ be a Radon measure on Rn. Given a cube Q0 ∈ ∆ of side length 1
such that η := µ(Q0) > 0, N < ∞, and 0 < ε < 1/η, there exists a subtree G of the tree
of dyadic cubes {Q ∈ ∆ : Q ⊆ Q0} with the following properties.

(1) The sets A := {x ∈ Q0 : Ss∆(µ, x) < N} and A′ := A ∩ Leaves(G) have comparable
measure:

µ(A′) ≥ (1− εη)µ(A).

(2) The tree G is s-summable:

Ss(G) =
∑
Q∈G

(diamQ)s <∞.



30 MATTHEW BADGER AND VYRON VELLIS

Proof. Either modify the proof of [BS16, Lemma 3.2] or apply [BS17, Lemma 5.6] with
T := {Q ∈ ∆ : Q ⊆ Q0}, the tree of dyadic cubes contained in Q0, and the function
b(Q) := (diamQ)s for all Q ∈ T . �

Using Lemma 6.8 in conjunction with Theorem 2.3, one can verify the following variant
of Theorem 6.7. The case s = 1 first appeared in [BS16, Theorem 3.1].

Theorem 6.9. Let µ be a Radon measure on Rn and let 1 ≤ s ≤ n. Then

ν := µ {x ∈ Rn : Ss∆(µ, x) <∞}

is carried by (1/s)-Hölder curves. Moreover, there exist countably many (1/s)-Hölder
curves Γi ⊆ Rn and compact sets Ki ⊆ Γi with Hs(Ki) = 0 such that ν(Rn \

⋃
iKi) = 0.

7. Densities and Assouad dimension (Proof of Theorems B and C)

Theorems B and C follow from the bi-Lipschitz and Hölder parameterization theorems
in §3 and the following connection between Hausdorff densities and Assouad dimension.

Lemma 7.1. Let µ be a Radon measure on Rn and let t ∈ [0, n]. If E ⊆ Rn and

(7.1) art ≤ µ(B(x, r)) ≤ brt for all 0 < r ≤ 2 diamE and x ∈ E,

for some constants 0 < a ≤ b < ∞, then the Assouad dimension of E is at most t.
Additionally, if µ(Rn \ E) = 0, then the Assouad dimension of E is t.

Proof. Let A ⊆ E be bounded and let δ ∈ (0, 1). Consider the cover B of A by closed
balls of diameter δ diamA centered in A; that is,

B =
{
B
(
x, 1

2
δ diamA

)
: x ∈ A

}
.

By the Besicovitch covering theorem (see e.g. [Mat95, Theorem 2.7]), there exist a positive
integer Q = Q(n) and disjoint subfamilies B1, . . . ,BQ of B such that

B ⊆
Q⋃
i=1

Bi.

For each 1 ≤ i ≤ Q, we have

cardBi · a
(

1
2
δ diamA

)t ≤ ∑
B∈Bi

µ(B) = µ
(⋃
Bi
)
≤ µ(B(xi, 2 diamA)) ≤ b(2 diamA)t,

where xi denotes an arbitrarily chosen point in A ∩
⋃
Bi. Hence cardBi ≤ δ−t2t(b/a) for

all 1 ≤ i ≤ Q. Thus, B′ =
⋃Q
i=1 Bi is a cover of A by sets of diameter δ diamA with

cardB′ ≤ C(n, t, a, b)δ−t.

We have shown the set E is (C, t)-homogenous (see Definition 3.1), where C = C(n, t, a, b).
Therefore, the Assouad dimension of E is at most t.

Suppose in addition to (7.1) that µ(Rn \ E) = 0. Consider A = E ∩ B(x, r) for some
fixed x ∈ E and 0 < r < diamE. Fix δ ∈ (0, 1) and let {A1, . . . , Ak} be any cover of
A with Ai ⊂ E and diamAi ≤ δ diamA. Let V be a maximal subset of A such that
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|v − v′| ≥ 2δ diamA for all distinct v, v′ ∈ A. Cleary, cardV ≤ k. By maximality of V ,
the collection {B(v, 4δr) : v ∈ V } covers A, and thus,

art ≤ µ(B(x, r)) = µ(A) ≤
∑
v∈V

µ(B(v, 4δr)) ≤ cardV · b4trtδt,

where the equality holds since µ(Rn \E) = 0. In particular, k ≥ C ′(n, t, a, b)δ−t. Because
δ ∈ (0, 1) was arbitrary, E is not β-homogeneous for any β < t. Therefore, the Assouad
dimension of E is exactly t. �

Corollary 7.2. Let µ be a Radon measure on Rn and let t ∈ [0, n]. Then

µt+ := µ

{
x ∈ Rn : 0 < lim inf

r↓0

µ(B(x, r))

rt
≤ lim sup

r↓0

µ(B(x, r))

rt
<∞

}
is carried by sets of Assouad dimension at most t.

We are ready to prove Theorems B and C.

Proof of Theorem B. Let µ be a Radon measure on Rn and let t ∈ [0, 1). By Corollary
7.2, we can find countably many sets Ei ⊆ Rn with dimAEi ≤ t < 1 such that

µt+

(
Rn \

⋃
i

Ei

)
= 0.

For each set Ei, there exists a bi-Lipschitz embedding fi : R→ Rn such that Ei ⊆ fi(R)
by Corollary 3.5. Hence

µt+

(
Rn \

⋃
i

⋃
k∈Z

fi([k, k + 1])

)
= µt+

(
Rn \

⋃
i

fi(R)

)
= 0.

Therefore, µt+ is carried by bi-Lipschitz curves. �

Proof of Theorem C. Repeat the proof of Theorem B mutatis mutandis, using Theorem
3.2 in place of Corollary 3.5. �

Appendix A. Decomposition of σ-finite measures

The following definition encodes commonly used definitions of countably rectifiable and
purely unrectifiable measures, including the variants in Definition 1.1.

Definition A.1. Let (X,M) be a measurable space, letN ⊆M be a nonempty collection
of measurable sets, and let µ be a measure defined on (X,M). We say that µ is carried
by N provided there exists a countable family {Γi : i ≥ 1} ⊆ N of sets with

µ

(
X \

∞⋃
i=1

Γi

)
= 0.

We say that µ is singular to N if µ(Γ) = 0 for every Γ ∈ N .
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The “correctness” of Definition A.1 is partially justified by the following proposition,
which should be considered a standard exercise in measure theory. The proof is a slight
variation of [BS17, Proposition 1.1] (or [Mat95, Theorem 15.6]), which is specialized to
the decomposition of Radon measures (sets) in Rn into countably m-rectifiable and purely
m-unrectifiable components. We present details for the convenience of the reader.

Proposition A.2 (Decomposition). Let (X,M) be a measurable space and let N ⊆ M
be a nonempty collection of sets. If µ is a σ-finite measure on (X,M), then µ can be
written uniquely as

(A.1) µ = µN + µ⊥N ,

where µN is a measure on (X,M) that is carried by N and µ⊥N is a measure on (X,M)
that is singular to N .

Proof. Let Ñ denote the collection of finite unions of sets in N . Given a σ-finite measure
µ on (X,M), expand X =

⋃∞
j=1 Xj, where

X1 ⊆ X2 ⊆ · · ·

is an increasing chain of sets in M with µ(Xj) <∞ for all j ≥ 1. For each j ≥ 1, define

Mj := sup
N∈Ñ

µ(Xj ∩N) ≤ µ(Xj) <∞.

By the approximation property of the supremum, we may choose a sequence (Nj)
∞
j=1 of

sets in Ñ such that µ(Xj ∩Nj) > Mj− 1/j for all j ≥ 1. Fix any such (Nj)
∞
j=1 and define

µN := µ

∞⋃
j=1

Nj and µ⊥N := µ X \
∞⋃
j=1

Nj.

Then µN and µ⊥N are measures on (X,M) with µ = µN + µ⊥N and it is clear that µN is
carried by N .

To see that µ⊥N is singular to N , assume for contradiction that µ⊥N (S) > 0 for some
S ∈ N . First pick an index j0 such that µ(Xj0 ∩ S) > 0. Next, pick j ≥ j0 sufficiently

large such that µ(Xj0 ∩S) > 1/j. Note that T := Nj ∪S ∈ Ñ , since Nj ∈ Ñ and S ∈ N .
It follows that

Mj ≥ µ(Xj ∩ T ) ≥ µN (Xj ∩Nj) + µ⊥N (Xj ∩ S) > (Mj − 1/j) + 1/j = Mj,

where in the last inequality we used the fact that Xj0 ⊆ Xj. We have a reached a
contradiction. Therefore, µ⊥N is singular to N .

Next we want to show that the decomposition of µ as the sum of a measure that is
carried by N and a measure that is singular to N is unique. Suppose that µ = µc + µs,
where µc and µs are measures such that µc is carried by N and µs is singular to N . To
show that µc = µN and µs = µ⊥N , it suffices to prove the former. Suppose for contradiction
that µc(A) < µN (A) for some A ∈ M. Replacing A with A ∩Xj for j sufficiently large,
we may assume without loss of generality that µN (A) < ∞. Since µc and µN are both
carried by N , we can find a set N , which is a countable union of sets in N such that

µc(A ∩N) = µc(A) < µN (A) = µN (A ∩N).
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Then µs(A ∩N) = µ(A ∩N)− µc(A ∩N) > µ(A ∩N)− µN (A ∩N) = µ⊥N (A ∩N) = 0.
This contradicts that µs is singular to N . Therefore, µc = µN , and thus, µs = µ⊥N . �

Example A.3. Let µ and ν be measures on a measurable space (X,M), and let

N := {A ∈M : ν(A) = 0}
denote the null sets of ν. If µ is σ-finite, then by Proposition A.2, the measure µ can be
uniquely expanded µ = µN +µ⊥N , where µN is carried by null sets of ν and µ⊥N is singular
to null sets of ν. Thus, writing µs := µN and µac := µ⊥N , we can decompose µ = µs + µac,
where µs ⊥ ν and µac � ν.
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