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Abstract. We obtain quantitative estimates of local flatness of zero sets of harmonic
polynomials. There are two alternatives: at every point either the zero set stays uniformly
far away from a hyperplane in the Hausdorff distance at all scales or the zero set becomes
locally flat on small scales with arbitrarily small constant. An application is given to
a free boundary problem for harmonic measure from two sides, where blow-ups of the
boundary are zero sets of harmonic polynomials.

1. Introduction

In this paper, we study a geometric property of the zero sets of harmonic polynomials in
order to gain new information about free boundary regularity for harmonic measure from
two sides. To briefly describe this application, assume that Ω+ = Ω and Ω− = Rn \Ω are
complementary domains with a common boundary ∂Ω+ = ∂Ω = ∂Ω−. Roughly speaking,
we wish to know what does the boundary look like, when the harmonic measure from one
side of the boundary and the harmonic measure from the opposite side of the boundary
look the same. Thus assume that the harmonic measures ω± of Ω± charge the same sets
(i.e. ω+(E) = 0 ⇔ ω−(E) = 0 for all Borel sets E ⊂ ∂Ω). In Badger [2] (refining previous
work by Kenig and Toro [14]) the author established the following structure theorem for
the free boundary under weak regularity:

If the Radon-Nikodym derivative f = dω−/dω+ has continuous logarithm
as a function on ∂Ω, then the boundary decomposes as a finite disjoint
union of sets Γd (1 ≤ d ≤ d0),

∂Ω = Γ1 ∪ · · · ∪ Γd0 ,

with the following property. Every blow-up of ∂Ω centered a point x ∈ Γd

(i.e. a limit of the sets r−1
i (∂Ω−x) as ri → 0 in a Hausdorff distance sense)

is the zero set of a homogeneous harmonic polynomial of degree d.

(For a precise formulation of the structure theorem, see section 6 below.) In other words,
“zooming in” on a point in the boundary, the limiting shapes that one sees are zero
sets of homogeneous harmonic polynomials. Moreover, the degrees of the polynomials
which appear in this fashion are uniquely determined at each point of the boundary.
In particular, every boundary point belongs either to the set of “flat points” Γ1 where
blow-ups of the boundary are hyperplanes, or to the set of “singularities” Γ2 ∪ · · · ∪ Γd0
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2 MATTHEW BADGER

Figure 1.1. A blow-up of ∂Ω, Ω ⊂ R3 about x ∈ Γ3 is the zero set of a
homogeneous harmonic polynomial of degree 3 such as x2(y − z) + y2(z −
x) + z2(x− y)− xyz

where blow-ups of the boundary are zero sets of higher degree homogeneous harmonic
polynomials (see Figure 1.1). Below we study the topology, geometry, and size of the set
of flat points Γ1. We will show that Γ1 is open in ∂Ω, Γ1 is locally Reifenberg flat with
vanishing constant, and thus, Γ1 has Hausdorff dimension n− 1.

The main tool that we need to study Γ1 may be of independent interest. It is a
statement about the local geometry of zero sets of harmonic polynomials, which connects
analytic and geometric notions of “regular points”. While analytic regularity of a zero
set at a point is indicated by the non-vanishing of the Jacobian of a defining function,
geometric regularity of a zero set at a point is displayed by the existence of a tangent
plane to the set. Alternatively, one may equate geometric regularity with existence of
arbitrarily good approximations of the set by hyperplanes at small scales. We will show
that for zero sets of harmonic polynomials these two types of regularity—analytic and
geometric—coincide. Moreover, we quantify the failure of the zero set to admit good
approximations by hyperplanes at its singularities. In order to state our result precisely,
we need to introduce some notation.

Let Σ ⊂ Rn (n ≥ 2) be a closed set. The local flatness θΣ(x, r) of Σ near the point
x ∈ Σ and at scale r > 0 is defined by (c.f. measurements of flatness in [10], [17], [21])

(1.1) θΣ(x, r) =
1

r
min

L∈G(n,n−1)
HD[Σ ∩B(x, r), (x+ L) ∩B(x, r)],

where as usual G(n, n− 1) denotes the collection of (n− 1)-dimensional subspaces of Rn

(hyperplanes through the origin) and HD[A,B] denotes the Hausdorff distance between
nonempty, compact subsets of Rn,

(1.2) HD[A,B] = max

{
sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)

}
.

Thus local flatness is a measure of how well a set can be approximated by a hyperplane
at a given location and scale (see Figure 1.2). Notice that θΣ(x, r) measures the distance
of points in the set to a hyperplane and the distance of points in a hyperplane to the set.
The minimum in (1.1) is achieved for some hyperplane Lx,r by compactness of G(n, n−1);
however, for typical sets Lx,r may vary with r. Because the local flatness θΣ(x, r) ≤ 1
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Figure 1.2. Local flatness θΣ(x, r) of a set Σ at scale r

Figure 1.3. Zero set of x4 + y4 − y2

for every closed set Σ, for every x ∈ Σ and for every r > 0 this quantity only carries
information when θΣ(x, r) is small.

If x ∈ Σ and limr→0 θΣ(x, r) = 0, then we say that x is a flat point of Σ. From our
viewpoint, flat points are the “geometric regular” points of Σ. Let us give two examples
with zero sets. Given any f : Rn → R, we write Σf = {x ∈ Rn : f(x) = 0} for the zero
set of f and we write Df for the total derivative of f .

Example 1.1. Suppose that f : Rn → R is smooth. If x ∈ Σf and Df(x) ̸= 0, then
Σf admits a unique tangent plane at x. Thus x ∈ Σf is a flat point of Σf whenever
Df(x) ̸= 0.

Example 1.2 (Tacnode). The polynomial p(x, y) = x4 + y4 − y2 has a singularity at the
origin, i.e. Dp(0) = 0. Nevertheless the origin is a flat point of Σp (see Figure 1.3).
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These examples show that while every (analytic) regular point of the zero set of a
smooth function is a flat point, the converse does not hold for a general smooth function.
However, as we shall see, the converse does hold for zero sets of harmonic polynomials.
Our convention below is that p denotes a generic polynomial and h denotes a harmonic
polynomial.

Theorem 1.3. If h : Rn → R is a nonconstant harmonic polynomial, then every flat point
of Σh is a regular point of Σh: {x ∈ Σh : x is flat point of Σh} = {x ∈ Σh : Dh(x) ̸= 0}.

In fact, we establish the following stronger, quantitative statement. It says that if the
zero set of a harmonic polynomial is sufficiently close to a hyperplane at a single scale,
then one can automatically conclude the set is flat at that location.

Theorem 1.4. For all n ≥ 2 and d ≥ 1 there exists a constant δn,d > 0 such that for any
harmonic polynomial h : Rn → R of degree d and for any x ∈ Σh,

Dh(x) = 0 ⇔ θΣh
(x, r) ≥ δn,d for all r > 0,

Dh(x) ̸= 0 ⇔ θΣh
(x, r) < δn,d for some r > 0.

Moreover, there exists a constant Cn,d > 1 such that if θΣh
(x, r) < δn,d for some r > 0,

then θΣh
(x, sr) < Cn,ds for all s ∈ (0, 1).

The tacnode at the origin in Example 1.2 shows that in general the zero set of a
polynomial can be flat at a singularity of the polynomial. In contrast, Theorem 1.4 says
that for any harmonic polynomial h : Rn → R the zero set Σh is “far away from flat”
(i.e. θΣh

(x, r) ≥ δn,d for all r > 0) at every singularity of the polynomial, uniformly across
all harmonic polynomials of a specified degree. Thus for harmonic polynomials the set
of flat points of Σh (geometric regularity) and regular points of Σh (analytic regularity)
coincide. It would be interesting to know for which functions this property holds.

Problem 1.5. Classify all polynomials p : Rn → R such that the flat points of Σp and
the regular points of Σp coincide, i.e. such that x ∈ Σp is flat implies Dp(x) ̸= 0.

Problem 1.6. Classify all smooth functions F : Rn → R such that the flat points of ΣF

and the regular points of ΣF coincide, i.e. such that x ∈ ΣF is flat implies DF (x) ̸= 0.

To prove Theorem 1.4 we identify a certain quantity ζ1(p, x, r) ∈ [0,∞] which measures
the “relative size of the linear term” of a polynomial p : Rn → R. This quantity depends
continuously on the coefficients of p, identifies whether Dp(x) vanishes, and bounds the
local flatness θΣp(x, r) of Σp from above. Moreover, at any x ∈ Σp, the quantity ζ1(p, x, r)
decays linearly, in the sense that ζ1(p, x, sr) ≤ sζ1(p, x, r) for all s ∈ (0, 1). To establish
Theorem 1.4, the critical step is to show that for harmonic polynomials ζ1(h, x, r) < ∞
whenever θΣh

(x, r) is sufficiently small (see Proposition 4.8). The key facts about harmonic
polynomials which are useful for this purpose are the mean value property for harmonic
functions and estimates on the Lipschitz constant of spherical harmonics from [2].

The remainder of the paper is divided into two parts. In the first part, §§2–4, we build
up the proof of Theorem 1.4. To start, in §2 we define the relative size ζk(p, x, r) of the
homogeneous part of degree k, of a polynomial p, on the ball B(x, r). Then we record the
basic properties of these numbers, which are used in the sequel. Section 3 proceeds with
a brief discussion on convergence of zero sets of polynomials in the Hausdorff distance.
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In particular, in Corollary 3.6, we identify the blow-ups in the Hausdorff distance sense
of zero sets of harmonic polynomials. Section 4 is devoted to the connection between the
relative size of the linear term ζ1(p, x, r) and the local flatness θΣp(x, r) of the zero set.
First we show that for any polynomial, not necessarily harmonic, the relative size of the
linear term controls local flatness of the zero set (Lemma 4.1). To establish a converse
for harmonic polynomials, we first demonstrate that zero sets of homogeneous harmonic
polynomials of degree d ≥ 2 are uniformly far away from flat at the origin (Lemma 4.7).
We then pass to a converse for zero sets of generic harmonic polynomials and the proof
of Theorem 1.4, using a normal families/blow-up type argument and the technology of §2
and §3.

In the second part, §§5–6, we turn to applications of Theorem 1.4. In §5, we examine a
variant of Reifenberg flat sets, where local approximations of a set by hyperplanes at small
scales are replaced with local approximations by zero sets of harmonic polynomials (see
Definitions 5.1 and 5.7). Using Theorem 1.4, we deduce that if a set Σ admits arbitrarily
close local approximations by zero sets of harmonic polynomials, then the local flatness
θΣ(x, r) of Σ at one scale r > 0 yields good control of the local flatness θΣ(x, r

′) of Σ at
all smaller scales 0 < r′ ≤ r (see Lemma 5.9). If, in addition, all blow-ups of Σ are zero
sets of homogeneous harmonic polynomials, then the subset Σ1 of flat points of Σ is open;
and Σ1 is locally Reifenberg flat with vanishing constant (Theorem 5.10). Finally, in §6,
we specialize the results from §5 to the setting of free boundary regularity for harmonic
measure from two sides discussed above. In particular, we obtain refined information
about the set of flat points Γ1 in the free boundary ∂Ω. We end with a list of open
problems about free boundary regularity for harmonic measure from two sides.

2. Relative Size of Homogeneous Parts of a Polynomial

Let x ∈ Rn. A polynomial p : Rn → R of degree d ≥ 1 decomposes as

(2.1) p(z) = p
(x)
d (z − x) + · · ·+ p

(x)
1 (z − x) + p

(x)
0 (z − x)

where each non-zero term p
(x)
k is a homogenous polynomial of degree k, i.e.

(2.2) p
(x)
k (ty) = tkp

(x)
k (y) for all t ∈ R and y ∈ Rn.

We call p
(x)
k the homogeneous part of p of degree k with center x. By Taylor’s theorem,

(2.3) p
(x)
k (y) =

∑
|α|=k

Dαp(x)

α!
yα for all y ∈ Rn.

In the sequel, it will be convenient to quantify the relative sizes of homogeneous parts.

Definition 2.1. Let p : Rn → R be a polynomial of degree d ≥ 1. For every 0 ≤ k ≤ d,
x ∈ Rn and r > 0, define

(2.4) ζk(p, x, r) = max
j ̸=k

∥p(x)j ∥L∞(Br)

∥p(x)k ∥L∞(Br)

∈ [0,∞].

Remark 2.2. Definition 2.1 generalizes the two quantities ζ(h) and ζ∗(h) associated to a
harmonic polynomial h, which appeared in Badger [2] (see Lemma 4.3 and Lemma 4.5).
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In the present notation, if h = h
(0)
d + h

(0)
d−1 + · · ·+ h

(0)
j is a harmonic polynomial of degree

d ≥ 1 such that h(0) = 0 and h
(0)
j ̸= 0, then ζ(h) = ζd(h, 0, 1) and ζ∗(h) = ζj(h, 0, 1).

Because ζk(p, x, r) measures the relative size of homogeneous parts of a polynomial,
scaling p does not affect ζk. This simple observation will enable proofs via normal families
(for example, see the proof of Proposition 4.8), by allowing us to assume a sequence of
polynomials with certain properties has uniformly bounded coefficients.

Lemma 2.3. If p : Rn → R is a polynomial of degree d ≥ 1 and c ∈ R \ {0}, then
ζk(cp, x, r) = ζk(p, x, r) for all 0 ≤ k ≤ d, x ∈ Rn and r > 0.

Proof. Suppose that p : Rn → R is a polynomial of degree d ≥ 1, and let c ∈ R \ {0}.
Since (cp)

(x)
k = c(p

(x)
k ) for all 0 ≤ k ≤ d,

ζk(cp, x, r) = max
j ̸=k

∥cp(x)j ∥L∞(Br)

∥cp(x)k ∥L∞(Br)

= max
j ̸=k

|c| · ∥p(x)j ∥L∞(Br)

|c| · ∥p(x)k ∥L∞(Br)

= max
j ̸=k

∥p(x)j ∥L∞(Br)

∥p(x)k ∥L∞(Br)

= ζk(p, x, r)

(2.5)

for all x ∈ Rn and all r > 0. �

The quantity ζk(p, x, r) also behaves well under translation and dilation.

Lemma 2.4. Suppose that p : Rn → R is a polynomial of degree d ≥ 1. If z ∈ Rn, then
ζk(p(·+ z), x, r) = ζk(p, x+ z, r) for all x ∈ Rn, for all r > 0 and for all 0 ≤ k ≤ d.

Proof. Let p : Rn → R be a polynomial of degree d ≥ 1, fix x ∈ Rn and define q : Rn → R
by q(y) = p(y + z) for all y ∈ Rn. Then q is a polynomial of degree d. Moreover, for all
0 ≤ k ≤ d,

(2.6) q
(x)
k (y) =

∑
|α|=k

Dαq(x)

α!
yα =

∑
|α|=k

Dαp(x+ z)

α!
yα = p

(x+z)
k (y) for all y ∈ Rn.

Thus, q
(x)
k = p

(x+z)
k for all x ∈ Rn and for all 0 ≤ k ≤ d. It immediately follows that

ζk(q, x, r) = ζk(p, x+ z, r) for all 0 ≤ k ≤ d, for all x ∈ Rn and for all r > 0. �

Lemma 2.5. If p : Rn → R is a polynomial of degree d ≥ 1 and t > 0, then ζk(p(t·), x, r) =
ζk(p, tx, tr) for all x ∈ Rn, for all r > 0 and for all 0 ≤ k ≤ d.

Proof. Let p : Rn → R be a polynomial of degree d ≥ 1, fix t > 0 and define q : Rn → R
by q(y) = p(ty) for all y ∈ Rn. Then q is a polynomial of degree d and for all 0 ≤ k ≤ d,

(2.7) q
(x)
k (y) =

∑
|α|=k

Dαq(x)

α!
yα = tk

∑
|α|=k

Dαp(tx)

α!
yα = tkp

(tx)
k (y) for all y ∈ Rn.
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Hence q
(x)
k = tkp

(tx)
k for all 0 ≤ k ≤ d. It follows that

ζk(q, x, r) = max
j ̸=k

∥q(x)j ∥L∞(Br)

∥q(x)k ∥L∞(Br)

= max
j ̸=k

tj∥p(tx)j ∥L∞(Br)

tk∥p(tx)k ∥L∞(Br)

= max
j ̸=k

∥p(tx)j ∥L∞(Btr)

∥p(tx)k ∥L∞(Btr)

= ζk(p, tx, tr)

(2.8)

for all x ∈ Rn, for all r > 0 and for all 0 ≤ k ≤ d. �

The magnitude of ζk(p, x, r) identifies homogeneous polynomials and the vanishing of
homogeneous parts of polynomials. For example, p(x) = 0 if and only if ζ0(p, x, r) = ∞,
and Dp(x) = 0 if and only if ζ1(p, x, r) = ∞.

Lemma 2.6. If p : Rn → R is a polynomial of degree d ≥ 1, x ∈ Rn and 0 ≤ k ≤ d, then

(1) ζk(p, x, r) = 0 for all r > 0 if and only if p
(x)
k = p(·+ x);

(2) ζk(p, x, r) > 0 for all r > 0 if and only if p
(x)
k ̸= p(·+ x);

(3) ζk(p, x, r) < ∞ for all r > 0 if and only if p
(x)
k ̸= 0; and,

(4) ζk(p, x, r) = ∞ for all r > 0 if and only if p
(x)
k = 0.

Proof. We leave this exercise in the definition of ζk(p, x, r) to the reader. �

The value of ζk(p, x, r) depends continuously on the coefficients of the polynomial p.
To make this statement precise, we first make a definition.

Definition 2.7. A sequence of polynomials (pi)∞i=1 in Rn converges in coefficients to a
polynomial p in Rn if d = maxi deg p

i < ∞ and Dαpi(0) → Dαp(0) for every |α| ≤ d.

Lemma 2.8. For every k ≥ 0, ζk(p, x, r) is jointly continuous in p, x and r. That is,

(2.9) ζk(p
i, xi, ri) → ζk(p, x, r)

whenever pi → p in coefficients, xi → x ∈ Rn and ri → r ∈ (0,∞).

Proof. Let (pi)∞i=1 be a sequence of polynomials in Rn such that pi → p in coefficients to
a nonconstant polynomial p and let d = maxi deg pi < ∞. There are two cases. If k > d,

then p
i(xi)
k = 0 for all i ≥ 1 and p

(x)
k = 0. Hence

(2.10) ζ(pi, xi, ri) = ζ(p, x, r) = ∞ for all i ≥ 1

by Lemma 2.6. Otherwise 0 ≤ k ≤ d. Since

(2.11) Dαp(x) =
∑

|β|≤d−|α|

Dα+βp(0)

β!
xβ for all x ∈ Rn and |α| ≤ d,

convergence in coefficients implies that Dαpi(x) → Dαp(x) for all x ∈ Rn and |α| ≤ d,

uniformly on compact subsets of Rn. From (2.3) it follows that p
i(xi)
k → p

(x)
k uniformly on

compact sets whenever pi → p in coefficients and xi → x ∈ Rn. Thus, for every 0 ≤ k ≤ d,

(2.12) ∥pi(xi)
k ∥L∞(Bri )

→ ∥p(x)k ∥L∞(Br)
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whenever pi → p in coefficients, xi → x ∈ Rn and ri → r ∈ (0,∞). We conclude that

(2.13) max
j ̸=k

∥pi(xi)
j ∥L∞(Bri )

∥pi(xi)
k ∥L∞(Bri )

→ max
j ̸=k

∥p(x)j ∥L∞(Br)

∥p(x)k ∥L∞(Br)

∈ [0,∞].

(Note 0/0 never appears in (2.13) because the polynomials pi and p are not identically
zero.) That is, ζk(p

i, xi, ri) → ζk(p, x, r) whenever pi → p in coefficients, xi → x ∈ Rn

and ri → r ∈ (0,∞), as desired. �

Remark 2.9. If (pi)∞i=1 is a sequence of polynomials in Rn such that d = maxi p
i < ∞,

then pi → p in coefficients if and only if pi → p uniformly on compact sets.

Next we show that the relative size of the linear term of a polynomial decays linearly
at any root of the polynomial.

Lemma 2.10. If p : Rn → R is a polynomial of degree d ≥ 1 and p(x) = 0, then
ζ1(p, x, sr) ≤ sζ1(p, x, r) for all r > 0 and s ∈ (0, 1).

Proof. Suppose p : Rn → R is a polynomial of degree d ≥ 1. First if d = 1 and p(x) = 0,

then p = p
(x)
1 (· − x) and ζ1(p, x, r) = 0 for all r > 0 by Lemma 2.6. Second if d ≥ 2 and

p(x) = 0, then p = p
(x)
d (· − x) + · · ·+ p

(x)
2 (· − x) + p

(x)
1 (· − x). Thus

ζ1(p, x, sr) = max
j>1

∥p(x)j ∥L∞(Bsr)

∥p(x)1 ∥L∞(Bsr)

= max
j>1

sj∥p(x)j ∥L∞(Br)

s∥p(x)1 ∥L∞(Br)

≤ max
j>1

s2∥p(x)j ∥L∞(Br)

s∥p(x)1 ∥L∞(Br)

= sζ1(p, x, r)

(2.14)

for all r > 0 and s ∈ (0, 1). �

Now let us specialize to harmonic polynomials.

Lemma 2.11. If h is a harmonic polynomial in Rn (i.e. ∆h = 0) of degree d ≥ 1, then

h
(x)
k is harmonic for all 0 ≤ k ≤ d and x ∈ Rn.

Proof. Suppose that h is a harmonic polynomial of degree d ≥ 1 and let x ∈ Rn. Applying
Laplace’s operator to (2.1) yields

(2.15) 0 = ∆h
(x)
d +∆h

(x)
d−1 + · · ·+∆h

(x)
2 .

Since ∆h
(x)
k is the sum of monomials of degree k−2 for each non-zero h

(x)
k , the right hand

side of (2.15) vanishes if and only if ∆h
(x)
k = 0 for all 0 ≤ k ≤ d. �

Remark 2.12. If h : Rn → R is any harmonic polynomial of degree d ≥ 1, then

(2.16) ζk(h, x, r) = max
j ̸=k

∥h(x)
j ∥L∞(∂Br)

∥h(x)
k ∥L∞(∂Br)

by Lemma 2.11 and the maximum principle for harmonic functions.
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3. Blow-ups and Convergence of Zero Sets of Polynomials

The following definition formalizes the notion of “zooming in” on a closed set.

Definition 3.1. Let Σ ⊂ Rn be a nonempty closed set. A (geometric) blow-up B of Σ
centered at x ∈ Σ is a closed set B ⊂ Rn such that for some sequence ri ↓ 0,

(3.1) lim
i→∞

HD

[
Σ− x

ri
∩Bs, B ∩Bs

]
= 0 for all s > 0

where Bs = B(0, s) denotes the closed ball at the origin with radius s > 0.

The existence of blow-ups of a non-empty set is guaranteed by the following classical
lemma. A proof may be found on page 91 of Rogers [19].

Lemma 3.2 (Blaschke’s selection theorem). Let K ⊂ Rn be a compact set. If (Ak)
∞
k=1

is a sequence of nonempty closed subsets of K, then there exists a nonempty closed set
A ⊂ K and a subsequence (Akj)

∞
j=1 of (Ak)

∞
k=1 such that HD[Akj , A] → 0 as j → ∞.

In this section, we shall identify the blow-ups of the zero set of a harmonic polynomial.
But first we discuss the relationship between convergence of polynomials in coefficients
and convergence of their zero sets in the Hausdorff distance. To start, we give an example
which shows how and where issues can arise. Below B(x, r) denotes the closed ball with
center x ∈ Rn and radius r > 0.

Example 3.3. Let h(x, y) = xy and for each i ≥ 1 let hi(x, y) = h(x+1/i, y) = xy+ y/i.
Then the polynomials h and hi (i ≥ 1) are harmonic and hi → h in coefficients. However,
we claim that there is a closed ball B such that Σhi ∩B ̸= ∅ for all i ≥ 1 and Σh ∩B ̸= ∅
but Σhi∩B does not converge to Σh∩B in the Hausdorff distance (see Figure 3.1). Indeed
consider B = B((1, 1/2), 1). Then Σhi ∩B = [1− c, 1 + c]× {0}, c =

√
3/2 is a fixed line

segment for all i ≥ 1, but Σh ∩ B = ([1− c, 1 + c]× {0}) ∪ {(0, 1/2)} consists of the line
segment together with an additional point of ∂B. Thus convergence in coefficients does
not imply (local) convergence of the zero sets in the Hausdorff distance in general. We
remark that this extra point lies on ∂B and is isolated in Σh ∩ B, even though it is not
isolated in Σh.

Lemma 3.4. If (hi)
∞
i=1 is a sequence of harmonic polynomials and hi → h in coefficients,

then h is a harmonic polynomial. Moreover, if h is nonconstant and if Σh ∩ intB ̸= ∅ for
some closed ball B, then Σhi ∩B ̸= ∅ for all i ≥ i0. Furthermore, if Σhi ∩B converges in
the Hausdorff distance to a closed set F ⊂ B, then F ⊂ Σh∩B and F ∩intB = Σh∩intB.

Proof. Suppose that hi : Rn → R is a harmonic polynomial for each i ≥ 1 and hi → h in
coefficients. Then hi → h uniformly on compact subsets of Rn. Hence h is harmonic.

Now suppose that, in addition, h is nonconstant and Σh ∩ intB ̸= ∅ for some closed
ball B. Since Σh ∩ intB ̸= ∅, we can find a ball B′ ⊂ B whose center lies in Σh ∩ B. By
the mean value property for harmonic functions,

(3.2)

∫
B′
h(y)dy = 0.

Because h is not identically zero, there exists x+, x− ∈ B′ such that h(x+) > 0 and
h(x−) < 0. Hence, since hi(x±) → h(x±), we conclude that hi(x+) > 0 and hi(x−) < 0
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Figure 3.1. Convergence in coefficients versus convergence of zero sets

for all sufficiently large i, as well. By the intermediate value theorem, hi must vanish
somewhere in B′ ⊂ B for all large i. That is, Σhi ∩B ̸= ∅ for all sufficiently large i.

Finally suppose that Σhi ∩ B → F in the Hausdorff distance for some closed set F .
Recall that we want to show F ⊂ Σh ∩ B and F ∩ intB = Σh ∩ intB. On one hand, for
every y ∈ F there exists yi ∈ B such that hi(yi) = 0 and yi → y. To show h(y) = 0,
consider

(3.3) h(y) = h(y)− h(yi) + h(yi)− hi(yi) + hi(yi)

Since h is continuous and yi → y, we get lim supi→∞ |h(y) − h(yi)| = 0. Because hi → h
uniformly on B, we conclude lim supi→∞ |h(yi)− hi(yi)| ≤ lim supi→∞ ∥h− hi∥L∞(B) = 0.
Hence h(y) = 0 and F ⊂ Σh ∩B. In particular, F ∩ intB ⊂ Σh ∩ intB.

On the other hand, suppose that y ∈ Σh ∩ intB. Choose m ≥ 1 such that B(y, 1/m) ⊂
intB. Since h is not identically zero, we can use the mean value property of h as above
to show that there exist ym+ , y

m
− ∈ B(y, 1/m) such that h(ym+ ) > 0 and h(ym− ) < 0. But

hi(ym± ) → h(ym± ), so there is i0 such that hi(ym+ ) > 0 and hi(ym− ) < 0 for all i ≥ i0.

By continuity, we conclude that for each i ≥ i0 there exists ym,i
0 ∈ B(y, 1/m) such that

hi(ym,i
0 ) = 0. Thus

dist(y, F ) ≤ lim sup
i→∞

dist(y,Σhi ∩B) + HD[Σhi ∩B,F ]

≤ 1

m
+ lim sup

k→∞
HD[Σhi ∩B,F ] =

1

m
.

(3.4)

Lettingm → ∞ yields dist(y, F ) = 0. But F is closed, so y ∈ F and Σh∩intB ⊂ F∩intB.
Therefore, F ∩ intB = Σh ∩ intB, as desired. �
Corollary 3.5. Suppose that (hi)∞i=1 is a sequence of harmonic polynomials and hi → h
in coefficients. If h is nonconstant and B is a closed ball such that Σh ∩ intB ̸= ∅ and

(3.5) Σh ∩B = Σh ∩ intB,

then Σhi ∩B → Σh ∩B in the Hausdorff distance.

Proof. Let (hi)∞i=1 be any sequence of harmonic polynomials in Rn such that hi → h in
coefficients to a nonconstant harmonic polynomial h. Suppose that B is a closed ball
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such that Σh ∩ intB ̸= ∅ and such that (3.5) holds. By Lemma 3.4, Σhi ∩ B ̸= ∅ for
all sufficiently large i. Pick an arbitrary subsequence (hij)∞j=1 of (hi)∞i=1. By Blaschke’s

selection theorem, we can find a further subsequence (hijk)∞k=1 of (h
ij)∞j=1 and a nonempty

closed set F ⊂ B such that limk→∞ HD[Σhijk ∩ B,F ] = 0. By Lemma 3.4, F ⊂ Σh ∩ B
and F ∩ intB = Σh ∩ intB. Thus, since B satisfies (3.5) and F is closed,

(3.6) Σh ∩B = Σh ∩ intB = F ∩ intB ⊂ F = F

This shows F = Σh ∩ B. We have proved every subsequence (hij)∞j=1 of (hi)∞i=1 has a

further subsequence (hijk)∞k=1 such that limk→∞ HD[Σhijk ∩B,Σh∩B] = 0. Therefore, the
original sequence Σhi ∩B also converges to Σh ∩B in the Hausdorff distance. �

Corollary 3.6. Suppose that h : Rn → R is a harmonic polynomial of degree d ≥ 1, and

let x ∈ Σh. If h(y) = h
(x)
d (y− x)+h

(x)
d−1(y− x)+ · · ·+h

(x)
j (y− x) where h

(x)
j ̸= 0, then the

unique blow-up of Σh at x is the zero set Σ
h
(x)
j

of h
(x)
j . That is,

(3.7) lim
ri→0

HD

[
Σh − x

ri
∩Bs,Σh

(x)
j

∩Bs

]
= 0 for all s > 0.

Proof. Suppose that h(y) = h
(x)
d (y−x)+ · · ·+h

(x)
j (y−x) is a harmonic polynomial in Rn

with j ≥ 1 and h
(x)
j ̸= 0. Given ri ↓ 0, define hi(y) = r−j

i h(x + riy) for all y ∈ Rn. Then

hi : Rn → R is a harmonic polynomial and r−1
i (Σh − x) = Σhi . Moreover,

(3.8) hi(y) = r−j
i

(
h
(x)
d (riy) + · · ·+ h

(x)
j (riy)

)
= rd−j

i h
(x)
d (y) + · · ·+ h

(x)
j (y).

Since ri → 0 as i → ∞, hi → h
(x)
j in coefficients. Because h

(x)
j is homogeneous, Σ

h
(x)
j

∩Bs

satisfies (3.5). Thus the claim follows immediately from Corollary 3.5. �

Remark 3.7. The proofs of Lemma 3.4 and Corollary 3.5 did not use the full strength of
the harmonic property of h. Instead we only needed to assume that hi are polynomials,
hi → h in coefficients, and h is a nonconstant polynomial such that for all x ∈ Σh and for
all r > 0 there exist x+, x− ∈ B(x, r) such that h(x+) > 0 and h(x−) < 0.

4. Local Flatness of Zero Sets of Polynomials

The local flatness of the zero set Σp of a polynomial at a root x is controlled from above

by the relative size ζ1(p, x, r) of the linear term p
(x)
1 .

Lemma 4.1. If p : Rn → R is a polynomial of degree d ≥ 1 such that p(x) = 0, then
θΣp(x, r) ≤ Cdζ1(p, x, r) for all r > 0. Explicitly, Cd =

√
2(d− 1).

Proof. The claim is trivial for polynomials of degree 1. Let p : Rn → R be any polynomial
of degree d ≥ 2, let x ∈ Σp and let r > 0. For the proof we may assume that

(4.1)
√
2(d− 1)ζ1(p, x, r) ≤ 1,

since the bound θΣp(x, r) ≤ 1 is always true. Because ζ1(p, x, r) < ∞, we know that

p
(x)
1 ̸= 0, by Lemma 2.6. Hence L = {p(x)1 = 0} ∈ G(n, n − 1) is an (n − 1)-dimensional
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δr

Σp-x

L

p>0

p<0

0

Figure 4.1. Proof of Lemma 4.1

plane through the origin. Let e be the unique unit normal vector to L at 0 such that

p
(x)
1 (e) > 0, and set δ := (d− 1)ζ1(p, x, r). If y ∈ L and t > δ satisfy |y + tre| ≤ r, then

p(x+ y + tre) = p
(x)
d (y + tre) + · · ·+ p

(x)
1 (y + tre)

≥ p
(x)
1 (y + tre)− ∥p(x)d ∥L∞(Br) − · · · − ∥p(x)2 ∥L∞(Br)

≥ p
(x)
1 (y + tre)− (d− 1)ζ1(p, x, r)∥p(x)1 ∥L∞(Br)

= t∥p(x)1 ∥L∞(Br) − δ∥p(x)1 ∥L∞(Br) > 0.

(4.2)

Similarly, p(x + y + tre) < 0 when |y + tre| ≤ r and t < −δ. Hence every root of p in
B(x, r) lies in the strip {x+ y + tre : y ∈ L and |t| ≤ δ}. Thus dist(z, x+ L) ≤ δr for all
z ∈ Σp ∩B(x, r).

On the other hand, suppose that y ∈ L∩Br. Then we can connect y by two line segments
ℓ± = [y, z±] to (L± δre)∩Br of minimal length (see Figure 4.1). Since p(x+ z+) ≥ 0 and
p(x + z−) ≤ 0, by continuity p(x + z0) must vanish at some point z0 ∈ ℓ+ ∪ ℓ−. Hence
dist(x+y,Σp∩B(x, r)) is bounded above by the length of ℓ±. This is a geometric constant,

which is at worst
√
2r(1−

√
1− δ2)1/2. (To compute this, notice the length of ℓ± is at worst

the distance of (r, 0, 0) to (tr, 0, δr) where t2 + δ2 = 1.) Since 0 ≤ δ ≤ 1, it follows that
1− δ2 ≤

√
1− δ2 and the length of ℓ± is bounded above by

√
2r(1− (1− δ2))1/2 =

√
2δr.

Thus, dist(x + y,Σp ∩ B(x, r)) ≤
√
2δr for every x + y ∈ x + L. Therefore, we conclude

that θΣp(x, r) ≤
√
2δ =

√
2(d− 1)ζ1(p, x, r), as desired. �

The converse of Lemma 4.1 does not hold in general. Indeed if p(x, y) = x4 + y4 − y2,
then ζ1(p, 0, r) = ∞ for all r > 0 even though limr→0 θΣp(0, r) = 0. Nevertheless we can
establish a converse to Lemma 4.1 for harmonic polynomials! As an intermediate step,
we first consider homogeneous harmonic polynomials. The following auxiliary estimates
for spherical harmonics play a key role.

Definition 4.2. A spherical harmonic h : Sn−1 → R of degree k is the restriction of a
homogeneous harmonic polynomial h : Rn → R of degree k to the unit sphere.
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Remark 4.3. If h : Sn−1 → R is a spherical harmonic, then there may exist distinct
polynomials p : Rn → R and q : Rn → R such that p|Sn−1 = q|Sn−1 = h. For instance,
the polynomials p(x) = 1 and q(x) = |x|2 = x2

1 + · · · + x2
n agree on Sn−1. Nevertheless,

there always exists a unique (homogeneous) harmonic polynomial h̃ : Rn → R such that

h̃|Sn−1 = h.

Using well-known local estimates for the derivatives of harmonic functions, one can
prove that uniformly bounded spherical harmonics of degree k have uniform Lipschitz
constant.

Proposition 4.4 ([2] Proposition 3.2). For every n ≥ 2 and k ≥ 1 there exists a constant
An,k > 1 such that for every spherical harmonic h : Sn−1 → R of degree k,

(4.3) |h(θ1)− h(θ2)| ≤ An,k∥h∥L∞(Sn−1)|θ1 − θ2| for all θ1, θ2 ∈ Sn−1.

Corollary 4.5. For every spherical harmonic h : Sn−1 → R of degree k ≥ 1,

(4.4) |h(θ)| ≤ An,k∥h∥L∞(Sn−1) dist(θ,Σh) for all θ ∈ Sn−1

Proof. Apply Proposition 4.4 with θ1 = θ and θ2 ∈ Σh ∩ Sn−1. Then minimizing (4.3)
over θ2 ∈ Σh ∩ Sn−1 yields (4.4). �
Corollary 4.6. Let h : Sn−1 → R be a spherical harmonic of degree k ≥ 1. If θ0 ∈ Sn−1

satisfies |h(θ0)| = ∥h∥L∞(Sn−1), then

(4.5) |h(θ)| > 1

2
∥h∥L∞(Sn−1) for every θ ∈ Sn−1 ∩B(θ0, 1/2An,k).

Proof. By the reverse triangle inequality and Proposition 4.4,

(4.6) |h(θ)| ≥ |h(θ0)| − |h(θ0)− h(θ)| ≥ |h(θ0)| − An,k∥h∥L∞(Sn−1)|θ0 − θ|.

Thus |h(θ)| ≥ 1
2
∥h∥L∞(Sn−1) whenever |h(θ0)| = ∥h∥L∞(Sn−1) and |θ0 − θ| ≤ 1/2An,k. �

The following lemma says that at the origin the zero set of a homogeneous harmonic
polynomial of degree k ≥ 2 is far away from flat.

Lemma 4.7. For every n ≥ 2 and k ≥ 2 there is a constant δ′n,k with the following
property. For every homogeneous harmonic polynomial h : Rn → R of degree k and for
every scale r > 0, θΣh

(0, r) ≥ δ′n,k.

Proof. Suppose that h : Rn → R is a homogeneous harmonic polynomial of degree k.
Since h is homogeneous, δ = θΣh

(0, 1) = θΣh
(0, r) for all r > 0. By applying a rotation,

we may assume without loss of generality that HD[Σh ∩ B(0, 1), {xn = 0} ∩ B(0, 1)] ≤ δ.
Also, by replacing h with −h if necessary, we may assume that there exists θ0 ∈ Sn−1

such that h(θ0) = ∥h∥L∞(Sn−1) (i.e. the sup norm is obtained at a positive value of h).
Finally, by performing a change of coordinates x 7→ −x if necessary, we may assume
θ0 ∈ Rn−1 × R+ (i.e. the last coordinate of θ0 is positive). We now break the argument
into two cases, depending on the parity of k.

Suppose that k ≥ 2 is even. By the mean value property for harmonic functions,

(4.7)
1

σn−1

∫
Sn−1

h(θ)dHn−1(θ) = h(0) = 0.
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h>0

h>0

δ

deg h=2k deg h=2k+1

xn∙h>0

xn∙h>0

h<0 h<0 xn∙h<0
δ

θ0 θ0

xn∙h<0

Figure 4.2. Proof of Lemma 4.7

We will show that δ being small violates (4.7). By Corollary 4.5, dist(θ0,Σh) ≥ A−1
n,k.

Hence h(θ) > 0 for all θ ∈ Sn−1∩{xn > δ} provided that δ ≪ A−1
n,k (the last coordinate of

θ0 is positive). Assume this is true. Since h is even, h(θ) > 0 for all θ ∈ Sn−1∩{xn < −δ},
as well. Thus negative values of h (obtained at points of the sphere) can only be obtained
inside the strip Sδ = Sn−1 ∩ {|xn| ≤ δ}. Moreover, |h(θ)| ≤ 2δAn,k∥h∥L∞(Sn−1) for θ ∈ Sδ,
by Corollary 4.5. But h(θ) ≥ (1/2)∥h∥L∞(Sn−1) for all θ ∈ ∆0 = Sn−1 ∩B(θ0, 1/2An,k) by
Corollary 4.6. It follows that∫

Sn−1

h(θ)dHn−1(θ) =

∫
Sn−1

h+(θ)dHn−1(θ)−
∫
Sn−1

h−(θ)dHn−1(θ)

≥
∫
∆0

h(θ)dHn−1(θ)−
∫
Sδ

|h(θ)|dHn−1(θ)

≥ ∥h∥L∞(Sn−1)

(
1

2
Hn−1(∆0)− 2δAn,kHn−1(Sδ)

)
> 0

(4.8)

if δ is too small, for example if δ < Hn−1(∆0)/8An,kσn−1 = δ′n,k, which violates (4.7).
Therefore, δ ≥ δ′n,k when k is even.

Suppose that k ≥ 3 is odd. Because the spherical harmonics of different degrees are
orthogonal in L2(Sn−1) (e.g. see [1] Proposition 5.9),

(4.9)

∫
Sn−1

θnh(θ)dHn−1(θ) = 0.

This time we will show that (4.9) is violated if δ is small. Since dist(θ0,Σh) ≥ A−1
n,k,

h(θ) > 0 and θnh(θ) > 0 for all θ ∈ Sn−1 ∩ {xn > δ} if δ ≪ A−1
n,k. Assume this is true.

Since h is odd, θnh(θ) is even and θnh(θ) > 0 for all θ ∈ Sn−1 ∩ {xn < −δ} too. Hence
θnh(θ) can only assume negative values in the strip Sδ = Sn−1 ∩ {|xn| ≤ δ}. Moreover,
|θnh(θ)| ≤ 2δ2An,k∥h∥L∞(Sn−1) for every θ ∈ Sδ, by Corollary 4.5. On the other hand,
θnh(θ) > δ(1/2)∥h∥L∞(Sn−1) for all θ ∈ ∆0 = Sn−1 ∩ B(θ0, 1/2An,k), by Corollary 4.6.



HARMONIC POLYNOMIALS AND HARMONIC MEASURE 15

Thus ∫
Sn−1

θnh(θ)dHn−1(θ) =

∫
Sn−1

(θnh(θ))
+dHn−1(θ)−

∫
Sn−1

(θnh(θ))
−dHn−1(θ)

≥
∫
∆0

θnh(θ)dHn−1(θ)−
∫
Sδ

|θnh(θ)|dHn−1(θ)

≥ δ∥h∥L∞(Sn−1)

(
1

2
Hn−1(∆0)− 2δAn,kHn−1(Sδ)

)
> 0

(4.10)

if δ is too small, for example if δ < Hn−1(∆0)/8An,kσn−1 = δ′n,k, which violates (4.9).
Therefore, δ ≥ δ′n,k when k is odd. �

Harmonic polynomials enjoy a partial converse to Lemma 4.1.

Proposition 4.8. For all n ≥ 2 and d ≥ 1 there exist δn,d > 0 with the following property.
If h : Rn → R is a harmonic polynomial of degree d and h(x) = 0, then ζ1(h, x, r) < δ−1

n,d

whenever θΣh
(x, r) < δn,d.

Proof. If d = 1, then h is linear and ζ1(h, x, r) = 0 = θΣh
(x, r) for all x ∈ Σh. Thus the

case d = 1 is trivial.
Let n ≥ 2 and d ≥ 2 be fixed. Suppose for contradiction that for every N ≥ 1 there

exists a harmonic polynomial hN : Rn → R of degree d, xN ∈ Rn and rN > 0 such that
hN(xN) = 0, ζ1(h

N , xN , rN) > N and θΣ
hN

(xN , rN) < 1/N . Replacing each polynomial

hN with h̃N(y) = cNh(rN(y+xN)), we may assume without loss of generality that xN = 0
and rN = 1 for all N ≥ 1, and max|α|≤d |DαhN(0)| = 1. Thus, there exists a sequence
hN of harmonic polynomials in Rn of degree d with uniformly bounded coefficients such
that hN(0) = 0, ζ1(h

N , 0, 1) ≥ N and θΣ
hN

(0, 1) ≤ 1/N for all N ≥ 1. Passing to a

subsequence, we may assume that hN → h in coefficients to some harmonic polynomial
h : Rn → R. Note h is nonconstant because we assumed that for each polynomial hN there
is some multi-index α such that |DαhN(0)| = 1. Also note ζ1(h, 0, 1) = ∞, by Lemma 2.8.
Taking a further subsequence we may also assume that there exists a closed set F such
that ΣhN ∩ B1 → F in the Hausdorff distance. By Lemma 3.4, F ∩ intB1 = Σh ∩ intB1.
Hence θΣh

(0, r) = 0 for all r < 1. To complete the proof we blow up Σh at the origin and

apply Lemma 4.7. Expand h as h = h
(0)
k + · · ·+ h

(0)
j where k = deg h and h

(0)
j ̸= 0. Note

2 ≤ j ≤ k, since ζ1(h, 0, 1) = ∞. Choose any sequence ri ↓ 0 and define hi(y) = h(riy)
for all y ∈ Rn. By Corollary 3.6, Σhi ∩ B1 → Σ

h
(0)
j

∩ B1 in the Hausdorff distance.

Therefore, since θΣhi
(0, 1) = θΣh

(0, ri) = 0 for all i such that ri < 1, we conclude that

θΣ
h
(0)
j

(0, 1) = 0. Since h
(0)
j is a homogeneous polynomial of degree j ≥ 2, this contradicts

Lemma 4.7. Our supposition was false. Hence there exists Nn,d ≥ 1 such that for every
harmonic polynomial h in Rn of degree d, every x ∈ Σh and every r > 0, ζ1(h, x, r) < Nn,d

whenever θΣh
(x, r) < 1/Nn,d = δn,d. �

Corollary 4.9. Let h : Rn → R be a harmonic polynomial of degree d ≥ 1. If h(x) = 0
and θΣh

(x, r) < δn,d, then Dh(x) ̸= 0 and θΣh
(x, sr) < Cn,ds for all s ∈ (0, 1).

Proof. Once again there is nothing to prove if d = 1. Thus assume that h : Rn → R is
a harmonic polynomial of degree d ≥ 2 such that θΣh

(x, r) < δn,d for some x ∈ Σh and
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r > 0. By Proposition 4.8, we get ζ1(h, x, r) < δ−1
n,d. Hence, because ζ1(h, x, r) < ∞,

Lemma 2.6 guarantees that h
(x)
1 ̸= 0, or equivalently, Dh(x) ̸= 0. Using Lemma 2.10, we

conclude that ζ1(h, x, sr) ≤ sζ1(h, x, r) < sδ−1
n,d for all s ∈ (0, 1). Thus, by Lemma 4.1,

θΣh
(x, sr) <

√
2(d− 1)δ−1

n,ds = Cn,ds for all s ∈ (0, 1). �
Corollary 4.10. Let h : Rn → R be a harmonic polynomial of degree d ≥ 1. If x ∈ Σh

and Dh(x) = 0, then θΣh
(x, r) ≥ δn,d for all r > 0.

Proof. This is the contrapositive of Corollary 4.9. �
We can now record the proof of Theorem 1.4. Recall: For all n ≥ 2 and d ≥ 1 there

exists a constant δn,d > 0 such that for any harmonic polynomial h : Rn → R of degree d
and for any x ∈ Σh,

Dh(x) = 0 ⇔ θΣh
(x, r) ≥ δn,d for all r > 0,

Dh(x) ̸= 0 ⇔ θΣh
(x, r) < δn,d for some r > 0.

Moreover, there exists a constant Cn,d > 1 such that if θΣh
(x, r) < δn,d for some r > 0,

then θΣh
(x, sr) < Cn,ds for all s ∈ (0, 1).

of Theorem 1.4. Suppose that h : Rn → R, n ≥ 2, is a harmonic polynomial of degree
d ≥ 1 and fix x ∈ Σh. If Dh(x) ̸= 0, then ζ1(h, x, 1) < ∞ by Lemma 2.6. Applying
Lemma 4.1 and Lemma 2.10, it follows that

(4.11) θΣh
(x, r) ≤

√
2(d− 1)rζ1(h, x, 1) for all r ∈ (0, 1).

Since ζ1(h, x, 1) < ∞, we see that θΣh
(x, r) < δn,d for some r ∈ (0, 1) sufficiently small.

Conversely, if Dh(x) = 0, then θΣh
(x, r) ≥ δn,d for all r > 0, by Corollary 4.10. Finally, if

θΣh
(x, r) < δn,d, then θΣh

(x, sr) < Cn,ds for all s ∈ (0, 1), by Corollary 4.9. �
Remark 4.11. It is natural to ask if a stronger statement than Proposition 4.8 holds.
Namely, is it true that given ε > 0 there exists δ > 0 such that θΣh

(x, r) < δ ⇒
ζ1(h, x, r) < ε? Unfortunately the answer is no, as the following example illustrates.
Consider the harmonic polynomial h(x, y) = xy with root (2, 0) ∈ Σh and radius r = 1.
On one hand,

Σh ∩B((2, 0), 1) = [1, 3]× {0}
is a line segment: θΣh

((2, 0), 1) = 0. On the other hand, h((x, y) + (2, 0)) = xy + 2y.

Hence h
(2,0)
1 = 2y, h

(2,0)
2 = xy and ζ1(h, (2, 0), 1) = ∥xy∥L∞(B1)/∥2y∥L∞(B1) = 1/2 > 0.

This shows ζ1(h, (2, 0), 1) > 0 even though θΣh
((2, 0), 1) < δ for all δ > 0.

Remark 4.12. In Lemma 4.7 we showed that the zero set Σg of a homogeneous harmonic
polynomial g of degree 1 (that is, a hyperplane through the origin) and the zero set Σh of
a homogeneous harmonic polynomial of degree d ≥ 2 are far apart in Hausdorff distance:

(4.12) HD[Σg ∩B1,Σh ∩B1] ≥ δ(1, n) > 0.

However, the following questions remain open. Is it true that, whenever g and h are
homogeneous harmonic polynomials of different degrees, say c = deg g < deg h = d,
then their zero sets are far apart in the sense that HD[Σg ∩ B1,Σh ∩ B1] ≥ δ(c, d) > 0?
Furthermore, provided the answer is yes, is this separation independent of the degrees in
the sense that inf{δ(m,n) : 1 ≤ c < d} > 0?
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5. Sets Approximated by Zero Sets of Harmonic Polynomials

In this section, we study flat points in sets which admit uniform local approximations
by zero sets of harmonic polynomials. To make this idea of local approximation precise,
the following notation will prove useful.

Definition 5.1 ((Local Set Approximation)).

(i) A local approximation class S is a nonempty collection of closed subsets of Rn

such that 0 ∈ S for each S ∈ S. For every closed set A ⊂ Rn, x ∈ A and r > 0,
define the local closeness ΘS

A(x, r) of A to S near x at scale r by

ΘS
A(x, r) =

1

r
inf
S∈S

HD [A ∩B(x, r), (x+ S) ∩B(x, r)]

(ii) A closed set A ⊂ Rn is said to be locally δ-close to S if for every compact set
K ⊂ Rn there is r0 > 0 such that ΘS

A(x, r) ≤ δ for all x ∈ A ∩K and 0 < r ≤ r0.
(iii) A closed set A ⊂ Rn is locally well-approximated by S if A is locally δ-close to S

for all δ > 0.

Example 5.2. Let F = G(n, n−1) be the Grassmannian of (n−1)-dimensional subspaces
of Rn. Note F is a local approximation class and ΘF

A(x, r) = θA(x, r) is the local flatness of
A near x at scale r defined in the introduction. Sets which admit uniform approximations
by hyperplanes at all locations and scales first appeared in Reifenberg’s solution of the
Plateau problem in arbitrary codimension [18]; they are now called Reifenberg flat sets.
In the terminology of Definition 5.1, a closed set A ⊂ Rn is locally δ-Reifenberg flat if A
is locally δ-close to F ; and A is locally Reifenberg flat with vanishing constant provided
A is locally well-approximated by F .

Let’s pause to collect three facts about Reifenberg flat sets and local flatness.
Fact one. Uniform local flatness guarantees good topology of a set:

Theorem 5.3 (Reifenberg’s topological disk theorem). For each n ≥ 2, there exists
δn > 0 with the following property. If 0 < δ ≤ δn and A ⊂ Rn is locally δ-Reifenberg flat,
then A is locally homeomorphic to an (n− 1)-dimensional disk.

In fact, Reifenberg [18] proved (but did not state) that a set A in Theorem 5.3 admits
local bi-Hölder parameterizations of a disk. For a recent exposition of the topological disk
theorem and its extension to “sets with holes”, see David and Toro [8].

Fact two. Uniform local flatness controls the Hausdorff dimension of a set from above,
in a quantitative way. (For a complementary statement about the Hausdorff dimension
of “uniformly non-flat” sets, see Bishop and Jones [5] and David [7].)

Theorem 5.4 (Mattila and Vuorinen [17]). If A ⊂ Rn is a locally δ-Reifenberg flat set,
then dimH A ≤ n− 1 + Cδ2 for some C = C(n) > 0.

Corollary 5.5. If A ⊂ Rn is locally Reifenberg flat with vanishing constant, then dimH A =
n− 1.

Proof. Let A ⊂ Rn be locally Reifenberg flat with vanishing constant. On one hand,
dimH A ≤ n − 1 by Theorem 5.4. On the other hand, the lower bound dimH A ≥ n − 1
follows from Theorem 5.3. �
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Fact three. Given an estimate on the local flatness of a set at one scale, we automatically
get (a worse) estimate on the local flatness at a smaller scale for nearby locations.

Lemma 5.6. Let A ⊂ Rn be a nonempty closed set and let x, y ∈ A. If B(y, sr) ⊂ B(x, r),
then θA(y, sr) ≤ 4θA(x, r)/s.

Proof. Applying a harmless translation, dilation and rotation, we may assume without
loss of generality that x = 0, r = 1 and

(5.1) δ = θA(0, 1) = HD[A ∩B1, L0 ∩B1]

where L0 = {x ∈ Rn : xn = 0}. Fix y ∈ A and s > 0 such that B(y, s) ⊂ B1. To estimate
θA(y, s) from above we will bound the Hausdorff distance between the set A∩B(y, s) and
the hyperplane Ly ∩B(y, s) inside B(y, s) where the Ly = {x ∈ Rn : xn = yn}.

Suppose that z ∈ A∩B(y, s). Since z ∈ A∩B1, dist(z, L0∩B1) = |z−π(z)| ≤ δ where
π : Rn → L0 denotes the orthogonal projection onto L0. Hence

(5.2) dist(z, Ly ∩B(y, s)) ≤ δ + dist(π(z), Ly ∩B(y, s)).

To continue, note that since π(z) ∈ π(B(y, s)), dist(π(z), Ly ∩ B(y, s)) = |yn| ≤ δ. Thus
dist(z, Ly ∩B(y, s)) ≤ 2δ for all z ∈ A ∩B(y, s).

Next suppose that w ∈ Ly ∩ B(y, s). Since π(w) ∈ L0 ∩ B1, dist(π(w), A ∩ B1) ≤ δ.
Hence dist(w,A ∩ B1) ≤ |w − π(w)| + dist(π(w), A ∩ B1) ≤ |yn| + δ ≤ 2δ for every
w ∈ Ly ∩B(y, s). But we really want to estimate dist(w,A∩B(y, s)). To that end choose
w′ ∈ Ly∩B(y, s−2δ) such that |w−w′| ≤ 2δ. From above we know dist(w′, A∩B1) ≤ 2δ,
say dist(w′, A∩B1) = |w′−x′| ≤ 2δ for some x′ ∈ A∩B(0, 1). Because w′ ∈ B(y, s− 2δ),
it follows that |x′ − y| ≤ |x′ −w′|+ |w′ − y| ≤ 2δ+ s− 2δ ≤ s and x′ ∈ A∩B(y, s). Thus
dist(w′, A ∩B(y, s)) ≤ 2δ. We conclude

(5.3) dist(w,A ∩B(y, s)) ≤ |w − w′|+ dist(w′, A ∩B(y, s) ≤ 4δ.

Therefore,

(5.4) θA(y, s) ≤
1

s
HD[A ∩B(y, s), Ly ∩B(y, s)] ≤ 4δ

s

as desired. In fact, we have only established (5.4) provided that Ly ∩ B(y, s − 2δ) ̸= ∅,
i.e. when s > 2δ. On the other hand, if s ≤ 2δ, then θA(y, s) ≤ 1 < 2 ≤ 4δ/s, as well. �

In order to discuss local approximations of a set by zero sets of harmonic polynomials,
we introduce a local approximation class Hd.

Definition 5.7. For each d ≥ 1 assign Hd to be the collection of zero sets V = h−1(0) of
nonconstant harmonic polynomials h : Rn → R of degree at most d such that h(0) = 0.
Note Hd is a local approximation class. If A ⊂ Rn is a closed set, x ∈ A and r > 0, then

(5.5) ΘHd
A (x, r) =

1

r
inf
V

HD[A ∩B(x, r), (x+ V ) ∩B(x, r)]

where V ranges over the zero sets of harmonic polynomials h : Rn → R such that h(0) = 0
and 1 ≤ deg h ≤ d.

Remark 5.8. When d = 1, H1 = F = G(n, n−1). Thus ΘH1
A (x, r) = ΘF

A(x, r) = θA(x, r)
is the local flatness of A near x ∈ A at scale r > 0.
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The following lemma roughly states that if a set is uniformly close to the zero set of
a harmonic polynomial on all small scales, then local flatness at one scale automatically
controls local flatness on smaller scales. This is an application of Theorem 1.4.

Lemma 5.9. For all n ≥ 2, d ≥ 1 and δ > 0, there exist ε = ε(n, d, δ) > 0 and
η = η(n, d, δ) > 0 with the following property. Let A ⊂ Rn, x ∈ A, r > 0 and assume that

(5.6) sup
0<r′≤r

ΘHd
A (x, r′) < ε.

If θA(x, r) < η, then sup0<r′≤r θA(x, r
′) < δ.

Proof. Let δ > 0 be given and fix parameters ε > 0, σ > 0, and τ > 0 to be chosen later.
Assume that A ⊂ Rn is a non-empty set which satisfies (5.6) at some location x ∈ A
and initial scale r > 0. Also assume that θA(x, r) < τ . Then by definition there exists a
hyperplane L ∈ G(n, n− 1) such that

(5.7) HD[A ∩B(x, r), (x+ L) ∩B(x, r)] < τr.

On the other hand, since ΘHd
A (x, r) < ε, there exists a harmonic polynomial h : Rn → R

such that h(0) = 0 and 1 ≤ deg h ≤ d for which

(5.8) HD[A ∩B(x, r), (x+ Σh) ∩B(x, r)] < εr.

Combining (5.7) and (5.8), we have

(5.9) HD[Σh ∩Br, L ∩Br] < (τ + ε)r.

Set δ∗ = min {δn,1, . . . , δn,d}, where δn,1, . . . , δn,d denote the constants from Theorem 1.4,
and assign s = σδ∗C

−1
n,d where Cn,d also denotes the constant from Theorem 1.4. Assume

τ+ε < δ∗. By (5.9) and Theorem 1.4, θΣh
(0, 2sr) < 2σ. Hence there exists P ∈ G(n, n−1)

such that

(5.10) HD[Σh ∩B2sr, P ∩B2sr] < 2σ(2sr) = 4σsr.

We will use (5.8) and (5.10) to estimate HD[A ∩B(x, sr), (x+ P ) ∩B(x, sr)].
First suppose that x′ ∈ A∩B(x, sr). By (5.8), dist(x′, (x+Σh)∩B(x, r)) < εr. Hence

there exists y ∈ Σh such that |x′ − x − y| < εr. We now specify that ε ≤ s ≈ σ.
Then y ∈ Σh ∩ Bsr+εr ⊂ Σh ∩ B2sr. Hence by (5.10), dist(y, P ∩ B2sr) < 4σsr. Choose
p ∈ P ∩B2sr such that |y− p| < 4σsr. In fact, since y ∈ Bsr+εr, we know p ∈ Bsr+εr+4σsr.
Since P is a hyperplane through the origin, we can find a second point p′ ∈ P ∩Bsr such
that |p′ − p| ≤ εr + 4σsr. Thus x+ p′ ∈ (x+ P ) ∩B(x, sr) and

(5.11) |x′ − x− p′| ≤ |x′ − x− y|+ |y − p|+ |p− p′| < 2εr + 8σsr.

We conclude that

(5.12) dist(x′, (x+ P ) ∩B(x, sr)) < 2εr + 8σsr for all x′ ∈ A ∩B(x, sr).

Next suppose that x + p ∈ (x + P ) ∩ B(x, sr). Since P is a hyperplane, we can select
a second point x + p′ ∈ (x + P ) ∩ B(x, sr − εr − 4σsr) such that |p′ − p| ≤ εr + 4σsr.
By (5.10) there exists x + y ∈ (x + Σh) ∩ B(x, 2sr) such that |p′ − y| < 4σsr. In fact,
since p ∈ Bsr−εr−4σsr, we get y ∈ Bsr−εr. By (5.8) there exists x′ ∈ A ∩ B(x, r) with
|x+ y − x′| < εr. But since y ∈ Bsr−εr, we know x′ ∈ A ∩B(x, sr) and

(5.13) |x+ p− x′| ≤ |p− p′|+ |p′ − y|+ |x+ y − x′| < 2εr + 8σsr.
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Thus

(5.14) dist(x+ p,A ∩B(x, sr)) < 2εr + 8σsr for all x+ p ∈ (x+ P ) ∩B(x, sr)

Having established (5.12) and (5.14), we conclude

(5.15) θA(x, sr) < 2ε/s+ 8σ provided τ + ε < δ∗ and ε ≤ s.

We are ready to choose parameters. Set τ = min(δ, δ∗)/2 < 1, put σ = τ/16 (forcing
s = σδ∗n,dC

−1
n,d < 1) and assign ε = sτ/4. Then τ + ε ≤ δ∗/2 + δ∗/8 < δ∗ and ε ≤ s. Hence

θA(x, sr) < τ by (5.15). We have proved if ΘHd
A (x, r) < ε and θA(x, r) < τ , then on a

smaller scale θA(x, sr) < τ , as well. For emphasis, we remark again that s = s(n, d, δ) < 1.
To finish the lemma, we now suppose that A ⊂ Rn, x ∈ A and r > 0 satisfy (5.6) and

(5.16) θA(x, r) < η := sτ/4.

Then, by Lemma 5.6,

(5.17) θA(x, tr) < 4η/t < 4η/s = τ for all s < t ≤ 1.

Since ΘHd
A (x, tr) < ε (by (5.6)) and θA(x, tr) < τ for all s < t ≤ 1, the argument above

implies θA(x, str) < τ for all s < t ≤ 1, or equivalently,

(5.18) θA(x, tr) < τ for all s2 < t ≤ 1.

By a simple inductive argument, we conclude that θA(x, tr) < τ for all 0 < t ≤ 1.
Therefore, since τ < δ/2, sup0<r′<r θA(x, r

′) < δ, as desired. �

If a set Γ is locally well-approximated by Hd, then all blow-ups of Γ are zero sets of
harmonic polynomials of degree at most d. If, in addition, Γ has the feature that all
blow-ups of Γ are zero sets of homogeneous harmonic polynomials, then we can say more.
This is the main result of this section.

Theorem 5.10. Suppose that Γ ⊂ Rn is locally well-approximated by Hd for some d ≥ 1.
If every blow-up of Γ is the zero set of a homogeneous harmonic polynomial, then Γ can
be written as a disjoint union

(5.19) Γ = Γ1 ∪ Γs

with the following properties:

(1) Every blow-up of Γ centered at x ∈ Γ1 is a hyperplane.
(2) Every blow-up of Γ centered at x ∈ Γs is the zero set of a homogeneous harmonic

polynomial of degree at least 2.
(3) The set of flat points Γ1 is open in Γ.
(4) The set of flat points Γ1 is locally Reifenberg flat with vanishing constant.
(5) The set of flat points Γ1 has Hausdorff dimension n− 1.

Proof. Assume that Γ ⊂ Rn is locally well-approximated by Hd for some d ≥ 1. Moreover,
assume that every blow-up of Γ is the zero set of a homogeneous harmonic polynomial.
Let δn,k (1 ≤ k ≤ d) be the constants from Theorem 1.4; and let ε = ε(n, d, δ) and η =
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η(n, d, δ) be the constants from Lemma 5.9 which correspond to δ = min(δn,1, . . . , δn,d)/2.
We can partition Γ into two sets Γ1 and Γs as follows. Set
(5.20)

Γ1 =

{
x ∈ Γ : lim inf

r↓0
θΓ(x, r) < η/8

}
and Γs =

{
x ∈ Γ : lim inf

r↓0
θΓ(x, r) ≥ η/8

}
.

Then Γ = Γ1 ∪ Γs and Γ1 ∩ Γs = ∅. Since θΓ(x, ri) → 0 along some sequence ri → 0
whenever Γ blows-up to a hyperplane, it is clear that every blow-up of Γ centered at
x ∈ Γs must be the zero set of a polynomial of degree at least 2. It remains to show that
every blow-up of Γ centered at x ∈ Γ1 is a hyperplane; the set Γ1 is relatively open in Γ;
and Γ1 is locally Reifenberg flat with vanishing constant (thus dimH Γ1 = n− 1).

Fix x0 ∈ Γ1. Because Γ is locally well-approximated by Hd, there exists r0 ∈ (0, 1)
such that ΘHd

Γ (x, r) < ε for every x ∈ Γ ∩ B(x0, 1) and for all r ∈ (0, r0). Since x0 ∈ Γ1,
lim infr↓0 θΓ(x0, r) < η/8. Hence we can find r1 ∈ (0, r0/2) such that θΓ(x0, 2r1) < η/8.
Thus θΓ(x, r1) < η for every x ∈ Γ ∩B(x0, r1), by Lemma 5.6. Therefore, by Lemma 5.9,

(5.21) θΓ(x, r) < δ for all x ∈ Γ ∩B(x0, r1), r ∈ (0, r1).

We claim that every blow-up of Γ centered at x ∈ Γ ∩ B(x0, r1) is a hyperplane. Indeed
fix x ∈ Γ ∩ B(x0, r1) and assume B is a blow-up of Γ centered at x. On one hand,
by our assumption on blow-ups of Γ, there exists a homogeneous harmonic polynomial
h : Rn → R with 1 ≤ deg h ≤ d such that B = Σh. Thus there exists a sequence ri → 0
such that

(5.22) lim
i→∞

HD

[
Γ− x

ri
∩B1,Σh ∩B1

]
= 0.

On the other hand, by (5.21), θΣh
(0, 1) ≤ lim inf θ1Γ(x, ri) ≤ δ ≤ δn,k/2, where k = deg h.

By Theorem 1.4, Dh(0) ̸= 0. But since h is homogeneous, Dh(0) ̸= 0 if and only if
k = deg h = 1 if and only if Σh is a hyperplane. We have shown that for every x0 ∈ Γ1

there exists r1 > 0 such that every blow-up of Γ centered at x ∈ B(x0, r1) is a hyperplane.
In other words, every x ∈ Γ1 is a flat point of Γ and Γ1 is open in Γ.

Next we will demonstrate that Γ1 is locally Reifenberg flat with vanishing constant.
Let τ > 0 and let K ⊂ Γ1 compact be given. Let ε = ε(n, d, τ) > 0 and η = η(n, d, τ) > 0
be the constants from Lemma 5.9. Since Γ1 is open and K is compact, we can find s0 > 0
such that Γ ∩ B(x, s) = Γ1 ∩ B(x, s) for all x ∈ K and for all s ∈ (0, s0). And since Γ is
locally well-approximated byHd, there exists s1 ∈ (0, s0) such that ΘHd

Γ (x, s) < ε for every
x ∈ K and s ∈ (0, s1). Now for each x ∈ K there exists sx ∈ (0, s1) with θΓ(x, 2sx) < η/8
(since x ∈ K ⊂ Γ1 is a flat point of Γ). Hence, by Lemma 5.6, θΓ(x

′, sx) < η for all
x′ ∈ Γ ∩B(x, sx), for all x ∈ K. Thus, by Lemma 5.9,

(5.23) θΓ(x
′, s′) < τ for all x′ ∈ Γ ∩B(x, sx), for all s′ ∈ (0, sx), for all x ∈ K.

But K is compact, so K admits a finite cover of the form {B(xi, sxi
) : x1, . . . , xm ∈ K}.

Letting s∗ = min{sx1 , . . . , sxm}, we conclude

(5.24) θΓ1(x, s
′) = θΓ(x, s

′) < τ for all x ∈ K, for all s′ ∈ (0, s∗).

Thus, since K ⊂ Γ1 was an arbitrary compact subset, Γ1 is locally τ -Reifenberg flat.
Therefore, since τ > 0 was arbitrary, Γ1 is locally Reifenberg flat with vanishing constant,
as desired.
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Finally, by Corollary 5.5, any locally Reifenberg flat set with vanishing constant, and
in particular Γ1, has Hausdorff dimension n− 1. �

6. Free Boundary Regularity for Harmonic Measure from Two Sides

The goal of this section is to document the structure of the free boundary for harmonic
measure from two sides under weak regularity (Theorem 6.8). In order to state the result,
we must remind the reader of several standard definitions from harmonic analysis (§6.1).
The statement and proof of the structure theorem are then given in §6.2 and §6.3. For an
introduction to free boundary regularity problems for harmonic measure, we recommend
the reader to the book [6] by Capogna, Kenig and Lanzani. For recent generalizations to
free boundary problems for p-harmonic measure, see Lewis and Nyström [15].

6.1. Definitions and Conventions. In [9] Jerison and Kenig introduced NTA domains—
a natural class of domains on which Fatou type convergence theorems hold for harmonic
functions. In the plane, a bounded simply connected domain Ω ⊂ R2 is an NTA domain
if and only if Ω is a quasidisk (the image of the unit disk under a global quasiconformal
mapping of the plane). In higher dimensions, while every quasiball (the image of the unit
ball under a global quasiconformal mapping of space) in Rn, n ≥ 3, is also a bounded
NTA domain, there exist bounded NTA domains homeomorphic to a ball in Rn which
are not quasiballs. The reader may consult [9] for more information. Also see [12] where
Kenig and Toro demonstrate that a domain in Rn whose boundary is δ-Reifenberg flat is
an NTA domain provided that δ < δn is sufficiently small.

The definition of NTA domains is based upon two geometric conditions, which are
quantitative, scale-invariant versions of openness and path connectedness.

Definition 6.1. An open set Ω ⊂ Rn satisfies the corkscrew condition with constants
M > 1 and R > 0 provided that for every x ∈ ∂Ω and 0 < r < R there exists a
non-tangential point A = A(x, r) ∈ Ω ∩B(x, r) such that dist(A, ∂Ω) > M−1r.

For X1, X2 ∈ Ω a Harnack chain from X1 to X2 is a sequence of closed balls inside Ω
such that the first ball contains X1, the last contains X2, and consecutive balls intersect.
The length of a Harnack chain is the number of balls in the chain.

Definition 6.2. A domain Ω ⊂ Rn satisfies the Harnack chain condition with constants
M > 1 and R > 0 if for every x ∈ ∂Ω and 0 < r < R when X1, X2 ∈ Ω ∩B(x, r) satisfy

(6.1) min
j=1,2

dist(Xj, ∂Ω) > ε and |X1 −X2| < 2kε

then there is a Harnack chain from X1 to X2 of length Mk such that the diameter of each
ball is bounded below by M−1minj=1,2 dist(Xj, ∂Ω).

Definition 6.3. A domain Ω ⊂ Rn is non-tangentially accessible or NTA if there exist
M > 1 and R > 0 such that (i) Ω satisfies the corkscrew and Harnack chain conditions,
(ii) Rn \Ω satisfies the corkscrew condition. If ∂Ω is unbounded then we require R = ∞.

The exterior corkscrew condition guarantees that an NTA domain is regular for the
Dirichlet problem. Thus for every choice f ∈ Cc(∂Ω) of continuous boundary data with
compact support there exists a unique function u ∈ C(Ω)∩C2(Ω) such that u is harmonic
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in Ω and u = f on ∂Ω. On a regular domain Ω, harmonic measure ωX with pole at X ∈ Ω
is the unique probability measure supported on ∂Ω such that

u(X) =

∫
∂Ω

f(Q) dωX(Q) for all f ∈ Cc(∂Ω).

Since ωX ≪ ωY ≪ ωX for different choices of pole X, Y ∈ Ω (by Harnack’s inequality for
positive harmonic functions), we may drop the pole from our notation and refer to the
harmonic measure ω (= ωX0) of Ω (with respect to some fixed, unspecified pole X0 ∈ Ω).

A nice feature of harmonic measure on NTA domains is that the harmonic measure ω
is locally doubling; see Lemmas 4.8 and 4.11 in [9]. In particular, this property implies
that ω(∂Ω ∩B(x, r)) > 0 for every location x ∈ ∂Ω and every scale r > 0.

On unbounded NTA domains there is a related notion of harmonic measure with pole
at infinity, whose existence is guaranteed by the following lemma.

Lemma 6.4 ([13] Lemma 3.7, Corollary 3.2). Let Ω ⊂ Rn be an unbounded NTA domain.
There exists a doubling Radon measure ω∞ supported on ∂Ω satisfying

(6.2)

∫
∂Ω

φdω∞ =

∫
Ω

u∆φ for all φ ∈ C∞
c (Rn)

where

(6.3)

 ∆u = 0 in Ω
u > 0 in Ω
u = 0 on ∂Ω.

The measure ω∞ and Green function u are unique up to multiplication by a positive scalar.
We call ω∞ a harmonic measure of Ω with pole at infinity.

Below we only work with domains whose interior and exterior are both NTA domains.
Note that as a consequence of the corkscrew conditions, the interior Ω+ and exterior Ω−

of a 2-sided NTA domain Ω have a common boundary: ∂Ω+ = ∂Ω = ∂Ω−.

Definition 6.5. A domain Ω ⊂ Rn is 2-sided NTA if Ω+ = Ω and Ω− = Rn \Ω are both
NTA with the same constants; i.e. there exists M > 1 and R > 0 such that Ω± satisfy the
corkscrew and Harnack chain conditions. When ∂Ω is unbounded, we require R = ∞.

We also need the following classes of functions.

Definition 6.6. Let Ω ⊂ Rn be a NTA domain. We say that f ∈ L2
loc(dω) has bounded

mean oscillation with respect to the harmonic measure ω and write f ∈ BMO(dω) if

(6.4) sup
r>0

sup
Q∈∂Ω

(
ω(B(Q, r))−1

∫
B(Q,r)

|f − fQ,r|2dω
)1/2

< ∞

where fQ,r = ω(B(Q, r))−1
∫
B(Q,r)

fdω denotes the average of f over the ball.

Definition 6.7. Let Ω ⊂ Rn be a NTA domain. Let VMO(dω) denote the closure of the
set of bounded uniformly continuous functions on ∂Ω in BMO(dω). If f ∈ VMO(dω),
then we say f has vanishing mean oscillation with respect to the harmonic measure ω.
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6.2. Structure Theorem. The following statement incorporates and extends results
which first appeared in Kenig and Toro [14] and Badger [2]. If Ω+ and Ω− are unbounded,
then we allow ω+ (harmonic measure on Ω+) and ω− (harmonic measure on Ω−) to have
finite poles or poles at infinity; otherwise we require that ω+ and ω− have finite poles.
The new aspect of the theorem presented here is statement (ii) about the flat points Γ1.

Theorem 6.8. Assume that Ω ⊂ Rn is a 2-sided NTA domain. If ω+ ≪ ω− ≪ ω+ and
log dω−

dω+ ∈ VMO(dω+), then there is d0 > 0 such that ∂Ω is locally well-approximated by
Hd0. Moreover, ∂Ω can be partitioned into sets Γd (1 ≤ d ≤ d0),

(6.5) ∂Ω = Γ1 ∪ · · · ∪ Γd0 , i ̸= j ⇒ Γi ∩ Γj = ∅,
with the following properties:

(1) Every blow-up of ∂Ω centered a point x ∈ Γd is the zero set of a homogeneous
harmonic polynomial of degree d which separates Rn into two components.

(2) The set of flat points Γ1 is open and dense in ∂Ω; Γ1 is locally Reifenberg flat with
vanishing constant; and Γ1 has Hausdorff dimension n− 1.

(3) The set of “singularities” ∂Ω \ Γ1 = Γ2 ∪ · · · ∪ Γd0 is closed and has harmonic
measure zero: ω±(∂Ω \ Γ1) = 0.

Remark 6.9. In Theorem 6.8 the phrase “separates Rn into two components” means
that if the zero set Σh of a homogeneous harmonic polynomial h is a blow-up of ∂Ω then
the open set Rn\Σh has exactly two connected components. The existence of polynomials
with this separation property depends on the dimension n. When n = 2, the zero set Σh

of a homogeneous harmonic polynomial separates R2 into two components if and only if
deg h = 1. When n = 3, Lewy [16] showed that Σh can separate R3 into two components
only if deg h is odd. Thus the separation condition on Σh restricts the existence of the
sets Γk in low dimensions.

Corollary 6.10. If Ω ⊂ R2 satisfies the hypothesis of the Theorem 6.8, then ∂Ω = Γ1.

Corollary 6.11. If Ω ⊂ R3 satisfies the hypothesis of the Theorem 6.8, then d0 ≥ 1 is an
odd integer and ∂Ω = Γ1 ∪ Γ3 ∪ · · · ∪ Γd0.

Example 6.12. Consider the homogeneous harmonic polynomial h : Rn → R (n ≥ 3),

(6.6) h(X) = X2
1 (X2 −X3) +X2

2 (X3 −X1) +X2
3 (X1 −X2)−X1X2X3.

Then the domain Ω = {X ∈ Rn : h(X) > 0} is a 2-sided NTA domain; in particular,
∂Ω = {X ∈ Rn : h(X) = 0} = Σh separates Rn into two components (see Figure 1.1).
Let ω+ and ω− denote harmonic measures of Ω+ and Ω− with pole at infinity. Then there
exists a constant c > 0 such that ω+ = cω−, log fΩ ≡ 0 and

(6.7)
∂Ω−X

r
= Σh for all X = (0, 0, 0, X4, . . . , Xn) and r > 0.

In particular, Σh is a blow-up of ∂Ω at the origin. Thus 0 ∈ Γ3 and non-planar blow-ups
of the boundary can appear even when log fΩ is real-analytic. Furthermore, for all n ≥ 3,
this example shows that it is possible for the set of “singularities” ∂Ω\Γ1 = Γ2∪ · · ·∪Γd0

to have Hausdorff dimension ≥ n− 3.

Remark 6.13. To our knowledge, the first explicit example of a non-planar zero set of a
harmonic polynomial dividing space into two components was given by Szulkin [20].
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An obvious modification of the domain Ω in Example 6.12 shows that:

Proposition 6.14. The zero set Σh of a harmonic polynomial h : Rn → R appears as a
blow-up of ∂Ω for some Ω ⊂ Rn satisfying the hypothesis of Theorem 6.8 if and only if h
is homogeneous and Σh separates Rn into two components.

Proof. Necessity was established by the Theorem 6.8, so it remains to check sufficiency.
Let h : Rn → R be a homogeneous harmonic polynomial such that Σh separates Rn into
two components. Then Ω = {X ∈ Rn : h(X) > 0} is a 2-sided NTA domain which
satisfies the hypothesis of Theorem 6.8. Moreover, since

(6.8)
∂Ω

r
= Σh for all r > 0,

Σh is the unique blow-up of ∂Ω = Σh at the origin. �
Several questions about the sets in the decomposition in Theorem 6.8 remain open.

The first pair of questions involve the singularities in the boundary.

Problem 6.15. Is Γd a closed set for each d ≥ 2?

Problem 6.16. Find a sharp upper bound on the Hausdorff dimension of ∂Ω \ Γ1.

Remark 6.17. We expect that the resolution of Problem 6.15 is tied to the question posed
in Remark 4.12. And based on Example 6.12, we conjecture that dimH ∂Ω \ Γ1 ≤ n− 3.
(One might predict dimH ∂Ω\Γ1 ≤ n−2, but we believe the requirement that Σh separate
Rn into two components forces the smaller upper bound.)

The next problem is related to a conjecture of Bishop in [4] about the rectifiability of
harmonic measure in dimensions n ≥ 3.

Problem 6.18. Is it always possible to decompose Γ1 as Γ1 = ΓGood
1 ∪ΓNull

1 so that ΓGood
1

is an (n− 1)-rectifiable set and ω± ≪ Hn−1 ΓGood
1 , and so that ω±(ΓNull

1 ) = 0?

Remark 6.19. The answer to Problem 6.18 is yes under the additional assumption that
Hn−1 ∂Ω is a Radon measure (e.g. if Hn−1(∂Ω) < ∞). For instance, one can verify this
assertion by combining a recent result of Kenig, Preiss and Toro [11] (see Corollary 4.2)
with a recent result of Badger [3] (see Theorem 1.2).

A final set of open problems concern the question of higher regularity. If one assumes
extra regularity on the logarithm of the two-sided kernel f = dω−/dω+ beyond VMO,
then do the flat points Γ1 have extra regularity beyond being locally Reifenberg flat with
vanishing constant? For example,

Problem 6.20. If log dω−

dω+ ∈ C∞(∂Ω), then is Γ1 locally the C∞ image of a hyperplane?

One can ask a similar (if more difficult) question at the singularities. For example,

Problem 6.21. If log dω−

dω+ ∈ C∞(∂Ω) and x ∈ Γd (d ≥ 2), then is ∂Ω near x locally the
C∞ image of some homogeneous harmonic polynomial of degree d which separates space
into two components?

Remark 6.22. A resolution of the parametrization problem posed in Problem 6.21 likely
depends on the answer to the question in Remark 4.12.



26 MATTHEW BADGER

6.3. Proof of Theorem 6.8. The structure theorem (Theorem 6.8) is an amalgamation
of Theorems 4.2 and 4.4 in [14], Theorem 1.3 in [2] and Theorem 5.10 above.

Assume that Ω ⊂ Rn is a 2-sided NTA domain such that ω+ ≪ ω− ≪ ω+ and log dω−

dω+ ∈
VMO(dω+). The first statement that we need to verify is that there exists an integer
d0 ≥ 1 such that ∂Ω is locally well-approximated by Hd0 (recall Definitions 5.1 and 5.7).
By Theorems 4.2 and 4.4 in [14]: there exists d0 > 0 (depending only on n and the NTA
constants of Ω+ and Ω−) such that if x ∈ ∂Ω, if xi ∈ ∂Ω is a sequence such that xi → x,
and if ri → 0 is a vanishing sequence of positive numbers, then there exists a subsequence
(xij, rij)j≥1 of (xi, ri)i≥1 and a nonconstant harmonic polynomial h : Rn → R of degree
at most d0 such that r−1

ij (∂Ω− xij) converges to Σh in the Hausdorff distance, uniformly
on compact sets. (Said more briefly, all pseudo blow-ups of ∂Ω are zero sets of harmonic
polynomials of degree at most d0.) Now suppose for contradiction that there exists a

compact set K ⊂ ∂Ω such that Θ
Hd0
∂Ω (x, r) does not vanish uniformly on K as r → 0.

Then there exist ε > 0 and sequences xi ∈ K and ri ↓ 0 so that

(6.9) Θ
Hd0
∂Ω (xi, ri) ≥ ε for all i ≥ 1.

Passing to a subsequence, we may assume that xi → x ∈ K (since K is compact). Then
Theorems 4.2 and 4.4 in [14] yield a further subsequence (xij, rij)

∞
j=1 of (xi, ri)

∞
i=1 such

that limj→∞ Θ
Hd0
∂Ω (xij, rij) = 0. This contradicts (6.9). Therefore, our supposition was

false, and hence, we get that limr↓0Θ
Hd0
∂Ω (x, r) = 0 uniformly on K. In other words, ∂Ω is

locally well-approximated by Hd0 , as desired.
Next, by Theorem 1.3 in [2], we can decompose ∂Ω into disjoint sets Γd (1 ≤ d ≤ d0),

(6.10) ∂Ω = Γ1 ∪ · · · ∪ Γd0 , i ̸= j ⇒ Γi ∩ Γj = ∅,
where:

• Every blow-up of ∂Ω centered at x ∈ Γd is the zero set of a homogeneous harmonic
polynomial of degree d, such that the zero set divides space into two components.

• The set of “singularities” ∂Ω \ Γ1 has zero harmonic measure: ω±(∂Ω \ Γ1) = 0.

Now because ω±(∂Ω∩B(x, r)) > 0 for all x ∈ ∂Ω and r > 0, and because ω±(∂Ω\Γ1) = 0,
we conclude that ω±(Γ1∩B(x, r)) > 0 for all x ∈ ∂Ω and r > 0. In particular, this implies
Γ1 is dense in ∂Ω.

Finally, because ∂Ω is locally well-approximated by Hd0 and every blow-up of ∂Ω is
the zero set of a homogeneous harmonic polynomial, by Theorem 5.10 above, we can also
decompose ∂Ω as

(6.11) ∂Ω = Γ1 ∪ Γs

where Γ1 is the set of flat points of ∂Ω and blow-ups of ∂Ω centered at x ∈ Γs are zero sets
of homogeneous harmonic polynomials of degree at least 2. In particular Γs = ∂Ω \ Γ1 =
Γ2∪· · ·∪Γd0 . By Theorem 5.10, Γ1 is open, locally Reifenberg flat with vanishing constant,
and Γ1 has Hausdorff dimension n− 1. This completes the proof of Theorem 6.8.
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