
HARMONIC POLYNOMIALS AND TANGENT MEASURES OF
HARMONIC MEASURE

MATTHEW BADGER

Abstract. We show that on an NTA domain if each tangent measure to harmonic
measure at a point is a polynomial harmonic measure then the associated polynomials
are homogeneous. Geometric information for solutions of a two-phase free boundary
problem studied by Kenig and Toro is derived.

1. Introduction

In this paper we use tools from geometric measure theory to catalog fine behavior of
harmonic measure on a class of two-sided domains Ω ⊂ Rn, n ≥ 3. Roughly stated we
address the following question. What does a boundary look like if it looks the the same
(in terms of harmonic measure) from the interior and from the exterior of a domain? More
precisely, if Ω is 2-sided NTA what conditions does ∂Ω satisfy when harmonic measure ω+

on the interior Ω+ = Ω and harmonic measure ω− on the exterior Ω− = Rn\Ω are mutually
absolutely continuous? In [11], Kenig and Toro examine this question under the additional
hypothesis that the Radon-Nikodym derivative f = dω−/dω+ has log f ∈ VMO(dω+).
They show that for every point Q ∈ ∂Ω and sequence of scales ri ↓ 0 there is a subsequence
(which we relabel) and a harmonic polynomial h : Rn → R such that

(1.1)
∂Ω−Q

ri
→ h−1(0) in Hausdorff distance uniformly on compact sets.

One may hope that only linear polynomials h appear in (1.1), i.e. that the boundary is
always flat on small scales; however, there are examples of domains with ω+ � ω− � ω+

and log f ∈ C∞(∂Ω) for which non-linear polynomials h appear (see Example 1.4 below).
The method in [11] relates the geometric blow-ups of the boundary to tangent measures
of the harmonic measure. Thus information about the free boundary may be obtained
by studying tangent measures of harmonic measure—this is our strategy for the question
above. To identify the polynomials appearing in (1.1), we study properties of “polynomial
harmonic measures” in the topology of weak convergence of Radon measures of Rn. We
prove that only homogeneous harmonic polynomials arise in blow-ups of the boundary.

For any harmonic polynomial h : Rn → R, the positive and negative parts h± of h are
Green functions with pole at infinity for the unbounded open sets {x ∈ Rn : h±(x) > 0}.
The harmonic measure ωh associated to h is the unique harmonic measure with pole at
infinity on Ω±h = {h± > 0} with Green function h±. That is, for all ϕ ∈ C∞c (Rn),

(1.2)

∫
{h=0}

ϕdωh =

∫
Ω+

h

h+∆ϕ =

∫
Ω−h

h−∆ϕ.
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Alternatively, by a result of Hardt and Simon [5], the zero set h−1(0) = ∂Ω±h of a harmonic
polynomial is smooth away from a rectifiable subset of Hausdorff dimension at most n−2.
Hence there exists a unique outward unit normal ν± on ∂Ω±h at almost every point with
respect to the surface measure σ = Hn−1 {h = 0} and (1.2) is equivalent to

(1.3) dωh = −∂h
+

∂ν+
dσ = −∂h

−

∂ν−
dσ

by the generalized Gauss-Green theorem. In the sequel, we focus on two collections of
polynomial harmonic measures that arise as tangent measures of harmonic measure on
2-sided NTA domains examined in [11] and [8]. (See §2, §5 and §6 below for definitions
of tangent measures, NTA and 2-sided NTA domains, respectively.)

Set

(1.4) Pd = {ωh : h is a non-zero harmonic polynomial of degree ≤ d and h(0) = 0},

(1.5) Fk = {ωh : h is a homogenous harmonic polynomial of degree k}.
By convention we will use d for the degree of any non-zero polynomial, but reserve k for
the degree of a homogeneous polynomial. If 1 ≤ k ≤ d, note that Fk ⊂ Pd. When k = 1
the family F1 is the collection of (n − 1)-flat measures in Rn, i.e. Hausdorff measures
restricted to codimension 1 hyperplanes through the origin.

Our main objective is to exhibit a “self-improving” property of the tangent measures
Tan(ω,Q) of harmonic measure ω at a point Q in the boundary of an NTA domain Ω.
Because Tan(ω,Q) is independent of the choice of pole for ω (see Remark 5.8), we omit
the pole from the notation. If Ω is unbounded, ω may have a finite pole or pole at infinity.

Theorem 1.1. Let Ω ⊂ Rn be a NTA domain with harmonic measure ω. If Q ∈ ∂Ω and
Tan(ω,Q) ⊂ Pd, then Tan(ω,Q) ⊂ Fk for some 1 ≤ k ≤ d.

The proof of the Theorem 1.1 illustrates the versatility of a powerful technique from
geometric measure theory. Tangent measures are a tool that encode information about the
support of a measure, similar to how derivatives describe the local behavior of functions.
A remarkable feature is that under general conditions (Theorem 2.12) the cone of tangent
measures at a point is connected. This fact lies at the core of Preiss’ celebrated paper
on rectifiability [15] and recently enabled Kenig, Preiss and Toro [8] to compute the
Hausdorff dimension of harmonic measure on 2-sided NTA domains with ω+ � ω− � ω+.
(To appreciate the second result, we invite the reader to compare Theorem 1.2 with the
dimension of harmonic measure on Wolff snowflakes [17], [12].)

Theorem 1.2 ([8] Theorem 4.3). Let Ω ⊂ Rn be a 2-sided NTA domain. If harmonic
measure ω+ on the interior Ω+ = Ω and harmonic measure ω− on the exterior Ω− = Rn\Ω
of Ω are mutually absolutely continuous, then the Hausdorff dimension of ω± is n − 1.
Recall this means there exists a subset Σ ⊂ ∂Ω such that dim Σ = n−1 and ω±(∂Ω\Σ) = 0;
moreover, if A ⊂ ∂Ω and dimA < n− 1 then ω±(∂Ω \ A) > 0.

In previous instances, connectedness was applied to conclude that the tangent measures
of a certain measure (at a.e. point) belong to the cone of flat measures F1. The authors
in [8] express an opinion that the connectedness of tangent measures “should be useful in
other situations where questions of size and structure of the support of a measure arise.”
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To our knowledge the proof of Theorem 1.1 is the first use of this technique to show that
the tangent measures of a measure at a point live in a cone of measures other than F1.

Stated in the language of tangent measures, Kenig and Toro proved in [11] that there
exists d ≥ 1 such that Tan(ω±, Q) ⊂ Pd for every Q ∈ ∂Ω. Applying Theorem 1.1 we
obtain a refined description of the free boundary. Zooming in along any sequence of scales
at a point in the boundary, on a domain satisfying the hypotheses of Theorem 1.3, we
see the zero set of a homogeneous harmonic polynomial. The degree of the polynomial is
uniquely determined at each point.

Theorem 1.3. Let Ω ⊂ Rn be a 2-sided NTA domain with harmonic measure ω+ on
the interior Ω+ = Ω and harmonic measure ω− on the exterior Ω− = Rn \ Ω of Ω.
Assume that ω+ and ω− are mutually absolutely continuous and f = dω−/dω+ satisfies
log f ∈ VMO(dω+). Then there exists d ≥ 1 depending on n and the NTA constants of Ω
and pairwise disjoint sets Γ1, . . . ,Γd such that

(1.6) ∂Ω = Γ1 ∪ · · · ∪ Γd.

For each Q ∈ Γk and each sequence ri ↓ 0, there exists a subsequence (which we relabel)
and a homogeneous harmonic polynomial h : Rn → R of degree k such that

(1.7)
∂Ω−Q

ri
→ h−1(0) in Hausdorff distance uniformly on compact sets.

Moreover, the domains {h± > 0} are unbounded 2-sided NTA and ω±(∂Ω \ Γ1) = 0.

Example 1.4. In [13] Lewy shows that for n = 3 there exists a spherical harmonic
(homogeneous harmonic polynomial) of degree k whose nodal set divides S2 into two
components if and only if k is odd. An explicit example (see Figure 1) is given by

(1.8) h(x, y, z) = x2(y − z) + y2(z − x) + z2(x− y)− xyz.
The domain Ω = {h > 0} is a 2-sided NTA domain such that for harmonic measures
ω+ = ω− with pole at infinity log f ≡ 0 and 0 ∈ Γ3. Thus, for all n ≥ 3, it is possible
that ∂Ω \ Γ1 is non-empty and dim ∂Ω \ Γ1 ≥ n− 3. We do not know if an upper bound
on the Hausdorff dimension of ∂Ω \ Γ1 holds in general. For instance, is it always true
that dim ∂Ω \ Γ1 < n− 1?

In the plane (n = 2) it is known that ∂Ω = Γ1; see Remark 4.3 in [11] for details. a

Figure 1. The variety h−1(0) separates the sphere S2 into 2 components.
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The paper is organized as follows. In §2 we provide an introduction to tangent measures
and related concepts in the general setting of Radon measures on Rn. The notation
established in this section is used pervasively throughout the paper. Our review concludes
with an important criterion for connectedness of tangent measures. Here is the rough
scheme. Suppose thatM and F are cones of non-zero Radon measures such that F ⊂M.
Furthermore suppose that the set of tangent measures Tan(µ, x) of a Radon measure µ
at point x ∈ Rn belongs to M. Under a pair of conditions on F and M (see Theorem
2.12) the tangent measures Tan(µ, x) are connected relative to F : if one tangent measure
of µ at x belongs to F , then all tangent measures of µ at x belong to F . While one
condition (compactness of F andM) is routinely checked, verifying the second condition
(separation of F and M\F) requires work and must be adapted to each situation.

Sections 3 through 5 form the core of the paper. In §3 we establish inequalities for
uniformly bounded spherical harmonics (homogeneous harmonic polynomials restricted
to the unit sphere) which depend only on the dimension and degree of the polynomial.
In particular, Corollary 3.3 is crucial for proving uniform lower estimates for harmonic
measures associated to harmonic polynomials of a given degree.

Section 4 studies polynomial harmonic measures in the framework of §2, focusing on
properties which hold independently of assumptions on the underlying domain such as
number of components or non-tangential accessibility. The central idea is to consider the
rate of doubling at infinity of the measures ωh, i.e. the quantity ωh(B(0, τr))/ωh(B(0, r))
as r →∞ as a function of τ > 1. We show that

(1.9)
ωh(B(0, τr))

ωh(B(0, r))
∼ τn+d−2 as r →∞, for every τ > 1,

where d = deg h and the implied constants for the lower and upper bounds in (1.9) depend
only on n and d. Similar bounds for ωh(B(0, τr))/ωh(B(0, r)) as r → 0 are also obtained.

Section 5 is devoted to the proof of Theorem 1.1. To start we recall the definition of
non-tangentially accessible domains and two useful features of their harmonic measures.
The proof of Theorem 1.1 then proceeds in two steps. Suppose that Tan(ω,Q) ⊂ Pd at
some Q ∈ ∂Ω. Our goal is to show Tan(ω,Q) ⊂ Fk for some 1 ≤ k ≤ d. First we apply a
blow-up procedure from [10] to identify a degree k = k(Q) such that Tan(ω,Q)∩Fk 6= ∅.
Second we use the doubling property of harmonic measure on NTA domains [6] and
results from section 4 to invoke Theorem 2.12 with F = Fk and M = Tan(ω,Q) ∪ Fk.
The connectedness criterion implies that every tangent measure of ω at Q belongs to Fk.

In §6, we derive Theorem 1.3 on homogeneous blow-ups of the boundary of a domain.
In addition to Theorem 1.1, we require a blow-up procedure for 2-sided NTA domains
from [11] and the fact that at almost every point translations of tangent measures are
tangent measures. We end by interpreting the decomposition (1.6) in Theorem 1.3 from
the measure theoretic viewpoint of §2.

2. Geometric Measure Theory Ingredients

Tangent measures and cones of measures were introduced in [15], where Preiss proved
that measures on Rn with positive and finite m-density almost every are m-rectifiable.
Here we collect definitions, notation and basic properties of weak convergence of Radon
measures, tangent measures and cones of measures which are used throughout the sequel.
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Much of this material may be found in textbooks of Mattila [14] or Falconer [4]; also
see the recent exposition of Preiss’ proof by DeLellis [1]. The criterion to check the
connectedness of tangent measures (Theorem 2.12) is taken from Kenig-Preiss-Toro [8].
Where notations differ across these sources, we adopt the original notation of [15]. (The
two novel features of this review are our definition of Fr and the explicit statement of
Lemma 2.6.)

Let B(x, r) denote the closed ball with center x ∈ Rn and radius r > 0. We use the
abbreviation Br = B(0, r) for all r > 0. Note that ∂B1 = Sn−1, the unit sphere in Rn.

A Radon measure µ on Rn is a positive Borel regular outer measure on Rn that is finite
on compact sets. A sequence (µi)

∞
i=1 of Radon measures on Rn converges weakly to a

Radon measure µ, written µi ⇀ µ, provided

(2.1) lim
i→∞

∫
fdµi =

∫
fdµ for all f ∈ Cc(Rn).

Of course, to test for weak convergence one only needs to check that (2.1) holds on a class
of functions smaller than Cc(Rn); for example, either C∞c (Rn) or Lipc(Rn) suffice. Below
we require a quantitative version of weak convergence. To capture the idea that µi ⇀ µ
exactly when µi “gets close to” µ on the ball Br for every (large) r > 0, we introduce a
family of semi-metrics.

Let µ be a Radon measure on Rn, and for each r > 0 define

(2.2) Fr(µ) =

∫ r

0

µ(Bs)ds.

Since a Radon measure is locally finite, Fr(µ) <∞ for all r > 0. In fact,

(2.3)
r

2
µ(Br/2) ≤ Fr(µ) ≤ rµ(Br) for all r > 0.

If µ and ν are Radon measures and r > 0, we set

(2.4) Fr(µ, ν) = sup

{∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ : f ≥ 0,Lipf ≤ 1, sptf ⊂ Br

}
where Lipf and sptf denote the Lipschitz constant and the support of a function f ,
respectively. As an easy exercise one checks Fr is a semi-metric on the set of Radon
measures on Rn and a metric on the subset of measures supported in Br. If r ≤ s then
Fr(µ, ν) ≤ Fs(µ, ν). Also notice that Fr(µ, 0) = Fr(µ). Indeed

Fr(µ, 0) =

∫
dist(z,Rn \Br)dµ(z) =

∫ ∞
0

µ{z : dist(z,Rn \Br) > s}ds

=

∫ r

0

µ{z : dist(z,Rn \Br) > s}ds =

∫ r

0

µ(Br−s)ds =

∫ r

0

µ(Bs)ds.

(2.5)

We now state the relationship between weak convergence of Radon measures and Fr.

Lemma 2.1 ([14] Lemma 14.13). Suppose that µ, µ1, µ2, . . . are Radon measures on Rn.
Then µi ⇀ µ if and only if limi→∞ Fr(µi, µ) = 0 for all r > 0.
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Proposition 2.2 ([15] Proposition 1.12). The Radon measures on Rn admit a complete
separable metric

(2.6)
∞∑
i=1

2−i min(1, Fi(µ, ν))

whose topology is equivalent to the topology of weak convergence of Radon measures.

Remark 2.3. The family of semi-metrics Fr is related to a distance between probability
measures in a compact metric space, which is known by various names in the literature.
If X is a compact metric space, the Kantorovich-Rubinstein formula

(2.7) sup

{∫
fd(µ− ν) : Lipf ≤ 1

}
defines a complete separable metric on the space of probability measures on X whose
topology is equivalent to the weak convergence of probability measures [7]. For further
discussion we refer the reader to the bibliographical notes in Chapter 6 of [16]. a

Let x ∈ Rn and r > 0. We write Tx,r for the translation by x and dilation by r,
Tx,r : Rn → Rn,

(2.8) Tx,r(y) =
y − x
r

for all y ∈ Rn.

The image measure Tx,r[µ] of a Radon measure µ, which acts on a set E ⊂ Rn by

(2.9) Tx,r[µ](E) = µ(T−1
x,r (E)) = µ(x+ rE),

is also Radon since Tx,r is a homeomorphism. In the case E = B1, we interpret (2.9)
as saying Tx,r[µ] “blows-up” B(x, r) (for r small) to the unit ball B1 in the sense that
µ(B(x, r)) = Tx,r[µ](B1). Integration against Tx,r[µ] obeys

(2.10)

∫
f(z)dTx,r[µ](z) =

∫
f

(
z − x
r

)
dµ(z)

whenever at least one of the integrals is defined. Let us pause to record a few simple but
highly useful calculations.

Lemma 2.4 (Composition Laws). For all x ∈ Rn, for all r, s > 0 and all measures µ, ν,

(1) Tx,rs = T0,s ◦ Tx,r,
(2) Tx,rs[µ] = T0,s[Tx,r[µ]],
(3) Frs(µ) = sFr(T0,s[µ]),
(4) Frs(µ, ν) = sFr(T0,s[µ], T0,s[ν]).

We can now present a definition of tangent measure. The basic idea is to take a sequence
of blow-ups Tx,ri [µ] as ri > 0 shrinks to zero and then normalize by some constants ci > 0
so that the limit converges.

Definition 2.5. Let µ be a non-zero Radon measure and let x ∈ sptµ. We say a non-zero
Radon measure ν is a tangent measure of µ at x and write ν ∈ Tan(µ, x) if there exists
sequences ri ↓ 0 and ci > 0 such that

(2.11) ciTx,ri [µ] ⇀ ν.
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The set of tangent measures at a point is non-empty under mild assumptions on the
measure. For example, if x ∈ sptµ and one of the conditions

• Ds
(µ, x) = lim supr↓0 µ(B(x, r))/rs ∈ (0,∞) for some 0 < s <∞

• lim supr↓0 µ(B(x, 2r))/µ(B(x, r)) <∞
hold, then Tan(µ, x) 6= ∅ by the weak compactness of Radon measures.

Taking blow-ups of a measure at a point is closed in the sense that tangent measures
to tangent measures are tangent measures. We need two formulations of this principle.

Lemma 2.6. Let µ be a non-zero Radon measure and x ∈ sptµ. If ν ∈ Tan(µ, x), then
Tan(ν, 0) ⊂ Tan(µ, x).

Proof. Let ρ ∈ Tan(ν, 0). Suppose that ri, si ↓ 0 and ci, di > 0 are sequences such that
ciTx,ri [µ] ⇀ ν and diT0,si

[ν] ⇀ ρ. Since ciTx,ri [µ] ⇀ ν, limi→∞ F1(ciTx,ri [µ], ν) = 0.
Choose a subsequence (ci(j), ri(j)) of (ci, ri) such that

(2.12) F1(ci(j)Tx,ri(j) [µ], ν) ≤ 1

j

(
sj
dj

)
.

After relabeling (ci(j), ri(j)), we may assume that

(2.13) F1(cjTx,rj [µ], ν) ≤ 1

j

(
sj
dj

)
.

Fix r > 0. Since Fr is a semi-metric,

(2.14) Fr(cjdjTx,rjsj
[µ], ρ) ≤ Fr(cjdjTx,rjsj

[µ], djT0,sj
[ν]) + Fr(djT0,sj

[ν], ρ).

On one hand, limj→∞ Fr(djT0,sj
[ν], ρ) = 0, since djT0,sj

[ν] ⇀ ρ. On the other hand, for
all j sufficiently large such that sjr ≤ 1,

Fr(cjdjTx,rjsj
[µ], djT0,sj

[ν]) = djFr(T0,sj
[cjTx,rj [µ]], T0,sj

[ν])

=
dj
sj
Fsjr(cjTx,rj [µ], ν) ≤ dj

sj
F1(cjTx,rj [µ], ν) ≤ 1

j
.

(2.15)

Hence limj→∞ Fr(cjdjTx,rjsj
[µ], ρ) = 0. Since r > 0 was arbitrary, cjdjTx,rjsj

[µ] ⇀ ρ.
Therefore, Tan(ν, 0) ⊂ Tan(µ, x). �

Theorem 2.7 ([14] Theorem 14.16). Let µ be a non-zero Radon measure. At µ-a.e.
x ∈ sptµ the following holds: if ν ∈ Tan(µ, x) and y ∈ sptν, then

(1) Ty,1[ν] ∈ Tan(µ, x),
(2) Tan(ν, y) ⊂ Tan(µ, x).

Proof Sketch. The proof of (1) uses the separability of Radon measures in the topology
generated by the semi-metrics Fr. Statement (2) follows quickly from (1), the composition
law Ty,ri [ν] = T0,ri [Ty,1[ν]] and Lemma 2.6. �

Next we introduce cones of measures or collections of measures which are invariant
under scaling.

Definition 2.8. A collection M of non-zero Radon measures on Rn is a cone provided
whenever ψ ∈M and c > 0 then cψ ∈M. A cone M is a d-cone (or dilation invariant)
if furthermore ψ ∈M and r > 0 imply T0,r[ψ] ∈M. We also require that M 6= ∅.
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The technical advantage of working with dilation invariant cones is a simple observation.
IfM is a d-cone of Radon measures, then for all r > 0 there is µ ∈M such that Fr(µ) > 0.
Indeed take any ψ ∈M. Then Fs(ψ) > 0 for some s > 0 because ψ 6= 0. For any r > 0,

(2.16) Fr(T0,s/r[ψ]) =
r

s
Fr(s/r)(ψ) =

r

s
Fs(ψ) > 0.

SinceM is closed under dilations, ψr = T0,s/r[ψ] ∈M satisfies Fr(ψr) > 0. In particular,
since F1(ψ1) > 0 and M is closed under scaling the following set is non-empty.

Definition 2.9. The basis of a d-cone M is the subset {ψ ∈M : F1(ψ) = 1}.
Lemma 2.10 ([15] Remark 2.1). LetM be a d-cone. In the topology of weak convergence
of Radon measures, M is relatively closed (relatively compact) in the collection of all
non-zero Radon measures if and only if the basis of M is closed (compact).

We are already familiar with the canonical example of a dilation invariant cone.

Lemma 2.11 ([15] Remark 2.3). If Tan(µ, x) 6= ∅, then Tan(µ, x) is a d-cone with a
closed basis.

Following [15] we define a normalized version of Fr for the distance of a measure to a
d-cone of measures as follows. Let r > 0 and suppose σ is a measure such that Fr(σ) > 0.
If M is any d-cone, the “distance” of σ to M at scale r is given by

(2.17) dr(σ,M) = inf

{
Fr

(
σ

Fr(σ)
, ψ

)
: ψ ∈M and Fr(ψ) = 1

}
.

If Fr(σ) = 0 we set dr(σ,M) = 1. Our main use for dr is to detect, given a pair of nested
cones M1 ⊂M2, if M1 is separated from M2 \M1.

Theorem 2.12 ([8] Corollary 2.1). Let F and M be d-cones, F ⊂M. Assume that

(1) Both F and M have compact bases,
(2) There exists ε0 > 0 such that whenever ψ ∈ M and dr(ψ,F) < ε0 for all r ≥ r0

then ψ ∈ F .

If Tan(µ, x) ⊂M and Tan(µ, x) ∩ F 6= ∅, then Tan(µ, x) ⊂ F .

We end this review with two conditions that ensure a d-cone has a compact basis.
Additional criterion may be found in [15].

Proposition 2.13 ([15] Proposition 2.2). Assume M is a d-cone with a closed basis.
Then M has a compact basis if and only if there exists a finite number q ≥ 1 such that
ψ(B(0, 2r)) ≤ qψ(B(0, r)) for all ψ ∈M and r > 0.

Corollary 2.14 ([15] Corollary 2.7). Let µ be a non-zero Radon measure. If x ∈ sptµ
and lim supr↓0 µ(B(x, 2r))/µ(B(x, r)) <∞ then Tan(µ, x) has a compact basis.

3. Inequalities for Spherical Harmonics

A well known fact about harmonic functions is that derivatives of a function at a point
are controlled by the L∞-norm of the function in a surrounding ball, in a uniform way
depending on the distance of the point to the boundary. Starting from local estimates for
the derivatives of harmonic functions on B2 at points of Sn−1, we derive several inequalities
for spherical harmonics (homogeneous harmonic polynomials on Rn restricted to Sn−1)
of a given degree.
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Lemma 3.1. Let u be a real-valued harmonic function on B2 = B(0, 2). For all θ ∈ Sn−1

and every multi-index α,

(3.1) |Dαu(θ)| ≤ (2n+1n|α|)|α|‖u‖L∞(∂B2).

Proof. For example, by Theorem 7 in §2.2 of [2] with r = 1,

(3.2) |Dαu(θ)| ≤ (2n+1n|α|)|α|

ωn
‖u‖L1(B(θ,1))

where ωn = Ln(B(0, 1)) denotes the volume of the unit ball in Rn. The claim follows
since ‖u‖L1(B(θ,1)) ≤ ωn‖u‖L∞(B(θ,1)) ≤ ωn‖u‖L∞(∂B2), where the last inequality holds by
the maximum principle. �

Uniformly bounded spherical harmonics of degree k have a uniform Lipschitz constant.

Proposition 3.2. Let n ≥ 2 and k ≥ 1. There exists a constant An,k > 1 such that for
every homogeneous harmonic polynomial h : Rn → R of degree k and every θ1, θ2 ∈ Sn−1,

(3.3) |h(θ1)− h(θ2)| ≤ An,k‖h‖L∞(Sn−1)|θ1 − θ2|.

Proof. Write M = ‖h‖L∞(Sn−1). If |θ1− θ2| ≥ 1 then |h(θ1)− h(θ2)| ≤ 2M ≤ 2M |θ1− θ2|.
Suppose that |θ1 − θ2| ≤ 1. By Lemma 3.1,

(3.4) |Dαh(θ2)| ≤ (2n+1n|α|)|α|‖h‖L∞(∂B2) = (2n+1n|α|)|α|2kM ≤ (2n+2nk)kM

for every multi-index α with |α| ≤ k, where ‖h‖L∞(∂B2) = 2kM since h is homogeneous of
degree k. Expanding h in a Taylor series about θ2,

(3.5) h(θ)− h(θ2) =
∑

1≤|α|≤k

Dαh(θ2)

α!
(θ − θ2)α.

Evaluating (3.5) at θ = θ1 and applying the estimate (3.4),

(3.6) |h(θ1)− h(θ2)| ≤
∑

1≤|α|≤k

(2n+2nk)kM

α!
|θ1 − θ2||α| ≤ An,kM |θ1 − θ2|

where An,k = (2n+2nk)k
∑

1≤|α|≤k(α!)−1. �

The next inequality roughly says that a spherical harmonic takes its “big values” on a
“big piece” of the unit sphere. Here σ denotes surface measure on Sn−1 with total mass
σ(Sn−1) = σn−1 = nωn.

Corollary 3.3. Let n ≥ 2 and k ≥ 1. There exists a constant ln,k > 0 such that for every
homogeneous harmonic polynomial h : Rn → R of degree k,

(3.7) σ{θ ∈ Sn−1 : |h(θ)| ≥ 1
2
‖h‖L∞(Sn−1)} ≥ ln,k.

Proof. Choose θ0 ∈ Sn−1 such that |h(θ0)| = ‖h‖L∞(Sn−1) = M . By Proposition 3.2,

(3.8) |h(θ)| ≥ |h(θ0)| − |h(θ)− h(θ0)| ≥M(1− An,k|θ − θ0|).
If |θ − θ0| ≤ 1/2An,k, then |h(θ)| ≥ M/2. That is, the set {θ ∈ Sn−1 : |h(θ)| ≥ M/2}
contains the surface ball ∆(θ0, 1/2An,k). Thus ln,k = σ(∆(θ0, 1/2An,k)) suffices. �

Thus the spherical harmonics of degree k satisfy a reverse Hölder inequality.
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Corollary 3.4. Let n ≥ 2 and k ≥ 1. There exists a constant Bn,k > 1 such that for
every homogeneous harmonic polynomial h : Rn → R of degree k,

(3.9) ‖h‖L∞(Sn−1) ≤ Bn,k‖h‖L1(Sn−1).

Proof. Let Γ = {θ ∈ Sn−1 : |h(θ)| ≥ 1
2
‖h‖L∞(Sn−1)}. By Corollary 3.3,

(3.10) ‖h‖L1(Sn−1) ≥
1

2
‖h‖L∞(Sn−1)σ(Γ) ≥ ln,k

2
‖h‖L∞(Sn−1)

and Bn,k = 2/ln,k suffices. �

4. Polynomial Harmonic Measures

A harmonic polynomial h : Rn → R of degree d decomposes as

(4.1) h = hd + hd−1 + · · ·+ h0

where each non-zero term hi is a homogenous harmonic polynomial of degree i. Indeed if
h =

∑
|α|≤d cαx

α is any polynomial then hi =
∑
|α|=i cαx

α satisfies (4.1). For harmonic h,

(4.2) 0 = ∆hd + ∆hd−1 + · · ·+ ∆h2.

Since ∆hi is the sum of monomials of degree i − 2, the right hand side of (4.2) vanishes
only if ∆hi = 0 for all i ≤ d.

Recall that the collections Pd and Fk of polynomial harmonic measures were defined
by

• Pd = {ωh : h is a non-zero harmonic polynomial of degree ≤ d and h(0) = 0},
• Fk = {ωh : h is a homogenous harmonic polynomial of degree k}.

Our first observation is that Pd and Fk fit into the framework of Section 2.

Lemma 4.1. Pd and Fk are dilation invariant cones.

Proof. Suppose that ω is associated to a harmonic polynomial h = hd + · · · + h1 and
let c, r > 0. We claim cT0,r[ω] is harmonic measure associated to g(x) = crnh(rx) where
∆g = crn+d∆hd+ · · ·+crn+2∆h2 = 0 by the remark following (4.2). For any ϕ ∈ C∞c (Rn),∫

{g>0}
g(x)∆ϕ(x)dx =

∫
r−1{h>0}

crnh(rx)∆ϕ(x)dx = c

∫
{h>0}

h(y)∆ϕ(r−1y)dy

= c

∫
{h=0}

ϕ(r−1y)dω(y) = c

∫
r−1{h=0}

ϕ(x)dT0,r[ω](x) = c

∫
{g=0}

ϕ(x)dT0,r[ω](x).

(4.3)

Since g has the same degree as h and g is homogeneous if h is homogeneous, Pd and Fk
are dilation invariant cones. �

Here is a practical formula to compute ωh on balls Br centered at the origin in terms
of the surface measure σ on the boundary ∂Br. Throughout this section Ω± denotes the
open sets of positive and negative values of h, Ω± = {h± > 0}.

Lemma 4.2. Let h : Rn → R be a harmonic polynomial, h(0) = 0. For any r > 0,

(4.4) ωh(Br) =

∫
∂Br∩Ω+

∂h+

∂r
dσ =

∫
∂Br∩Ω−

∂h−

∂r
dσ.
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If h is homogeneous of degree k, then

(4.5) ωh(Br) =
k

2
rn+k−2‖h‖L1(Sn−1).

Proof. By a result of Hardt and Simon [5], the zero set of a harmonic polynomial is smooth
away from a rectifiable subset of dimension at most n − 2. Hence, for any harmonic
polynomial h : Rn → R with h(0) = 0, the set Br ∩Ω± is non-empty and has locally finite
perimeter. By the generalized Gauss-Green theorem (c.f. Chapter 5 of [2]),

(4.6)

∫
∂(Br∩Ω±)

∂h±

∂ν±
dσ =

∫
Br∩∂Ω±

∆h± = 0

where ν± denotes the unique outer unit normal defined at σ-a.e. Q ∈ ∂(Br ∩ Ω±). Thus,
writing ∂(Br ∩ Ω±) = (∂Br ∩ Ω±) ∪ (Br ∩ ∂Ω±),

(4.7)

∫
∂Br∩Ω±

∂h±

∂r
dσ = −

∫
Br∩∂Ω±

∂h±

∂ν±
dσ = ωh(Br)

as desired.
Summing the two formulas in (4.4),

(4.8) 2ωh(Br) =

∫
∂Br∩Ω+

∂h+

∂r
dσ +

∫
∂Br∩Ω−

∂h−

∂r
dσ.

If h(rθ) = rkh(θ), then ∂rh(rθ) = krk−1h(θ) and rθ ∈ Ω± if and only if θ ∈ Ω±. Hence

2ωh(Br) =

∫
∂Br∩Ω+

krk−1h+(θ)dσ +

∫
∂Br∩Ω−

krk−1h−(θ)dσ

=

∫
∂Br

krk−1|h(θ)|dσ = krn+k−2

∫
∂B1

|h(θ)|dσ
(4.9)

whenever h is homogeneous of degree k. �

A consequence of (4.5) is that the measures in Fk are uniformly doubling at the origin,
i.e. for any ω ∈ Fk and r > 0,

(4.10)
ω(B2r)

ω(Br)
= 2n+k−2 <∞.

We now investigate the doubling properties of measures associated to arbitrary harmonic
polynomials. The inequality for spherical harmonics in Corollary 3.3 is key.

Lemma 4.3. Let h : Rn → R be a harmonic polynomial of degree d ≥ 1 with h(0) = 0.
There exists r1 = r1(n, d, ζ(h)) ≥ 1 such that for all r > r1,

(4.11)
ln,d
4
· drn+d−2‖hd‖L∞(Sn−1) ≤ ωh(Br) ≤

3σn−1

2
· drn+d−2‖hd‖L∞(Sn−1).

Here ζ(h) = max1≤k≤d−1 ‖hk‖L∞(Sn−1)/‖hd‖L∞(Sn−1) and r1 = 1 + 12σn−1ζ(h)/ln,d.
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Proof. Without loss of generality assume that M = ‖hd‖L∞(Sn−1) = ‖h+
d ‖L∞(Sn−1); that is,

the maximum of the homogeneous part hd of h over Sn−1 is obtained at a positive value.
Writing h in polar coordinates,

h(rθ) = rdhd(θ) + rd−1hd−1(θ) + · · ·+ rh1(θ),(4.12)

∂h

∂r
(rθ) = drd−1hd(θ) + (d− 1)rd−2hd−1(θ) + · · ·+ h1(θ).(4.13)

Let r > 1. Then 1
r

+ · · ·+
(

1
r

)d−1 ≤
∑∞

i=1

(
1
r

)i
= 1

r−1
and with ζ(h) defined as above,

(4.14)

∣∣∣∣rd−1hd−1(θ) + · · ·+ rh1(θ)

rd

∣∣∣∣ ≤Mζ(h)

(
1

r
+ · · ·+ 1

rd−1

)
≤ Mζ(h)

r − 1
,

(4.15)

∣∣∣∣(d− 1)rd−2hd−1(θ) + · · ·+ h1(θ)

rd−1

∣∣∣∣ ≤ dMζ(h)

(
1

r
+ · · ·+ 1

rd−1

)
≤ dMζ(h)

r − 1
.

If rθ ∈ ∂Br ∩ Ω+, then h(rθ) > 0 and by (4.12) and (4.14),

(4.16) hd(θ) > −
rd−1hd−1(θ) + · · ·+ rh1(θ)

rd
≥ −Mζ(h)

r − 1
.

Similarly, for all r > 1 and θ ∈ Sn−1, by (4.13) and (4.15),

(4.17) drd−1

(
hd(θ)−

Mζ(h)

r − 1

)
≤ ∂h

∂r
(rθ) ≤ drd−1

(
hd(θ) +

Mζ(h)

r − 1

)
.

To estimate ωh(Br) for r � 1, we will combine (4.4), (4.16) and (4.17) with Corollary 3.3.
By the latter, the set Γ = {θ ∈ Sn−1 : hd(θ) ≥ M/2} has surface measure σ(Γ) ≥ ln,d.
Note that rΓ ⊂ ∂Br∩Ω+ provided r > 1+2ζ(h), since h(rθ) ≥ rd(hd(θ)−Mζ(h)/(r−1)),
again by (4.12) and (4.14). Put Λr = (∂Br ∩ Ω+) \ rΓ. Then, by (4.4) and (4.17),

ωh(Br) ≥ drd−1

∫
∂Br∩Ω+

(
hd(θ)−

Mζ(h)

r − 1

)
dσ(4.18)

≥ drd−1

∫
rΓ

(
M

2
− Mζ(h)

r − 1

)
dσ + drd−1

∫
Λr

(
−Mζ(h)

r − 1
− Mζ(h)

r − 1

)
dσ,(4.19)

where hd(θ) ≥M/2 on Γ by definition and hd(θ) > −Mζ(h)/(r−1) for rθ ∈ Λr by (4.16).
Since σ(rΓ) ≥ ln,dr

n−1 and σ(Λr) ≤ σn−1r
n−1,

ωh(Br) ≥ drd−1M

(
1

2
− ζ(h)

r − 1

)
ln,dr

n−1 + drd−1M

(
−2ζ(h)

r − 1

)
σn−1r

n−1(4.20)

≥ drn+d−2M

(
ln,d
2
− 3σn−1ζ(h)

r − 1

)
.(4.21)

Thus, if r > 1+12σn−1ζ(h)/ln,d, we obtain the lower bound ωh(Br) ≥ (ln,d/4)drn+d−2M . A
similar (and easier!) estimate using the upper bound in (4.17) shows if r > 1+2ζ(h) then
ωh(Br) ≤ (3σn−1/2)drn+d−2M . Therefore, it suffices to take r1 = 1 + 12σn−1ζ(h)/ln,d. �

As an immediate corollary of Lemma 4.3 we see that ωh(Br) is doubling as r →∞ with
doubling constants depending only on n and d in the following sense.
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Theorem 4.4. There is a constant Cn,d > 1 such that for every τ > 1 and every harmonic
measure ω associated to a harmonic polynomial h : Rn → R of degree d with h(0) = 0,

(4.22)
τn+d−2

Cn,d
≤ lim inf

r→∞

ω(Bτr)

ω(Br)
≤ lim sup

r→∞

ω(Bτr)

ω(Br)
≤ Cn,dτ

n+d−2.

Proof. By Lemma 4.3 there exists r1 ≥ 1 depending on ω such that for all r > r1,

(4.23)
ln,d

6σn−1

τn+d−2 ≤ ω(Bτr)

ω(Br)
≤ 6σn−1

ln,d
τn+d−2.

Thus, Cn,d = 6σn−1/ln,d suffices. �

While the top degree term of the polynomial h determines the harmonic measure ωh(Br)
for large r, the non-zero term of lowest degree controls ωh(Br) on small radii.

Lemma 4.5. Suppose that h = hd + hd−1 + · · · + hj is a harmonic polynomial with
1 ≤ j ≤ d and hj 6= 0. There exists r2 = r2(n, j, ζ∗(h)) ≤ 1/2 such that for all r < r2,

(4.24)
ln,j
4
· jrn+j−2‖hj‖L∞(Sn−1) ≤ ωh(Br) ≤

3σn−1

2
· jrn+j−2‖hj‖L∞(Sn−1).

Here ζ∗(h) = maxj+1≤k≤d ‖hk‖L∞(Sn−1)/‖hj‖L∞(Sn−1) and r2 = min(1/2, ln,j/72σn−1ζ∗(h)).

Proof. Without loss of generality assume that M = ‖hj‖L∞(Sn−1) = ‖h+
j ‖L∞(Sn−1); that is,

the maximum of the homogeneous part hj of h over Sn−1 is obtained at a positive value.
Writing h in polar coordinates,

h(rθ) = rdhd(θ) + · · ·+ rj+1hj+1(θ) + rjhj(θ),(4.25)

∂h

∂r
(rθ) = drd−1hd(θ) + · · ·+ (j + 1)rjhj+1(θ) + jrj−1hj(θ).(4.26)

Let r ≤ 1/2. Then r + · · ·+ rd−j ≤
∑∞

i=1 r
i = r

1−r ≤ 2r and with ζ∗(h) defined as above,

(4.27)

∣∣∣∣rdhd(θ) + · · ·+ rj+1hj+1(θ)

rj

∣∣∣∣ ≤Mζ∗(h)
(
rd−j + · · ·+ r

)
≤ 2Mζ∗(h)r.

Also, since (j + i)/2j ≤ i for all i, j ≥ 1 and
∑∞

i=1 ir
i = r

(1−r)2 ≤ 4r,∣∣∣∣drd−1hd(θ) + · · ·+ (j + 1)rjhj+1(θ)

rj−1

∣∣∣∣ ≤Mζ∗(h)(drd−j + · · ·+ (j + 1)r)

= 2jMζ∗(h)

(
d

2j
rd−j + · · ·+ j + 1

2j
r

)
≤ 2jMζ∗(h)

∞∑
i=1

iri ≤ 8jMζ∗(h)r.

(4.28)

If rθ ∈ ∂Br ∩ Ω+, then h(rθ) > 0 and by (4.25) and (4.27),

(4.29) hj(θ) > −
rdhd(θ) + · · ·+ rj+1hj+1(θ)

rj
≥ −2Mζ∗(h)r.

Similarly, for all r ≤ 1/2 and θ ∈ Sn−1, by (4.26) and (4.28),

(4.30) jrj−1 (hj(θ)− 8Mζ∗(h)r) ≤ ∂h

∂r
(rθ) ≤ jrj−1 (hj(θ) + 8Mζ∗(h)r) .



14 MATTHEW BADGER

By Corollary 3.3, the set Γ = {θ ∈ Sn−1 : hj(θ) ≥M/2} has surface measure σ(Γ) ≥ ln,j.
Note rΓ ⊂ ∂Br ∩Ω+ if r < 1/4ζ∗(h), since h(rθ) ≥ rj(hj(θ)− 2Mζ∗(h)r), again by (4.25)
and (4.27). Put Λr = (∂Br ∩ Ω+) \ rΓ. Then, by (4.4) and (4.30),

ωh(Br) ≥ jrj−1

∫
∂Br∩Ω+

(hj(θ)− 8Mζ∗(h)r) dσ(4.31)

≥ jrj−1M

∫
rΓ

(
1

2
− 8ζ∗(h)r

)
dσ + jrj−1M

∫
Λr

(−2ζ∗(h)r − 8ζ∗(h)r) dσ,(4.32)

where hj(θ) ≥ M/2 on Γ by definition and hj(θ) > −2Mζ∗(h)r for rθ ∈ Λr by (4.29).
Since σ(rΓ) ≥ ln,jr

n−1 and σ(Λr) ≤ σn−1r
n−1, if r < 1/16ζ∗(h) we obtain

ωh(Br) ≥ jrj−1M

(
1

2
− 8ζ∗(h)r

)
ln,jr

n−1 + jrj−1M (−10ζ∗(h)r)σn−1r
n−1(4.33)

≥ jrn+j−2M

(
ln,j
2
− 18σn−1ζ∗(h)r

)
.(4.34)

Thus, if r < min(1/2, ln,j/72σn−1ζ∗(h)), we get the lower bound

(4.35) ωh(Br) ≥ (ln,j/4)jrn+j−2M.

The estimate ωh(Br) ≤ (3σn−1/2)jrn+j−2M for all r < min(1/2, 1/16ζ∗(h)) follows easily
from (4.4) and the upper bound in (4.30). Therefore, the estimates (4.24) for ωh(Br) hold
for all r < r2 with r2 = min(1/2, ln,j/72σn−1ζ∗(h)). �

Theorem 4.6. There is a constant cn,j > 1 such that for every τ > 1 and every harmonic
measure ω associated to a polynomial h = hd +hd−1 + · · ·+hj with 1 ≤ j ≤ d and hj 6= 0,

(4.36)
τn+j−2

cn,j
≤ lim inf

r→0

ω(Bτr)

ω(Br)
≤ lim sup

r→0

ω(Bτr)

ω(Br)
≤ cn,jτ

n+j−2.

Proof. By Lemma 4.5 there exists r2 ≤ 1/2 depending on ω such that whenever τr < r2,

(4.37)
ln,j

6σn−1

τn+j−2 ≤ ω(Bτr)

ω(Br)
≤ 6σn−1

ln,j
τn+j−2.

Thus, cn,j = 6σn−1/ln,j suffices. �

The next lemma generalizes Lemma 4.1 in [8]; notice that the assumption {h > 0} and
{h < 0} are NTA domains has been removed.

Lemma 4.7. Suppose h : Rn → R is a harmonic polynomial of degree d ≥ 1 with h(0) = 0,
and let ω be harmonic measure associated to h. There exists ε0 > 0 depending only on n,
d and k such that if dr(ω,Fk) < ε0 for all r ≥ r0 then d = k.

Proof. Let τ > 1 and choose r ≥ r0 such that dτr(ω,Fk) < ε0. Then there exists ψ ∈ Fk
such that Fτr(ψ) = 1 and

(4.38) Fr

(
ω

Fτr(ω)
, ψ

)
≤ Fτr

(
ω

Fτr(ω)
, ψ

)
< ε0.

Hence, by the triangle inequality,

(4.39) Fr(ψ)− ε0 <
Fr(ω)

Fτr(ω)
< Fr(ψ) + ε0.
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Since ψ is associated to a homogeneous polynomial of degree k, say p, by Lemma 4.2,

(4.40) Fr(ψ) =

∫ r

0

ψ(Bs)ds =
k‖p‖L1(Sn−1)

2

∫ r

0

sn+k−2ds =
k‖p‖L1(Sn−1)

2(n+ k − 1)
rn+k−1

for all r > 0. In particular, 1 = Fτr(ψ) = τn+k−1Fr(ψ). That is,

(4.41) Fr(ψ) = τ−n−k+1.

Moreover, since (r/2)ω(Br/2) ≤ Fr(ω) ≤ rω(Br) for all r, by Theorem 4.4,

(4.42)
1

Cn,d

(
1

2τ

)n+d−1

≤ 1

2τ

ω(Br/2)

ω(Bτr)
≤ Fr(ω)

Fτr(ω)
≤ 2

τ

ω(Br)

ω(Bτr/2)
≤ Cn,d

(
2

τ

)n+d−1

for all r > r1(h). Setting C̃ = Cn,d2
n+d−1 > 1,

(4.43) C̃−1τ−n−d+1 ≤ Fr(ω)

Fτr(ω)
≤ C̃τ−n−d+1

for all r > r1. Combining (4.39), (4.41) and (4.43) yields

(4.44) τ−n−k+1 − ε0 < C̃τ−n−d+1 and C̃−1τ−n−d+1 < τ−n−k+1 + ε0.

Equivalently,

(4.45) τ d−k(1− τn+k−1ε0) < C̃ and τ k−d(1 + τn+k−1ε0)−1 < C̃.

Because C̃ is independent of τ , we can set τ = 2C̃. Thus, for (2C̃)n+k−1ε0 = 1/2,

(4.46)
1

2
(2C̃)d−k < C̃ and

2

3
(2C̃)k−d < C̃.

On a moment’s reflection one sees (4.46) is impossible if d 6= k. (For example, if d−k ≥ 1,

then C̃ = 1
2
(2C̃) ≤ 1

2
(2C̃)d−k < C̃. If k − d ≥ 1, then 4

3
C̃ = 2

3
(2C̃) ≤ 2

3
(2C̃)k−d < C̃.)

Therefore, if dr(ω,Fk) < ε0 = 1
2
(2C̃)−n−k+1 for all r ≥ r0 then h has degree k. �

For emphasis let us remark again that ε0 in Lemma 4.7 only depends on the dimension,
the degree d of the polynomial h and the degree k of the “homogeneous cone” Fk. Taking
the minimum of finitely many ε0 from Lemma 4.7 we obtain:

Corollary 4.8. There is ε1 = ε1(n, d) > 0 with the property if ω ∈ Pd and dr(ω,Fk) < ε1
for all r ≥ r0 with 1 ≤ k ≤ d then the degree of the polynomial associated to ω is k.

Corollary 4.9. There is ε2 = ε2(n, d) > 0 with the property if ω ∈ Pd and dr(ω,F1) < ε2
for all r ≥ r0 then ω ∈ F1.

In order to invoke Theorem 2.12 the cones studied must satisfy a compactness condition.
Recall that the basis of a dilation invariant cone M is {ψ ∈M : F1(ψ) = 1}.

Lemma 4.10. For each k ≥ 1, Fk has a compact basis.

Proof. First we claim there exists a constant C = C(n, k) <∞ such that the coefficients
of any polynomial associated to a harmonic measure in the basis of Fk are bounded by C.
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Let ω ∈ Fk satisfying F1(ω) = 1 be associated to the homogeneous harmonic polynomial
h of degree k. By (4.5) and the definition of F1,

(4.47) F1(ω) =

∫ 1

0

ω(Bs)ds =
k

2(n+ k − 1)
‖h‖L1(Sn−1).

Since F1(ω) = 1, ‖h‖L1(Sn−1) = 2(n+ k − 1)/k. Hence, by Corollary 3.4,

(4.48) ‖h‖L∞(Sn−1) ≤ Bn,k‖h‖L1(Sn−1) =
2Bn,k(n+ k − 1)

k
.

If h(X) =
∑
|α|=k cαX

α then |cα| = |Dαh(0)|/α! ≤ |Dαh(0)| by Taylor’s formula. Then

the mean value property for Dαh and estimate (3.4) yield

(4.49) |cα| ≤ −
∫
Sn−1

|Dαh(θ)|dσ(θ) ≤ sup
θ∈Sn−1

|Dαh(θ)| ≤ (2n+2nk)k‖h‖L∞(Sn−1).

Combining (4.48) and (4.49) shows that |cα| ≤ C(n, k) for every coefficient of h.
Now let ωi ∈ Fk be any sequence of measures such that F1(ωi) = 1, and let hi be the

polynomial associated to ωi. By the argument above, the coefficients of hi are uniformly
bounded. Hence from hi we can extract a subsequence hij → h∞ uniformly on compact
subsets of Rn, where h∞ is either identically zero or a homogeneous harmonic polynomial
of degree k. (We will exclude the first possibility shortly). If ϕ ∈ C∞c (Rn), then

(4.50) lim
j→∞

∫
ϕdωij = lim

j→∞

∫
(hij )+∆ϕ =

∫
(h∞)+∆ϕ =

∫
ϕdωh∞ .

Thus ωij ⇀ ω∞ = ωh∞ and since F1(ω∞) = limj→∞ F1(ωij ) = 1, h∞ 6≡ 0. We have shown
that for every sequence ωi ∈ Fk with F1(ωi) = 1 there is a subsequence ωij ⇀ ω∞ ∈ Fk.
Therefore, Fk has a compact basis. �

We do not know if the cone Pd has a closed or compact basis for d ≥ 2. To implement
the method of Lemma 4.10 and show that Pd has a compact basis, one must find a way to
control ‖h‖L∞(Sn−1) from the data F1(ωh) = 1. On the other hand, to prove that Pd does
not have a compact basis, by Proposition 2.13 it suffice to produce a sequence of measures
ωi ∈ Pd and radii ri > 0 such that supi ωi(B2ri)/ωi(Bri) =∞. Since polynomial harmonic
measures are doubling near infinity (Theorem 4.4) and doubling near zero (Theorem 4.6),
candidate radii must be selected from an intermediate range depending on ζ(h) and ζ∗(h).
The main challenge lies in estimating ωh(Br) on these middle scales. Since ζ(h)ζ∗(h) ≤ 1
for every quadratic polynomial h, the final answer may depend on whether d = 2 or d ≥ 3.

5. Polynomial Tangent Measures are Homogeneous

We now recast our focus to polynomial harmonic measures which appear as tangent
measures of harmonic measure on NTA domains and take up the proof of Theorem 1.1.
Jerison and Kenig introduced non-tangentially accessible domains in Rn as a natural class
of domains on which Fatou type convergence theorems hold for harmonic functions [6].
Here the doubling of harmonic measure on NTA domains is combined with properties
from Section 4 and a blow-up procedure from [10] in order to invoke Theorem 2.12.

We start by recalling the definitions of NTA domains.
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Definition 5.1. An open set Ω ⊂ Rn satisfies the corkscrew condition with constants
M > 1 and R > 0 provided for every Q ∈ ∂Ω and 0 < r < R there exists a non-tangential
point A = A(Q, r) ∈ Ω such that M−1r < |A−Q| < r and dist(A, ∂Ω) > M−1r.

An M–non-tangential ball B(X, r) in a domain Ω, is an open ball contained in Ω whose
distance to ∂Ω is comparable to its radius in the sense that

(5.1) M−1r < dist(B(X, r), ∂Ω) < Mr.

For X1, X2 ∈ Ω a Harnack chain form X1 to X2 is a sequence of M–non-tangential balls
such that the first ball contains X1, the last contains X2, and consecutive balls intersect.

Definition 5.2. A domain Ω ⊂ Rn satisfies the Harnack chain condition with constants
M > 1 and R > 0 if for every Q ∈ ∂Ω and 0 < r < R when X1, X2 ∈ Ω ∩B(Q, r

4
) satisfy

(5.2) min
j=1,2

dist(Xj, ∂Ω) > ε and |X1 −X2| < 2kε

then there is a Harnack chain from X1 to X2 of length Mk such that the diameter of each
ball is bounded below by M−1 minj=1,2 dist(Xj, ∂Ω).

Definition 5.3. A domain Ω ⊂ Rn is non-tangentially accessible or NTA if there exist
M > 1 and R > 0 such that (i) Ω satisfies the corkscrew and Harnack chain conditions,
(ii) Rn \Ω satisfies the corkscrew condition. If ∂Ω is unbounded then we require R =∞.

A bounded simply connected domain Ω ⊂ R2 is NTA if and only if Ω is a quasidisk (the
image of the unit disk under a quasiconformal map of the plane). In higher dimensions,
while every quasiball (the image of the unit ball under a quasiconformal map of Rn, n ≥ 3)
is still a bounded NTA domain, there exist bounded NTA domains homeomorphic to a
ball in Rn which are not quasispheres. The reader may consult [6] for more information.
Also see [9] where it is shown that every δ-Reifenberg flat domain in Rn with δ < δn is
non-tangentially accessible.

Harmonic measure on NTA domains is locally doubling. While Jerison and Kenig only
considered bounded domains, their proof of this result extends to the unbounded case.

Lemma 5.4 ([6] Lemmas 4.8, 4.11). Let Ω ⊂ Rn be a NTA domain. There exists a
constant C <∞ depending on the NTA constants of Ω such that if Q ∈ ∂Ω, 0 < 2r < R
and X ∈ Ω \B(Q, 2Mr) then ωX(B(Q, 2s)) ≤ CωX(B(Q, s)) for all 0 < s < r.

On an unbounded NTA domain there is a related doubling measure called harmonic
measure with pole at infinity, which is obtained as the weak limit of harmonic measures
ωXi (properly rescaled) as Xi →∞.

Lemma 5.5 ([10] Lemma 3.7, Corollary 3.2). Let Ω ⊂ Rn be an unbounded NTA domain.
There exists a doubling Radon measure ω∞ supported on ∂Ω satisfying

(5.3)

∫
∂Ω

ϕdω∞ =

∫
Ω

u∆ϕ for all ϕ ∈ C∞c (Rn)

where

(5.4)

 ∆u = 0 in Ω
u > 0 in Ω
u = 0 on ∂Ω.
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The measure ω∞ and Green function u are unique up to multiplication by a positive scalar.
We call ω∞ a harmonic measure of Ω with pole at infinity.

When a result about harmonic measure of a domain Ω is independent of the choice of
pole, we denote the measure by ω without any superscript. This means that when Ω is
unbounded we allow ω to have a finite pole or pole at infinity.

Lemma 5.6. If Ω ⊂ Rn is NTA and Q ∈ ∂Ω, then Tan(ω,Q) has a compact basis.

Proof. At any point in the support, the tangent measures of an asymptotically doubling
measure has a compact basis by Corollary 2.14. This is true on an NTA domain by
Lemma 5.4 when ω has a finite pole and by Lemma 5.5 when ω has pole at infinity. �

On an NTA domain there is a correspondence between the tangent measures of harmonic
measure and geometric blow-ups of the domain and boundary [10]. Let Ω ⊂ Rn be a NTA
domain, let Q ∈ ∂Ω and let ri ↓ 0. For each i, zoom in on the domain, the boundary and
the harmonic measure at Q and scale ri:

(5.5) Ωi =
Ω−Q
ri

, ∂Ωi =
∂Ω−Q

ri
, ωi =

TQ,ri [ω]

ω(B(Q, ri))
.

Theorem 5.7 ([10] Lemma 3.8). Let Ω ⊂ Rn be a NTA domain with harmonic measure
ω, let Q ∈ ∂Ω and let ri ↓ 0. Define Ωi, ∂Ωi and ωi by (5.5). There exists a subsequence
of ri (which we relabel) and an unbounded NTA domain Ω∞ ⊂ Rn such that

(5.6) Ωi → Ω∞ in Hausdorff distance sense uniformly on compact sets,

(5.7) ∂Ωi → ∂Ω∞ in Hausdorff distance sense uniformly on compact sets.

Moreover,

(5.8) ωi ⇀ ω∞

where ω∞ is harmonic measure for Ω∞ with pole at infinity.

Remark 5.8. The measure ω∞ in Theorem 5.7 obtained as a weak limit of the blow-ups
ω(B(Q, ri))

−1TQ,ri [ω] is a tangent measure of ω at Q. In fact, up to scaling by a constant,
every tangent measure of ω at Q has this form since ω is doubling; c.f. [14] Remark 14.4.
Hence, since the blow-ups Ωi of the domain Ω do not depend on the pole of harmonic
measure, the cone of tangent measures Tan(ω,Q) is also independent of the pole of ω. a

The next lemma identifies the degree k of the cone Fk appearing in Theorem 1.1.

Lemma 5.9. Let Ω ⊂ Rn be a NTA domain, let Q ∈ ∂Ω, and assume Tan(ω,Q) ⊂ Pd.
If k is the minimum degree such that Pk ∩ Tan(ω,Q) 6= ∅, then Pk ∩ Tan(ω,Q) ⊂ Fk.

Proof. If k = 1, then P1 = F1. If k ≥ 2, suppose for contradiction that there exists
ν ∈ Tan(ω,Q) associated to a nonhomogeneous harmonic polynomial h of degree k, say
h = hk + hk−1 + · · · + hj with j < k and hj 6= 0. By Theorem 5.7 (applied to Ω and ω),
either {x ∈ Rn : h(x) > 0} or {x ∈ Rn : h(x) < 0} is an unbounded NTA domain where ν
is a harmonic measure with pole at infinity for that domain. Without loss of generality,
assume U = {x ∈ Rn : h(x) > 0} is an unbounded NTA domain and ν is harmonic
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measure on U with pole at infinity. Choose ri ↓ 0. By Theorem 5.7 (now applied to U
and ν), there is a subsequence ri and an unbounded NTA domain U∞ such that

(5.9) Ui =
U

ri
→ U∞ and ∂Ui =

∂U

ri
→ ∂U∞

in the sense of Hausdorff distance uniformly on compact sets and

(5.10) νi =
T0,ri [ν]

ν(Bri)
⇀ ν∞.

Moreover, ν∞ is harmonic measure with pole at infinity for U∞. Observe that ∂Ui is the
set of all y ∈ Rn such that h(riy) = 0, i.e.

(5.11) rki hk(y) + rk−1
i hk−1(y) + · · ·+ rjihj(y) = 0.

Dividing by rji and letting i→∞, we see ∂U∞ is the set of all y ∈ Rn such that hj(y) = 0
and ν∞ ∈ Pj. By Lemma 2.6, ν∞ ∈ Tan(ω,Q) ∩ Pj is a blow up of ω corresponding to a
harmonic polynomial of degree j < k. This contradicts the minimality of k. Therefore,
every blow up of ω at Q of minimum degree is homogeneous, i.e. Pk∩Tan(ω,Q) ⊂ Fk. �

We now have all the pieces to prove Theorem 1.1. Recall: Let Ω ⊂ Rn be a NTA
domain with harmonic measure ω. If Q ∈ ∂Ω and Tan(ω,Q) ⊂ Pd, then Tan(ω,Q) ⊂ Fk
for some 1 ≤ k ≤ d.

Proof of Theorem 1.1. Let k = min{j : Pj ∩ Tan(ω,Q) 6= ∅} ≤ d and set

(5.12) F = Fk, M = Tan(ω,Q) ∪ Fk.

Then F ⊂ M and both d-cones have a compact basis by Lemma 4.10 and Lemma 5.6.
Since M ⊂ Pd, Corollary 4.8 and Lemma 5.9 together imply that there exists an ε1 > 0
such that for all µ ∈ M if dr(µ,Fk) < ε1 for all r ≥ r0 then µ ∈ Fk. By Theorem 2.12
(the connectedness of tangent measures), since Tan(ω,Q) ⊂M and Tan(ω,Q) ∩ Fk 6= ∅,
we conclude Tan(ω,Q) ⊂ Fk. �

6. Blow-ups on 2-sided NTA Domains

Definition 6.1. A domain Ω ⊂ Rn is two-sided non-tangentially accessible or 2-sided
NTA if Ω+ = Ω and Ω− = Rn \Ω are NTA; i.e., there are M > 1 and R > 0 such that Ω±

satisfy the corkscrew and Harnack chain conditions, and if ∂Ω is unbounded we require
R =∞.

Throughout this section we use the convention that if Ω ⊂ Rn is a 2-sided domain,
then ω+ is harmonic measure on the interior Ω+ = Ω and ω− is harmonic measure on the
exterior Ω− = Rn \Ω of Ω. If Ω+ or Ω− is unbounded, then we allow ω+ or ω− to have a
finite pole or pole at infinity, respectively.

There is a two-sided version of the blow-up procedure for NTA domains [11]. Let
Ω ⊂ Rn be a 2-sided NTA domain, let Q ∈ ∂Ω and let ri ↓ 0. Let u± be the Green
function for Ω± with the same pole as the harmonic measure ω±. We zoom in on the
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interior and exterior domains, boundary, harmonic measures and Green functions at Q
along scales ri:
(6.1)

Ω±i =
Ω± −Q

ri
, ∂Ωi =

∂Ω−Q
ri

, ω±i =
TQ,ri [ω

±]

ω±(B(Q, ri))
, u±i =

u± ◦ T−1
Q,ri

ω±(B(Q, ri))
rn−2
i .

Theorem 6.2 ([11] Theorem 4.2). Let Ω ⊂ Rn be a 2-sided NTA domain, Q ∈ ∂Ω and
ri ↓ 0. Define the sets Ω±i and ∂Ωi, measures ω±i and functions u±i by (6.1). There is a
subsequence of ri (which we relabel) and an unbounded 2-sided NTA domain Ω∞ such that

(6.2) Ω±i → Ω±∞ in Hausdorff distance uniformly on compact sets,

(6.3) ∂Ωi → ∂Ω∞ in Hausdorff distance uniformly on compact sets.

Moreover,

(6.4) ω±i ⇀ ω±∞,

(6.5) u±i → u±∞ uniformly on compact sets

where ω±∞ is harmonic measure with pole at infinity for Ω± and Green function u±∞.

Two more definitions are necessary.

Definition 6.3. Let Ω ⊂ Rn be a NTA domain with harmonic measure ω. We say that
f ∈ L2

loc(dω) has bounded mean oscillation with respect to ω, i.e. f ∈ BMO(dω) if

(6.6) sup
r>0

sup
Q∈∂Ω

(
−
∫
B(Q,r)

|f − fQ,r|2dω
)1/2

<∞

where fQ,r = −
∫
B(Q,r)

fdω.

Definition 6.4. Let Ω ⊂ Rn be a NTA domain with harmonic measure ω. Let VMO(dω)
denote the closure of the set of bounded uniformly continuous functions defined on ∂Ω in
BMO(dω). If f ∈ VMO(dω) we say f has vanishing mean oscillation.

Polynomial harmonic measures appear as tangent measures on domains with mutually
absolutely continuous interior and exterior harmonic measures.

Theorem 6.5. Let Ω ⊂ Rn be a 2-sided NTA domain with interior harmonic measure
ω+ and exterior harmonic measure ω−. Assume that ω+ � ω− � ω+ and f = dω−/dω+

satisfies log f ∈ VMO(dω+). There exists d ≥ 1 depending on n and the NTA constants
of Ω such that Tan(ω+, Q) = Tan(ω−, Q) ⊂ Pd for all Q ∈ ∂Ω.

Proof. Under the same hypothesis, Theorem 4.4 in [11] concludes that, in the notation of
Theorem 6.2 above, ω+

∞ = ω−∞ and u = u+
∞−u−∞ is a harmonic polynomial. The proof that

u is a polynomial shows there exists d ≥ 1 determined by n and the NTA constants of Ω
such that u has degree at most d. The correspondence between tangent measures and the
blow-ups of Green functions in Theorem 6.2 implies Tan(ω+, Q) = Tan(ω−, Q) ⊂ Pd. �

The self-improving property of tangent measures in Theorem 1.1 yields:
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Corollary 6.6. Let Ω ⊂ Rn be a 2-sided NTA domain with interior harmonic measure
ω+ and exterior harmonic measure ω−. Assume that ω+ � ω− � ω+ and f = dω−/dω+

satisfies log f ∈ VMO(dω+). There exists d ≥ 1 depending on n and the NTA constants
of Ω and pairwise disjoint sets Γ1, . . . ,Γd such that

(6.7) ∂Ω = Γ1 ∪ · · · ∪ Γd,

where Tan(ω+, Q) = Tan(ω−, Q) ⊂ Fk for all 1 ≤ k ≤ d and Q ∈ Γk.

The decomposition of the boundary in Corollary 6.6 has an extra interpretation from
the geometric measure theory viewpoint. Unfortunately the proof of Theorem 2.7 does not
provide a certificate to check at which points in the support of a measure the translations
of tangent measures are tangent measures. But the corollary identifies the points in the
support of harmonic measure where this behavior occurs. To state the result, we first
write down a precise definition of the desired property.

Definition 6.7. Let M be a cone of non-zero Radon measures on Rn. We say that M
is translation invariant if Tx,1[µ] ∈M for all µ ∈M and all x ∈ sptµ.

Proposition 6.8. Let Ω be as in Corollary 6.6. Then the cone Tan(ω±, Q) is translation
invariant if and only if Q ∈ Γ1.

Proof. If µ is a flat measure, then Tx,1[µ] = µ for every x ∈ sptµ. Hence Tan(ω±, Q) ⊂ F1

is translation invariant for every Q ∈ Γ1.
Conversely, assume Tan(ω±, Q) ⊂ Fk is translation invariant and let ν ∈ Tan(ω±, Q).

Then sptν = h−1(0) for some harmonic polynomial h. By [5] the zero set of a harmonic
polynomial is smooth away from a rectifiable subset of dimension at most n− 2. Hence,
sptν is smooth at some x ∈ sptν. Because Tx,1[ν] ∈ Tan(ω±, Q) and sptTx,1[ν] = sptν−x,
we conclude there exists σ ∈ Tan(ω±, Q) ⊂ Fk such that sptσ is smooth at 0. But the
zero set of a non-zero homogeneous polynomial of degree k (the support of σ = Tx,1[ν]) is
smooth at 0 only if k = 1. Therefore, Tan(ω±, Q) ⊂ F1 and Q ∈ Γ1. �

Corollary 6.9. Let Ω be as in Corollary 6.6. If d ≥ 2, then ω±(Γ2 ∪ · · · ∪ Γd) = 0.

Proof. By Theorem 2.7, the cone Tan(ω±, Q) of tangent measures at Q is translation
invariant for ω±-a.e. Q ∈ ∂Ω. Since this property fails at all Q ∈ Γ2 ∪ · · · ∪ Γd, the set
must have zero harmonic measure. �

We can now record:

Proof of Theorem 1.3. Let Ω ⊂ Rn be a 2-sided NTA domain such that ω+ � ω− � ω+

and log dω−/dω+ ∈ VMO(dω+). By Corollary 6.6 we can write ∂Ω = Γ1 ∪ · · · ∪ Γd where
Tan(ω±, Q) ⊂ Fk for all Q ∈ Γk (and d only depends on n and the NTA constants of Ω).
By Corollary 6.9, ω±(∂Ω \ Γ1) = ω±(Γ2 ∪ · · · ∪ Γd) = 0.

Suppose that Q ∈ Γk and we are given ri ↓ 0. By Theorem 6.2, there is a subsequence
of ri (which we relabel) such that ω+(B(Q, ri))

−1TQ,ri [ω
+] ⇀ ω+

∞ ∈ Tan(ω+, Q) and

(6.8)
∂Ω−Q

ri
→ sptω+

∞ in Hausdorff distance uniformly on compact sets.

Since ω+
∞ ∈ Fk, there exists a homogeneous harmonic polynomial h : Rn → R of degree k

such that sptω+
∞ = h−1(0). �
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Remark 6.10. One can also apply Theorem 1.1 to tangent measures on two-sided domains
without any assumptions on the Radon-Nikodym derivative dω−/dω+. Let Ω ⊂ Rn be an
arbitrary 2-sided NTA domain. First we recall the definition of the set Γ ⊂ ∂Ω from [8].
By the differentiation theory of Radon measures,

(6.9) h(Q) = lim
r↓0

ω−(B(Q, r))

ω+(B(Q, r))
∈ [0,∞]

exists at ω±-a.e. Q ∈ ∂Ω. Let

(6.10) Λ = {Q ∈ ∂Ω : h(Q) exists, 0 < h(Q) <∞}.
It is easily seen that ω+ � ω− � ω+ on Λ and ω+ ⊥ ω− on ∂Ω \ Λ. (Note that [8] uses
the notation ‘Λ1’ for Λ. They also define sets Λ2, Λ3 and Λ4 which we do not need here.)
To define Γ we restrict our attention to density points of Λ and h:

(6.11) Γ = {Q ∈ Λ : Q is a density point of Λ and a Lebesgue point of h w.r.t. ω+}.
Note Γ agrees with Λ up to a set of ω± measure zero and any subset A ⊂ ∂Ω such that
ω+ A� ω− A� ω+ A can be written as A = B∪N where ω±(N) = 0 and B ⊂ Γ.
Thus, up to a set of ω± measure zero, Γ is the maximal “mutually absolutely continuous”
piece of ∂Ω. By Theorems 3.3 and 3.4 in [8] (analogously to Theorems 6.2 and 6.5), there
exists d ≥ 1 such that Tan(ω+, Q) = Tan(ω−, Q) ⊂ Pd if Q ∈ Γ. Hence, by Theorem 1.1,

(6.12) Γ = Γ1 ∪ · · · ∪ Γd,

where for each Q ∈ Γk, Tan(ω+, Q) = Tan(ω−, Q) ⊂ Fk.
In particular, if Ω ⊂ Rn is a 2-sided NTA domain and ω+ � ω− � ω+, then

(6.13) ∂Ω = Γ ∪N = Γ1 ∪ · · · ∪ Γd ∪N
where ω±(N) = 0 and Tan(ω+, Q) = Tan(ω−, Q) ⊂ Fk for each Q ∈ Γk. a
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