
STRUCTURE OF SETS WHICH ARE WELL APPROXIMATED BY
ZERO SETS OF HARMONIC POLYNOMIALS

MATTHEW BADGER, MAX ENGELSTEIN, AND TATIANA TORO

Abstract. The zero sets of harmonic polynomials play a crucial role in the study of the
free boundary regularity problem for harmonic measure. In order to understand the fine
structure of these free boundaries a detailed study of the singular points of these zero sets
is required. In this paper we study how “degree k points” sit inside zero sets of harmonic
polynomials in Rn of degree d (for all n ≥ 2 and 1 ≤ k ≤ d) and inside sets that admit
arbitrarily good local approximations by zero sets of harmonic polynomials. We obtain
a general structure theorem for the latter type of sets, including sharp Hausdorff and
Minkowski dimension estimates on the singular set of “degree k points” (k ≥ 2) without
proving uniqueness of blowups or aid of PDE methods such as monotonicity formulas.
In addition, we show that in the presence of a certain topological separation condition,
the sharp dimension estimates improve and depend on the parity of k. An application
is given to the two-phase free boundary regularity problem for harmonic measure below
the continuous threshold introduced by Kenig and Toro.
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1. Introduction

In this paper, we study the geometry of sets that admit arbitrarily good local approxi-
mations by zero sets of harmonic polynomials. As our conditions are reminiscent of those
introduced by Reifenberg [Rei60], we often refer to these sets as Reifenberg type sets which
are well approximated by zero sets of harmonic polynomials. This class of sets plays a
crucial role in the study of a two-phase free boundary problem for harmonic measure with
weak initial regularity, examined first by Kenig and Toro [KT06] and subsequently by
Kenig, Preiss and Toro [KPT09], Badger [Bad11, Bad13], Badger and Lewis [BL15], and
Engelstein [Eng16]. Our results are partly motivated by several open questions about the
structure and size of the singular set in the free boundary, which we answer definitively
below. In particular, we obtain sharp bounds on the upper Minkowski and Hausdorff
dimensions of the singular set, which depend on the degree of blowups of the boundary.
It is important to remark that this is one of those rare instances in which a singular set
of a non-variational problem can be well understood. Often, in this type of question, the
lack of a monotonicity formula is a serious obstacle. A remarkable feature of the proof
is that  Lojasiewicz type inequalities for harmonic polynomials are used to establish a
relationship between the terms in the Taylor expansion of a harmonic polynomial at a
given point in its zero set and the extent to which this zero set can be approximated by
the zero set of a lower order harmonic polynomial (see §§3 and 4). In a broader context,
this paper also complements the recent investigations by Cheeger, Naber, and Valtorta
[CNV15] and Naber and Valtorta [NV14] into volume estimates for the critical sets of
harmonic functions and solutions to certain second-order elliptic operators with Lipschitz
coefficients. Detailed descriptions of these past works and new results appear below, after
we introduce some requisite notation.

For all n ≥ 2 and d ≥ 1, let Hn,d denote the collection of all zero sets Σp of nonconstant
harmonic polynomials p : Rn → R of degree at most d such that 0 ∈ Σp (i.e. p(0) = 0).
For every nonempty set A ⊆ Rn, location x ∈ A, and scale r > 0, we introduce the

bilateral approximation number Θ
Hn,d

A (x, r), which, roughly speaking, records how well A
looks like some zero set of a harmonic polynomial of degree at most d in the open ball
B(x, r) = {y ∈ Rn : |y − x| < r}:
(1.1)

Θ
Hn,d

A (x, r) =
1

r
inf

Σp∈Hn,d

max

{
sup

a∈A∩B(x,r)

dist(a, x+ Σp), sup
z∈(x+Σp)∩B(x,r)

dist(z, A)

}
∈ [0, 1].

When Θ
Hn,d

A (x, r) = 0, the closure, A, of A coincides with the zero set of some harmonic

polynomial of degree at most d in B(x, r). At the other extreme, when Θ
Hn,d

A (x, r) ∼ 1,
the set A stays “far away” in B(x, r) from every zero set of a nonconstant harmonic
polynomial of degree at most d containing x. We observe that the approximation numbers

are scale-invariant in the sense that Θ
Hn,d

λA (λx, λr) = Θ
Hn,d

A (x, r) for all λ > 0. A point x

in a nonempty set A is called an Hn,d point of A if limr→0 Θ
Hn,d

A (x, r) = 0.
For all n ≥ 2 and k ≥ 1, let Fn,k denote the collection of all zero sets of homogeneous

harmonic polynomials p : Rn → R of degree k. We note that

Fn,k ⊆ Hn,d whenever 1 ≤ k ≤ d.
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For every nonempty set A ⊆ Rn, x ∈ A, and r > 0, the bilateral approximation number

Θ
Fn,k

A (x, r) is defined analogously to Θ
Hn,d

A (x, r) except that the zero set Σp in the infimum
ranges over Fn,k instead of Hn,d. A point x in a nonempty set A is called an Fn,k point

of A if limr→0 Θ
Fn,k

A (x, r) = 0. This means that infinitesimally at x, A looks like the zero
set of a homogeneous harmonic polynomial of degree k.

We say that a nonempty set A ⊆ Rn is locally bilaterally well approximated by Hn,d if for

all ε > 0 and for all compact sets K ⊆ A there exists rε,K > 0 such that Θ
Hn,d

A (x, r) ≤ ε
for all x ∈ K and 0 < r ≤ rε,K . When k = 1, Hn,1 = Fn,1 = G(n, n− 1) is the collection
of codimension 1 hyperplanes through the origin and sets A that are locally bilaterally
well approximated by Hn,1 are also called Reifenberg flat sets with vanishing constant or
Reifenberg vanishing sets (e.g., see [DKT01]). Our initial result is the following structure
theorem for sets that are locally bilaterally well approximated by Hn,d.

Theorem 1.1. Let n ≥ 2 and d ≥ 2. If A ⊆ Rn is locally bilaterally well approximated
by Hn,d, then we can write A as a disjoint union,

A = A1 ∪ · · · ∪ Ad (i 6= j ⇒ Ai ∩ Aj = ∅),
with the following properties.

(i) For all 1 ≤ k ≤ d, x ∈ Ak if and only if x is an Fn,k point of A.
(ii) For all 1 ≤ k ≤ d, the set Uk := A1 ∪ · · · ∪ Ak is relatively open in A.

(iii) For all 1 ≤ k ≤ d, Uk is locally bilaterally well approximated by Hn,k.
(iv) For all 2 ≤ k ≤ d, A is locally bilaterally well approximated along Ak by Fn,k,

i.e. lim supr↓0 supx∈K Θ
Fn,k

A (x, r) = 0 for every compact set K ⊆ Ak.
(v) For all 1 ≤ l < k ≤ d, Ul is relatively open in Uk and Al+1 ∪ · · · ∪Ak is relatively

closed in Uk.
(vi) The set A1 is relatively dense in A, i.e. A1 ∩ A = A.

If, in addition, A is closed and nonempty, then

(vii) A has upper Minkowski dimension and Hausdorff dimension n− 1; and,
(viii) A \ A1 = A2 ∪ · · · ∪ Ad has upper Minkowski dimension at most n− 2.

Remark 1.2. If Σp ∈ Hn,d, then Σp is locally bilaterally well approximated by Hn,d,

simply because Θ
Hn,d

Σp
(x, r) = 0 for all x ∈ Σp and r > 0. Since A = Σp corresponding to

p(x1, . . . , xn) = x1x2 has A2 = {0}2 ×Rn−2, we see that the dimension bounds on A \A1

in Theorem 1.1 hold by example, and thus, are generically the best possible.

Remark 1.3. Note that A1 is nonempty if A is nonempty by (vi), A1 is locally closed if A is
closed by (ii), and A1 is locally Reifenberg flat with vanishing constant by (iii). Therefore,
by Reifenberg’s topological disk theorem (e.g., see [Rei60] or [DT12]), A1 admits local bi-
Hölder parameterizations by open subsets of Rn−1 with bi-Hölder exponents arbitrarily
close to 1 provided that A is closed and nonempty. However, we emphasize that while A1

always has Hausdorff dimension n − 1 under these conditions, A1 may potentially have
locally infinite (n−1)-dimensional Hausdorff measure or may even be purely unrectifiable
(e.g., see [DT99]).

The proof of Theorem 1.1 uses a general structure theorem for Reifenberg type sets,
developed in [BL15], as well as uniform Minkowski content estimates for the zero and
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singular sets of harmonic polynomials from [NV14]. A Reifenberg type set is a set A ⊆ Rn

that admits uniform local bilateral approximations by sets in a cone S of model sets in
Rn. In the present setting, the role of the model sets S is played by Hn,d. For background
on the theory of local set approximation and summary of results from [BL15], we refer
the reader to Appendix A. The core geometric result at the heart of Theorem 1.1 is the
following property of zero sets of harmonic polynomials: Hn,k points can be detected in
zero sets of harmonic polynomials of degree d (1 ≤ k ≤ d) by finding a single, sufficiently
good approximation at a coarse scale. The precise statement is as follows.

Theorem 1.4. For all n ≥ 2 and 1 ≤ k < d, there exists a constant δn,d,k > 0, depending
only on n, d, and k, such that for any harmonic polynomial p : Rn → R of degree d and,
for any x ∈ Σp,

∂αp(x) = 0 for all |α| ≤ k ⇐⇒ Θ
Hn,k

Σp
(x, r) ≥ δn,d,k for all r > 0,

∂αp(x) 6= 0 for some |α| ≤ k ⇐⇒ Θ
Hn,k

Σp
(x, r) < δn,d,k for some r > 0.

Moreover, there exists a constant Cn,d,k > 1 depending only on n, d, and k such that

Θ
Hn,k

Σp
(x, r) < δn,d,k for some r > 0

=⇒ Θ
Hn,k

Σp
(x, sr) < Cn,d,k s

1/k for all s ∈ (0, 1).
(1.2)

In particular, applying (1.2) with Σp ∈ Hn,d and x = 0, we obtain the following property.

Corollary 1.5. In the language of Definition A.12, Hn,k points are detectable in Hn,d.

Remark 1.6. The reader may recognize (1.2) as an “improvement type lemma”, which is
often obtained as a consequence of a monotonicity formula or a blow-up argument. Here
this improvement result states that at every Hn,k point in the zero set Σp of a harmonic
polynomial of degree d > k, the zero set Σp resembles the zero set of a harmonic polynomial
of degree at most k at scale r with increasing certainty as r ↓ 0. In fact, (1.2) yields a

precise rate of convergence for the approximation number Θ
Hn,k

Σp
(x, sr) as s goes to 0

provided Θ
Hn,k

Σp
(x, r) is small enough. However, we would like to emphasize that the proof

of Theorem 1.1 does not require monotone convergence nor a definite rate of convergence
of the blowups (A−x)/r of the set A as r ↓ 0. Rather, the proof of Theorem 1.1 relies only
on the fact that the pseudotangents T = limi→∞(A − xi)/ti of A at x (along sequences
xi → x in A and ti ↓ 0) satisfy (1.2). The authors expect that both this “improvement
type lemma” as well as the way in which it is applied in the proof of Theorem 1.1 should
be useful in other situations where questions about the structure and size of sets with
singularities arise.

In the special case when k = 1, Theorem 1.4 first appeared in [Bad13, Theorem 1.4].
The proof of the general case, given in §§2–4 below, follows the same guidelines, but
requires more sophisticated estimates. In particular, in §3, we establish uniform growth
and size estimates for harmonic polynomials of bounded degree. Of some note, we prove
that harmonic polynomials of bounded degree satisfy a  Lojasiewicz type inequality with
uniform constants (see Theorem 3.1). These estimates are essential to show that the

approximability Θ
Hn,k

Σp
(x, r) of a zero set Σp ∈ Hn,d is controlled from above by the relative
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size ζ̂k(p, x, r) of the terms of degree at most k appearing in the Taylor expansion for p
at x (see Definition 2.3 and Lemma 4.1).

Applied to harmonic polynomials of degree at most d, [NV14, Theorem A.3] says that

(1.3) Vol
(
{x ∈ B(0, 1/2) : dist(x,Σp) ≤ r}

)
≤ (C(n)d)d r for all Σp ∈ Hn,d,

and [NV14, Theorem 3.37] says that

(1.4) Vol
(
{x ∈ B(0, 1/2) : dist(x, Sp) ≤ r}

)
≤ C(n)d

2

r2 for all Sp ∈ SHn,d,

where SHn,d = {Sp = Σp ∩ |Dp|−1(0) : Σp ∈ Hn,d, 0 ∈ Sp} denotes the collection of
singular sets of nonconstant harmonic polynomials in Rn of degree at most d that include
the origin. The latter estimate is a refinement of [CNV15], which gave bounds on the
volume of the r-neighborhood of the singular set of the form C(n, d, ε)r2−ε for all ε > 0.
The results of Cheeger, Naber, and Valtorta [CNV15] and Naber and Valtorta [NV14]
apply to solutions of a class of second-order elliptic operators with Lipschitz coefficients;
we refer the reader to the original papers for the precise class. Estimates (1.3) and (1.4)
imply that the zero sets and the singular sets of harmonic polynomials have locally finite
(n − 1) and (n − 2) dimensional Hausdorff measure, respectively. They transfer to the
dimension estimates in Theorem 1.1 for sets that are locally bilaterally well approximated
by Hn,d using [BL15]. See the proof of Theorem 1.1 in §5 for details.

Although the singular set of a harmonic polynomial in Rn generically has dimension at
most n− 2, additional topological restrictions on the zero set may lead to better bounds.
In the plane, for example, the zero set of a homogeneous harmonic polynomial of degree
k is precisely the union of k lines through the origin, arranged in an equiangular pattern.
Hence R2 \Σp has precisely two connected components for Σp ∈ F2,k if and only if k = 1,
and consequently, the singular set is empty for any harmonic polynomial whose zero set
separates R2 into two connected components. When n = 3, Lewy [Lew77] proved that if
R3 \ Σp has precisely two connected components for Σp ∈ F3,k, then k is necessarily odd.
Moreover, Lewy proved the existence of Σp ∈ F3,k that separate R3 into two connected
components for all odd k ≥ 3; an explicit example due to Szulkin [Szu79] is Σp ∈ F3,3,
where

p(x, y, z) = x3 − 3xy2 + z3 − 3
2
(x2 + y2)z.

Starting with n = 4, zero sets of even degree homogeneous harmonic polynomials can also
separate Rn into two components, as shown e.g. by Lemma 1.7, which we prove in §6.

Lemma 1.7. Let k ≥ 2, even or odd, and let q : R2 → R be a homogeneous harmonic
polynomial of degree k. For any pair of constants a, b 6= 0, consider the homogeneous
harmonic polynomial p : R4 → R of degree k given by

p(x1, y1, x2, y2) = a q(x1, y1) + b q(x2, y2).

The zero set Σp of p separates R4 into two components.

Motivated by these examples, it is natural to ask whether it is possible to improve
the dimension bounds on the singular set A \ A1 = A2 ∪ · · · ∪ Ad in Theorem 1.1 under
additional topological restrictions on A. In this direction, we prove the following result
in §6 below.
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Figure 1.1. Select views of Σp, p(x, y, z) = x2 − y2 + z3 − 3x2z, which
separates R3 into two components and has a cusp at the origin.

Theorem 1.8. Let n ≥ 2 and d ≥ 2. Let A ⊆ Rn be a closed set that is locally bilaterally
well approximated by Hn,d. If Rn \ A = Ω+ ∪ Ω− is a union of complimentary NTA
domains Ω+ and Ω−, then

(i) A \ A1 = A2 ∪ · · · ∪ Ad has upper Minkowski dimension at most n− 3;
(ii) The “even singular set” A2∪A4∪A6∪· · · has Hausdorff dimension at most n−4.

NTA domains, or non-tangentially accessible domains, were introduced by Jerison and
Kenig [JK82] to study the boundary behavior of harmonic functions in dimensions three
and above. We defer their definition to §6. However, let us mention in particular that NTA
domains satisfy a quantitative strengthening of path connectedness called the Harnack
chain condition. This property guarantees that A appearing in Theorem 1.8 may be locally
bilaterally well approximated by zero sets Σp of harmonic polynomials such that Rn \Σp

has two connected components. Without the Harnack chain condition, this property may
fail due to the following example by Logunov and Malinnikova [LM15].

Example 1.9. Consider the harmonic polynomial p(x, y, z) = x2 − y2 + z3 − 3x2z from
[LM15, Example 5.1]. The authors of [LM15] show that Rn \Σp = Ω+∪Ω− is the union of
two domains, but remark that Ω+ and Ω− fail the Harnack chain condition, and thus, Ω+

and Ω− are not NTA domains (see Figure 1.1). Using Lemma 4.3 below, it can be shown
that Σp has a unique tangent set at the origin (see Definition A.5 in the appendix), given
by Σq, where q(x, y, z) = x2−y2. Note that Σq divides R3 into four components. However,
if the set Σp is locally bilaterally well approximated by some closed class S ⊆ Hn,d, then
Σq ∈ S by Theorem A.11 below.

Remark 1.10. It can be shown that Rn \Σp = Ω+∪Ω− is a union of complementary NTA
domains and Σp is smooth except at the origin when p(x, y, z) is Szulkin’s polynomial or
when p(x1, y1, x2, y2) is any polynomial from Lemma 1.7. Thus, the upper bounds given
in Theorem 1.8 are generically the best possible. The reason that we obtain an upper
Minkowski dimension bound on the full singular set A \ A1, but only obtain a Hausdorff
dimension bound on the “even” singular set A2 ∪ A4 ∪ · · · is that the former is always
closed when A is closed, but we only know that the latter is Fσ when A is closed (see the
proof of Theorem 1.8).
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The improved dimension bounds on A \ A1 in Theorem 1.8 require a refinement of
(1.4) for Σp ∈ Hn,d that separate Rn into complementary NTA domains, whose existence
was postulated in [BL15, Remark 9.5]. Using the quantitative stratification machinery
introduced in [CNV15], we demonstrate that near its singular points a zero set Σp ∈ Hn,d

with the separation property does not resemble Σh × Rn−2 for any Σh ∈ F2,k, 2 ≤ k ≤ d.
This leads us to a version of (1.4) with right hand side C(n, d, ε)r3−ε for all ε > 0 and
thence to dimM A \A1 ≤ n− 3 using [BL15]. In addition, we show that at “even degree”
singular points, a zero set Σp with the separation property, does not resemble Σh ×Rn−3

for any Σh ∈ F3,2k, 2 ≤ 2k ≤ d. This leads us to the bound dimH Γ2 ∪ Γ4 ∪ · · · ≤ n − 4.
See the proof of Theorem 1.8 in §6 for details.

In the last section of the paper, §7, we specialize Theorem 1.1 and Theorem 1.8 to
the setting of two-phase free boundary problems for harmonic measure mentioned above,
which motivated our investigation. This includes the case that A = ∂Ω is the boundary of
a 2-sided NTA domain Ω ⊂ Rn whose interior harmonic measure ω+ and exterior harmonic
measure ω− are mutually absolutely continuous and have Radon-Nikodym derivative f =
dω−/dω+ satisfying log f ∈ C(∂Ω) or log f ∈ VMO(dω+).

Acknowledgements. A portion of this research was completed while the second author
was visiting the University of Washington during the spring of 2015. He thanks the
Mathematics Department at UW for their hospitality. The first author acknowledges and
thanks Stephen Lewis for many insightful conversations about local set approximation,
which have duly influenced the present manuscript. The authors would like to thank an
anonymous referee for his or her critical feedback, which has led to an improved exposition
of these results.

2. Relative size of the low order part of a polynomial

Given a polynomial p(x) =
∑
|α|≤d cαx

α in Rn, define the height H(p) = max|α|≤d |cα|,
i.e. the height of p is the maximum in absolute value of the coefficients of p. The following
lemma is an instance of the equivalence of norms on finite-dimensional vector spaces.

Lemma 2.1. H(p) ≈ ‖p‖L∞(B(0,1)) for every polynomial p : Rn → R of degree at most d,
where the implicit constants depend only on n and d.

Below we will need the following easy consequence of Lemma 2.1.

Corollary 2.2. If p ≡ pd + · · · + p0, where each pi : Rn → R is zero or a homogeneous
polynomial of degree i, then ‖p‖L∞(B(0,1)) ≈

∑d
i=0H(pi), where the implicit constants

depend only on n and d.

Proof. On one hand,

‖p‖L∞(B(0,1)) ≤
d∑
i=0

‖pi‖L∞(B(0,1)) .
d∑
i=0

H(pi)

by Lemma 2.1 (applied d + 1 times). On the other hand, the assumption that each pi is
zero or homogeneous of degree i ensures that H(p) = maxiH(pi). Hence

d∑
i=0

H(pi) ≤ (d+ 1)H(p) . ‖p‖L∞(B(0,1))
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by Lemma 2.1, again. �

By Taylor’s theorem, for any polynomial p : Rn → R of degree d ≥ 1 and for any
x ∈ Rn, we can write

(2.1) p(x+ y) = p
(x)
d (y) + p

(x)
d−1(y) + · · ·+ p

(x)
0 (y) for all y ∈ Rn,

where each term p
(x)
i : Rn → R is an i-homogeneous polynomial, i.e.

(2.2) p
(x)
i (ry) = rip

(x)
i (y) for all y ∈ Rn and r > 0.

Definition 2.3. Let p : Rn → R be a polynomial of degree d ≥ 1 and let x ∈ Rn. For all

0 ≤ k < d and r > 0, define ζ̂k(p, x, r) by

ζ̂k(p, x, r) = max
k<j≤d

∥∥∥p(x)
j

∥∥∥
L∞(B(0,r))∥∥∥∑k

i=0 p
(x)
i

∥∥∥
L∞(B(0,r))

∈ [0,∞].

Remark 2.4. The function ζ̂k(p, x, r) is a variant of the function ζk(p, x, r) appearing in
[Bad13, Definition 2.1] and defined by

ζk(p, x, r) = max
j 6=k

∥∥∥p(x)
j

∥∥∥
L∞(B(0,r))∥∥∥p(x)

k

∥∥∥
L∞(B(0,r))

.

The latter measured the relative size of the degree k part of a polynomial compared to its
parts of degree j 6= k, while the former measures the relative size of the low order part of
a polynomial, consisting of all terms of degree at most k, compared to its parts of degree

j > k. We note that ζ̂1(p, x, r) and ζ1(p, x, r) coincide whenever x ∈ Σp, the zero set of p.

The next lemma generalizes [Bad13, Lemma 2.10], which stated ζ1(p, x, sr) ≤ sζ1(p, x, r)
for all s ∈ (0, 1), for all polynomials p : Rn → R, for all x ∈ Σp, and for all r > 0.

Lemma 2.5 (change of scales lemma). For all polynomials p : Rn → R of degree d ≥ 1,
for all 0 ≤ k < d, for all x ∈ Rn and for all r > 0,

sd ζ̂k(p, x, r) . ζ̂k(p, x, sr) . s ζ̂k(p, x, r) for all s ∈ (0, 1),

where the implicit constants depends only on n and d.

Proof. Let p : Rn → R be a polynomial of degree d ≥ 1, let x ∈ Rn, and let 0 ≤ k < d.

Write p̃ = p
(x)
k + · · · + p

(x)
0 for the low order part of p at x. Then, by repeated use of

Corollary 2.2 and the i-homogenity of each p
(x)
i , we have that for all r > 0 and s ∈ (0, 1),

‖p̃‖L∞(B(0,sr)) =

∥∥∥∥∥
k∑
i=0

p
(x)
i (sr·)

∥∥∥∥∥
L∞(B(0,1))

&
k∑
i=0

H(p
(x)
i (sr·)) &

k∑
i=0

siH(p
(x)
i (r·))

& sk
k∑
i=0

H(p(x)(r·)) & sk

∥∥∥∥∥
k∑
i=0

p(x)(r·)

∥∥∥∥∥
L∞(B(0,1))

& sk‖p̃‖L∞(B(0,r)),

(2.3)
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where the implicit constants depend on only n and k. It immediately follows that

ζ̂k(p, x, sr) = max
k<j≤d

∥∥∥p(x)
j

∥∥∥
L∞(B(0,sr))

‖p̃‖L∞(B(0,sr))

. max
k<j≤d

sj−k

∥∥∥p(x)
j

∥∥∥
L∞(B(0,r))

‖p̃‖L∞(B(0,r))

. s ζ̂k(p, x, r),

where the implied constant depends only on n and k, and therefore, may be chosen to only
depend on n and d. The other inequality follows similarly and is left to the reader. �

We end with a statement about the joint continuity of ζ̂k(p, x, r). Lemma 2.7 follow
from elementary considerations; for some sample details, the reader may consult the proof
of an analogous statement for ζk(p, x, r) in [Bad13, Lemma 2.8].

Definition 2.6. A sequence of polynomials (pi)∞i=1 in Rn converges in coefficients to a
polynomial p in Rn if d = maxi deg pi <∞ and H(p− pi)→ 0 as i→∞.

Lemma 2.7. For every k ≥ 0, ζ̂k(p, x, r) is jointly continuous in p, x, and r. That is,

ζ̂k(p
i, xi, ri)→ ζ̂k(p, x, r)

whenever deg p > k, pi → p in coefficients, xi → x ∈ Rn, and ri → r ∈ (0,∞).

3. Growth estimates for harmonic polynomials

We need several estimates on the growth of nonconstant harmonic polynomials of degree
at most k. The main result of this section is the following uniform  Lojasiewicz inequality
for harmonic polynomials of bounded degree.

Theorem 3.1 ( Lojasiewicz inequality for harmonic polynomials). For all n ≥ 2 and
k ≥ 1, there exists a constant c = c(n, k) > 0 with the following property. If p : Rn → R
is a nonconstant harmonic polynomial of degree at most k and x0 ∈ Σp, then

(3.1) |p(z)| ≥ c‖p‖L∞(B(x0,1))dist(z,Σp)
k for all z ∈ B(x0, 1/2).

Remark 3.2.  Lojasiewicz [ Loj59] proved the remarkable result that if f is a real analytic
function on Rn and x0 ∈ Σf (the zero set of f), then there exist constants C, ε,m > 0
such that

|f(z)| ≥ C dist(z,Σf )
m for all z ∈ B(x0, ε).

The smallest possible m is called the  Lojasiewicz exponent of f at x0. It is perhaps a
surprising fact that the  Lojasiewicz exponent of a polynomial can exceed the degree of
the polynomial. Bounding the  Lojasiewicz exponent from above is a difficult problem in
algebraic geometric; see e.g. [Kol99], [So’12]. The content of Theorem 3.1 over the general
form of the  Lojasiewicz inequality is the tight bound on the  Lojasiewicz exponent and
uniformity of the constant c in (3.1) across all harmonic polynomials of bounded degree.

The key tools that we use in this section are Almgren’s frequency formula and Harnack’s
inequality for positive harmonic functions. Let us now recall the definition of the former.

Definition 3.3. Let f ∈ H1
loc(Rn) and let x0 ∈ Σf = {x ∈ Rn : f(x) = 0}. For all r > 0,

define the quantities H(r, x0, f) and D(r, x0, f) by

H(r, x0, f) =

ˆ
∂B(x0,r)

f 2 dσ and D(r, x0, f) =

ˆ
B(x0,r)

|∇f |2 dx.
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Then the frequency function N(r, x0, f) is defined by

N(r, x0, f) =
rD(r, x0, f)

H(r, x0, f)
for all r > 0.

Almgren introduced the frequency function in [Alm79]. It is a simple matter to show
that for any harmonic polynomial p, the frequency function N(r, x0, p) ≡ deg p. When f
is any harmonic function, not necessarily a polynomial, Almgren proved that N(r, x0, f)
is absolutely continuous in r and monotonically decreasing as r ↓ 0, and moreover,
limr↓0N(r, x0, f) is the order to which f vanishes at x0. It can also be verified that

(3.2)
d

dr
log

(
H(r, x0, f)

rn−1

)
= 2

N(r, x0, f)

r
.

Integrating (3.2) and invoking the monotonicity of N(r, x0, f) in r, one can prove the
following doubling property. For a proof of Lemma 3.4, see e.g. [Han07, Corollary 1.5];
the result is stated there with x0 = 0 and R = 1, but the general case readily follows by
observing that N(R, x0, f) = N(1, 0, g), where g(x) = f(x0 +Rx)/R.

Lemma 3.4. If f is a harmonic function on B(x0, R), then for all r ∈ (0, R/2),

(3.3)

 
B(x0,2r)

f 2 dx ≤ 22N(R,x0,f)− 1

 
B(x0,r)

f 2 dx.

Corollary 3.5. For all n ≥ 2 and k ≥ 1, there exists a constant C > 0 such that if
p : Rn → R is a harmonic polynomial of degree at most k, x0 ∈ Rn, and r > 0, then

(3.4)

 
B(x0,2r)

p2 dx ≤ C

 
B(x0,r)

p2 dx and sup
B(x0,r)

p2 ≤ 2nC

 
B(x0,r)

p2 dx.

Proof. The first inequality in (3.4) is an immediate consequence of Lemma 3.4 and the
well-known fact that N(r, x0, p) ≡ deg p for every harmonic polynomial p.

To establish the second inequality in (3.4), first note that B(z, r) ⊆ B(x0, 2r) for all
z ∈ B(x0, r). By the mean value property of harmonic functions and the first inequality,

p(z)2 =

( 
B(z,r)

p dx

)2

≤
 
B(z,r)

p2 dx ≤ 2n
 
B(x0,2r)

p2 dx ≤ 2nC

 
B(x0,r)

p2 dx.

This establishes (3.4). �

Next, as an application of Corollary 3.5 and Harnack’s inequality, we show that p(z) is
relatively large when z is far enough away from Σp.

Lemma 3.6. For all n ≥ 2 and k ≥ 1, there exists a constant c > 0 such that if
p : Rn → R is a harmonic polynomial of degree at most k, z ∈ Rn, and x0 ∈ Σp is any
point such that ρ := dist(z,Σp) = |z − x0|, then

(3.5) |p(z)| ≥ c sup
B(x0,ρ)

|p|.

Proof. Let n ≥ 2 and k ≥ 1 be given, and let p : Rn → R be a harmonic polynomial
of degree at most k. Since the conclusion is trivial for all z ∈ Σp, we may assume
z ∈ Rn \ Σp. Without loss of generality, we may further assume that p is positive in



SETS WELL APPROXIMATED BY ZERO SETS OF HARMONIC POLYNOMIALS 11

B(z, ρ), where ρ = dist(z,Σp). By Harnack’s inequality for positive harmonic functions
(e.g., see [ABR01, Theorem 3.4]), there exists a constant A = A(n) > 0 such that

p(z)2 ≥ A sup
B(z,ρ/2)

p2 ≥ A

 
B(z,ρ/2)

p2 dx.

Pick x0 ∈ Σp such that ρ = |z − x0| and note that B(z, 2ρ) ⊇ B(x0, ρ). Hence, by two
applications of the first inequality in Corollary 3.5 and then by the second inequality, 

B(z,ρ/2)

p2 dx ≥ C2

 
B(z,2ρ)

p2 dx ≥ 2−nC2

 
B(x0,ρ)

p2 dx ≥ 4−nC sup
B(x0,ρ)

p2.

Combining the displayed equations, we conclude that (3.5) holds with c = 2−n
√
AC. �

We can now obtain the  Lojasiewicz inequality for harmonic polynomials (Theorem 3.1)
by combining Lemma 3.6 with the estimate (2.3) from the proof of Lemma 2.5.

Proof of Theorem 3.1. Let n ≥ 2 and k ≥ 1 be given. Suppose that p : Rn → R is a
nonconstant harmonic polynomial of degree at most k, and without loss of generality,
assume that 0 ∈ Σp (the origin will play the role of x0 in the statement of the theorem).
Fix z ∈ B(0, 1/2) and choose x0 ∈ Σp to be any point such that ρ := |z−x0| = dist(z,Σp).
Note that ρ < 1/2, since 0 ∈ Σp and z ∈ B(0, 1/2). On one hand, by Lemma 3.6,

|p(z)| & sup
B(x0,ρ)

|p|.

On the other hand, applying (2.3) with r = 2 and s = ρ/2 (this is fine as s < 1),

sup
B(x0,ρ)

|p| & ρk sup
B(x0,2)

|p| ≥ ρk‖p‖L∞(B(0,1)).

Here all implicit constants depend on at most n and k. The inequality (3.1) immediately
follows by combining the displayed equations (and recalling the definition of ρ). �

As we work separately with the sets {p > 0} and {p < 0} below, it is important for us
to know that sup p+ and sup p− are comparable in any ball centered on Σp.

Lemma 3.7. For all n ≥ 2 and k ≥ 1, there exists a constant C > 1 such that if
p : Rn → R is a nonconstant harmonic polynomial of degree at most k, then

(3.6) C−1 sup
B(x0,r)

p+ ≤ sup
B(x0,r)

p− ≤ C sup
B(x0,r)

p+ for all x0 ∈ Σp and r > 0.

Proof. Let M± = supB(x0,r) p
±, and assume without loss of generality that M+ ≥ M−.

The argument now splits into two cases.
Case I. Assume that supB(x0,r/2) |p| = supB(x0,r/2) p

−. Then by the estimate (2.3) in the
proof of Lemma 2.5,

M− ≥ sup
B(x0,r/2)

p− = sup
B(x0,r/2)

|p| & sup
B(x0,r)

|p| = M+,

where the implicit constant depends only on n and k.
Case II. Assume that supB(x0,r/2) |p| = supB(x0,r/2) p

+. Note that p+ 2M− is a positive
harmonic function in B(x0, r). Thus, by Harnack’s inequality,

(3.7) 2M− = p(x0) + 2M− ≥ a sup
B(x0,r/2)

(p+ 2M−) = a sup
B(x0,r/2)

(p+ + 2M−),
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where a = a(n) > 0. We now argue as in Case I. By (2.3),

sup
B(x0,r/2)

p+ = sup
B(x0,r/2)

|p| & sup
B(x0,r)

|p| = M+,

where the implicit constant depends only on n and k. Combining the displayed equations,
we conclude that M− &M+. �

Finally, we record a technical observation that will be needed in §6.

Lemma 3.8. Let n ≥ 2 and let k ≥ 1. If p : Rn → R is a harmonic polynomial of degree
at most k, then ‖p‖L2(B(0,1)) ∼n,k ‖p‖L2(∂B(0,1)).

Proof. The fact that ‖p‖L2(∂B(0,1)) is a norm on the space of harmonic polynomials follows
from the maximum principle for harmonic functions. Thus, the equivalence of ‖p‖L2(B(0,1))

and ‖p‖L2(∂B(0,1)) for harmonic polynomials of bounded degree follows from the equivalence
of norms on finite-dimensional vector spaces. �

4. Hn,k points are detectable in Hn,d

The next lemma shows that ζ̂k (see Definition 2.3 above) controls how close Σp ∈ Hn,d

is to the zero set of a harmonic polynomial of degree at most k; cf. [Bad13, Lemma 4.1].

For the definition of the bilateral approximation number Θ
Hn,k

Σp
(x, r), we refer the reader

to the introduction (see (1.1)).

Lemma 4.1. For all n ≥ 2 and d ≥ 2, there exists 0 < C < ∞ such that for every
harmonic polynomial p : Rn → R of degree d and for every 1 ≤ k < d,

(4.1) Θ
Hn,k

Σp
(x, r) ≤ C ζ̂k(p, x, r)

1/k for all x ∈ Σp and r > 0.

Proof. Let p : Rn → R be a harmonic polynomial of degree d ≥ 2, let 1 ≤ k < d, and let

x ∈ Σp. Write p(· + x) = p
(x)
d + · · · + p

(x)
k+1 + p

(x)
k + · · · + p

(x)
1 , where each p

(x)
i : Rn → R

is an i-homogeneous polynomial in y with coefficients depending on x. We remark that

x + Σp(·+x) = Σp. Now, since p is harmonic, each term p
(x)
i is harmonic, as well. Set

p̃ = p
(x)
k + · · · + p

(x)
1 , the low order part of p at x, and note that p̃(0) = 0. If p̃ ≡ 0,

then ζ̂k(p, x, r) = ∞ for all r > 0 and (4.1) holds trivially. Thus, we may assume that
p̃ 6≡ 0, in which case Σp̃ ∈ Hn,k. To prove (4.1), we shall prove a slightly stronger pair of
inequalities,

(4.2) r−1 sup
a∈Σp∩B(x,r)

dist(a, (x+ Σp̃) ∩B(x, r)) ≤ C1 ζ̂k(p, x, r)
1/k

and

(4.3) r−1 sup
w∈(x+Σp̃)∩B(x,r)

dist(w,Σp) ≤ C2 ζ̂k(p, x, 2r)
1/k

for some constants C1 and C2 that depend only on n, d, and k, and therefore, may be
chosen to depend only on n and d. With the help of Lemma 2.5, (4.1) follows immediately
from (4.2) and (4.3).
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Suppose p̃(z) 6= 0 for some z ∈ B(0, r) and choose y ∈ Σp̃ ∩ B(0, r) such that ρ :=

dist(z,Σp̃∩B(0, r)) = |z−y|. We note that ρ ≤ r, since p̃(0) = 0, and B(0, r) ⊆ B(y, 2r).
Hence, by Lemma 3.6,

|p̃(z)| ≥ c‖p̃‖L∞(B(y,ρ))

(2.3)

≥ c
( ρ

2r

)k
‖p̃‖L∞(B(y,2r)) ≥ c

(ρ
r

)k
‖p̃‖L∞(B(0,r)),

where at each occurrence c denotes a positive constant determined by n and k. Thus,

|p(z + x)| ≥ |p̃(z)| −
d∑

j=k+1

‖p(x)
j ‖L∞(B(0,r))

≥ c1

(ρ
r

)k
‖p̃‖L∞(B(0,r)) − (d− k)ζ̂k(p, x, r)‖p̃‖L∞(B(0,r)),

where c1 > 0 is a constant depending only on n and k. It follows that |p(z + x)| > 0

whenever z ∈ B(0, r) and dist(z,Σp̃ ∩B(0, r)) = ρ > C1ζ̂k(p, x, r)
1/kr, where

C1 =

(
d− k
c1

)1/k

.

Consequently, for any a = z + x ∈ Σp ∩B(x, r), we have

dist(a, (x+ Σp̃) ∩B(x, r)) = dist(z,Σp̃ ∩B(0, r)) ≤ C1ζ̂k(p, x, r)
1/kr.

This establishes (4.2).
Next, suppose that w ∈ (x+Σp̃)∩B(x, r), say w = x+z for some z ∈ Σp̃∩B(0, r). Let

δ < r be a fixed scale, to be chosen below. Because p̃ is harmonic, we can locate points
z±δ ∈ ∂B(z, δ) such that

p̃(z+
δ ) = max

z′∈B(z,δ)
p̃(z′) > 0 and p̃(z−δ ) = min

z′∈B(z,δ)
p̃(z′) < 0.

Thus, by Lemma 3.7,

±p̃(z±δ ) = |p̃(z±δ )| ≥ c‖p̃‖L∞(B(z,δ))

(2.3)

≥ c

(
δ

3r

)k
‖p̃‖L∞(B(z,3r)) ≥ c

(
δ

r

)k
‖p̃‖L∞(B(0,2r)),

where at each occurence c > 0 depends only on n and k. We conclude that

±p(z±δ + x) ≥ ±p̃(z±δ )−
d∑

j=k+1

‖p(x)
j ‖L∞(B(0,2r))

≥ c2

(
δ

r

)k
‖p̃‖L∞(B(0,2r)) − (d− k)ζ̂k(p, x, 2r)‖p̃‖L∞(B(0,r)) > 0

provided that δ > C2ζ̂k(p, x, 2r)
1/kr, where C2 = [(d− k)/c2]1/k. But we also required

δ < r above. To continue, there are two cases. On one hand, if C2ζ̃k(p, x, 2r)
1/k ≥ 1,

then Θ
Hn,k

Σp
(x, r) ≤ 1 ≤ C2ζ̃k(p, x, 2r)

1/k holds trivially. On the other hand, suppose that

C2ζ̃k(p, x, 2r)
1/k < 1. In this case, pick any δ ∈ (C2ζ̃k(p, x, 2r)

1/kr, r). Then the estimate
above gives ±p(z±δ +x) > 0. In particular, the straight line segment ` that connects z+

δ +x

to z−δ + x inside B(z + x, δ) must intersect Σp ∩ B(z + x, δ) by the intermediate value
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theorem and the convexity of ball. Hence dist(w,Σp) = dist(z + x,Σp) ≤ δ. Therefore,

letting δ ↓ C2ζ̃k(p, x, 2r)
1/k, we obtain (4.3). �

Remark 4.2. In the proof of Lemma 4.1, the harmonicity of p was only used to establish

the harmonicity of p̃. Thus, the argument actually yields that Θ
Hn,k

Σp
(x, r) .n,d ζ̂k(p, x, r)

for all x ∈ Σp and for all r > 0, whenever p : Rn → R is a polynomial of degree d > k

such that p̃ = p
(x)
k + · · ·+ p

(x)
1 is harmonic.

The following useful fact facilitates normal families arguments with sequences in Hn,d.
It is ultimately a consequence of the mean value property of harmonic functions.

Lemma 4.3. Suppose that Σp1 ,Σp2 , · · · ∈ Hn,d. If pi → p in coefficients and H(p) 6= 0,
then Σp ∈ Hn,d and Σpi → Σp in the Attouch-Wets topology (see Appendix A).

Proof. Suppose that, for each i ≥ 1, pi : Rn → R is a harmonic polynomial of degree at
most d such that pi(0) = 0. Assume that pi → p in coefficients and H(p) 6= 0. Then
p : Rn → R is also a harmonic polynomial of degree at most d such that p(0) = 0, because
pi → p uniformly on compact subsets of Rn, and p is nonconstant, because H(p) 6= 0.
Hence Σp ∈ Hn,d. It remains to show that Σpi → Σp in the Attouch-Wets topology, which
is metrizable. Thus, it suffices to prove that every subsequence (Σpij)

∞
j=1 of (Σpi)

∞
i=1 has a

further subsequence (Σpijk)∞k=1 such that Σpijk → Σp in the Attouch-Wets topology.
Fix an arbitrary subsequence (Σpij)

∞
j=1 of (Σpi)

∞
i=1. Since 0 ∈ Σpij for all j ≥ 1 and the

set of closed sets in Rn containing the origin is sequentially compact, there exists a closed
set F ⊆ Rn containing 0 and a subsequence (Σpijk)∞k=1 of (Σpij)

∞
j=1 such that Σpijk → F .

We claim that F = Σp. Indeed, on one hand, for any y ∈ F there exists a sequence
yk ∈ Σpijk such that yk → y; but p(y) = limk→∞ pijk(yk) = limk→∞ 0 = 0, since yk ∈ Σpijk ,
pijk → p uniformly on compact sets, and yk → y. Hence y ∈ Σp for all y ∈ F . That is,
F ⊆ Σp. On the other hand, suppose z ∈ Σp. Since p(z) = 0, but p 6≡ 0, for all r ∈ (0, 1)
we can locate points z±r ∈ B(z, r) such that p(z+

r ) > 0 and p(z−r ) < 0 by the mean value
theorem for harmonic functions. Because pijk → p pointwise, it follows that

pijk(z
+
r ) > 0 and pijk(z

−
r ) < 0

for all sufficiently large k depending on r. In particular, by the intermediate value theorem,
the straight line segment connecting z+

r to z−r inside B(z, r) must intersect Σpijk ∩B(z, r)
for all sufficiently large k depending on r. Hence dist(z,Σpijk ∩ B(z, 1)) → 0 as k → ∞.
Ergo, since Σpijk → F in the Attouch-Wets topology,

dist(z, F ) ≤ lim inf
k→∞

(
dist(z,Σpijk ∩B(z, 1)) + excess(Σpijk ∩B(z, 1), F )

)
= 0.

That is, z ∈ F for all z ∈ Σp. Therefore, Σp ⊆ F , and the conclusion follows. �

Corollary 4.4. For all n ≥ 2 and 1 ≤ k ≤ d, Hn,d and Fn,k are closed subsets of C(0)
with the Attouch-Wets topology.

Proof. Suppose Σpi ∈ Hn,d for all i ≥ 1 and Σpi → F for some closed set F in Rn.
Replacing each pi by pi/H(pi), which leaves Σpi unchanged, we may assume H(pi) = 1
for all i ≥ 1. Hence we can find a polynomial p and a subsequence (pij)

∞
j=1 of (pi)

∞
i=1

such that pij → p in coefficients and H(p) = 1. Thus, by Lemma 4.3, Σp ∈ Hn,d and
Σpij → Σp. Therefore, F = limi→∞Σpi = limj→∞Σpij = Σp ∈ Hn,d. We conclude that
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Hn,d is closed. Finally, Fn,k is closed by the additional observation that p is homogeneous
of degree k whenever pij is homogeneous of degree k for all j. �

Remark 4.5. For any Σp ∈ Hn,d and λ > 0, the dilate λΣp = Σq, where q : Rn → R is given
by q(x) = p(x/λ) for all x ∈ Rn. Since p is a nonconstant polynomial of degree at most
d such that p(0) = 0, so is q. Also, q is k-homogeneous, whenever p is k-homogeneous.
Finally, since p is harmonic on Rn, the mean value theorem gives 

B(y,r)

q(x) dx =

 
B(y,r)

p(x/λ) dx =

 
B(y/λ,r/λ)

p(x) dx = p(y/λ) = q(y)

for all y ∈ Rn and r > 0. Thus, since q is continuous, it is also harmonic by the mean value
theorem. This shows that λΣp ∈ Hn,d for all Σp ∈ Hn,d and λ > 0. Likewise, λΣp ∈ Fn,k
for all Σp ∈ Fn,k and λ > 0. In other words, Hn,d and Fn,k are cones. Therefore, Hn,d and
Fn,k are local approximation classes in the sense of Definition A.7(i). A similar argument
shows that Hn,d is translation invariant in the sense that Σp − x ∈ Hn,d for all Σp ∈ Hn,d

and x ∈ Σp.

The next lemma captures a weak rigidity property of real-valued harmonic functions:
the zero set of a real-valued harmonic function determines the relative arrangement of its
positive and negative components.

Lemma 4.6. Let f : Rn → R and g : Rn → R be harmonic functions, and let Σf and Σg

denote the zero sets of f and g, respectively. If Σf = Σg, then f and g take the same or
the opposite sign simultaneously on every connected component of Rn \ Σf = Rn \ Σg.

Proof. Since the conclusion is trivial if f is identically zero, we may assume in addition to
the hypothesis that f is not identically zero. According to [LM15, Theorem 1.1], if u and
v are harmonic functions defined on a domain Ω ⊆ Rn whose zero sets satisfy Σv ⊆ Σu,
then there exists a real-analytic function α in Ω such that u = αv. Invoking this fact
twice, we obtain that f = αg = αβf , where α and β are real analytic functions on Rn.
Since f is not identically zero, it follows that αβ = 1 on Rn. In particular, sign(α) = ±1
on Rn. Therefore, sign(f) = sign(α) sign(g) = ± sign(g) on Rn. �

The following lemma indicates that zero sets of homogeneous harmonic polynomials of
different degrees are uniformly separated on balls centered at the origin. This answers
affirmatively a question posed in [Bad13, Remark 4.12].

Lemma 4.7. For all n ≥ 2 and 1 ≤ j < k, there exists a constant ε > 0 such that for all
Σp ∈ Fn,k and Σq ∈ Fn,j,

D̃0,r[Σp,Σq] =
1

r
max

{
sup

x∈Σp∩B(0,r)

dist(x,Σq), sup
y∈Σq∩B(0,r)

dist(y,Σp)

}
≥ ε for all r > 0.

Proof. Note that λΣp = Σp and λΣq = Σq for all λ > 0 whenever Σp ∈ Fn,k and Σq ∈ Fn,j.
Hence D̃0,r[Σp,Σq] = D̃0,1[r−1Σp, r

−1Σq] = D̃0,1[Σp,Σq] for all r > 0, whenever n ≥ 2,
1 ≤ j < k, Σp ∈ Fn,k, and Σq ∈ Fn,j. Thus, it suffices to prove the claim with r = 1.

Assume to the contrary that for some n ≥ 2 and 1 ≤ j < k we can find sequences
p1, p2, · · · ∈ Fn,k and q1, q2, · · · ∈ Fn,j such that

(4.4) D̃0,1[Σpi ,Σqi ] ≤
1

i
for all i ≥ 1.
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By Corollary 4.4, passing to subsequences (which we relabel), we may assume that there
exist Σp ∈ Fn,k and Σq ∈ Fn,j such that Σpi → Σp and Σqi → Σq. Moreover, replacing
each pi and qi by pi/H(pi) and qi/H(qi), respectively, and passing to further subsequences
(which we again relabel), we may assume that pi → p in coefficients and qi → q in
coefficients, where p and q are homogeneous harmonic polynomials of degree k and j,
respectively. By two applications of the weak quasitriangle inequality (see Appendix A),

D̃0,1/4[Σp,Σq] ≤ 2 D̃0,1/2[Σp,Σpi ] + 2 D̃0,1/2[Σpi ,Σq](4.5)

≤ 2 D̃0,1/2[Σp,Σpi ] + 4 D̃0,1[Σpi ,Σqi ] + 4 D̃0,1[Σqi ,Σq].

Letting i→∞, we have the first term vanishes since Σpi → Σp, the second term vanishes

by (4.4), and the the third term vanishes since Σqi → Σq. Hence D̃0,1/4[Σp,Σq] = 0, which
implies Σp∩B(0, 1/4) = Σq ∩B(0, 1/4). But Σp and Σq are cones, so in fact Σp = Σq. By
Lemma 4.6, the functions p and q take the same or the opposite sign simultaneously on
every connected component of Rn\Σp = Rn\Σq. Hence either p(x)q(x) ≥ 0 for all x ∈ Rn

or p(x)q(x) ≤ 0 for all x ∈ Rn. It follows that either
´
Sn−1 pq dσ > 0 or

´
Sn−1 pq dσ < 0.

This contradicts the fact that homogeneous harmonic polynomials of different degrees are
orthogonal in L2(Sn−1) (e.g. see [ABR01, Proposition 5.9]). �

We now show that ζ̂k cannot grow arbitrarily large as Θ
Hn,k

Σp
becomes arbitrarily small;

cf. [Bad13, Proposition 4.8].

Lemma 4.8. For all n ≥ 2 and 1 ≤ k < d there is δn,d,k > 0 with the following property.

If p : Rn → R is a harmonic polynomial of degree d and Θ
Hn,k

Σp
(x, r) < δn,d,k for some

x ∈ Σp and r > 0, then ζ̂k(p, x, r) < δ−1
n,d,k.

Proof. Let n ≥ 2 and 1 ≤ k < d be given. Suppose in order to reach a contradiction that
for all j ≥ 1 there exists a harmonic polynomial pj : Rn → R of degree d, xj ∈ Σpj , and

rj > 0 such that Θ
Hn,k

Σpj
(xj, rj) < 1/j, but ζ̂k(pj, xj, rj) ≥ j. Replacing each pj with p̃j,

p̃j(y) = H(pj)
−1 · p(rj(y + xj)) for all y ∈ Rn,

that is, left translating by xj, dilating by 1/rj, and scaling by 1/H(pj), we may assume
without loss of generality that xj = 0, rj = 1, and H(pj) = 1 for all j ≥ 1. Therefore,
there exists a sequence (pj)

∞
j=1 of harmonic polynomials in Rn of degree d and height 1

with pj(0) = 0 such that Θ
Hn,k

Σpj
(0, 1) ≤ 1/j, and ζ̂k(pj, 0, 1) ≥ j. Passing to a subsequence,

we may assume that pj → p in coefficients to some harmonic polynomial p : Rn → R with
height 1. By Lemma 4.3, Σpj → Σp, as well. On one hand,

(4.6) Θ
Hn,k

Σp
(0, 1/2) ≤ 2 lim inf

j→∞
Θ
Hn,k

Σpj
(0, 1) = 0.

(For a primer on the interaction of limits and approximation numbers, see Appendix A.)

On the other hand, by Lemma 2.1 and the fact that ζ̂k(pj, 0, 1) ≥ j, it must be that the
height of the polynomial pj is obtained from the coefficient of some term of pj of degree at
least k+1, provided that j is sufficiently large. In particular, we conclude that p has degree

at least k + 1. Hence ζ̂k(p, 0, 1) is well defined and ζ̂k(p, 0, 1) = limj→∞ ζ̂k(pj, 0, 1) = ∞
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by Lemma 2.7. Thus, the low order part of p at 0 (that is the terms of degree at most k)
vanishes and p has the form

(4.7) p = p
(0)
d + p

(0)
d−1 + · · ·+ · · ·+ p

(0)
i , p

(0)
i 6= 0 for some i ≥ k + 1.

We shall now show that (4.6) and (4.7) are incompatible with Lemma 4.7:
By (4.6), there exists Σq ∈ Hn,k = Hn,k such that Σp ∩B(0, 1/2) = Σq ∩B(0, 1/2), say

(4.8) q = q
(0)
k + q

(0)
k−1 + · · ·+ q

(0)
l , q

(0)
l 6= 0 for some 1 ≤ l ≤ k.

Choose any sequence rm ↓ 0 as m→∞. By (4.7), r−im p(rm·)→ p
(0)
i in coefficients and by

(4.8), r−lm q(rm·) → q
(0)
l in coefficients also. Hence r−1

m Σp = Σr−i
m p(rm·) → Σ

p
(0)
i
∈ Fn,i and

r−1
m Σq = Σr−l

m p(rm·) → Σ
q
(0)
l
∈ Fn,l by Lemma 4.3. By the weak quasitriangle inequality

(applied twice as in (4.5)),

D̃0,1
[
Σ
p
(0)
i
,Σ

q
(0)
i

]
≤ 2 D̃0,2

[
Σ
p
(0)
i
, r−1
m Σp

]
+ 4 D̃0,4

[
r−1
m Σp, r

−1
m Σq

]
+ 4 D̃0,4

[
r−1
m Σq,Σq

(0)
l

]
.

As m→∞, the first and the last term vanish, because r−1
m Σp → Σ

p
(0)
i

and r−1
m Σq → Σ

q
(0)
l

,

respectively. Thus,

D̃0,1
[
Σ
p
(0)
i
,Σ

q
(0)
l

]
≤ lim inf

m→∞
4 D̃0,4

[
r−1
m Σp, r

−1
m Σq

]
= lim inf

m→∞
4 D̃0,4rm [Σp,Σq] = 0,

where the ultimate equality holds because Σp ∩ B(0, 1/2) = Σq ∩ B(0, 1/2) and 4rm ↓ 0.

But D̃0,1
[
Σ
p
(0)
i
,Σ

q
(0)
l

]
> 0 by Lemma 4.7, because Σ

p
(0)
i
∈ Fn,i, Σ

q
(0)
l
∈ Fn,l, and i > l. We

have reached a contradiction. Therefore, for all n ≥ 2 and 1 ≤ k < d, there exists j ≥ 1

such that if p : Rn → R is a harmonic polynomial of degree d and Θ
Hn,k

Σp
(x, r) < 1/j for

some x ∈ Σp and r > 0, then ζ̂k(p, x, r) < j. �

We now have all the ingredients required to prove Theorem 1.4.

Proof of Theorem 1.4. Given n ≥ 2 and 1 ≤ k < d, let δn,d,k > 0 denote the constant from
Lemma 4.8. Let p : Rn → R be a harmonic polynomial of degree d and let x ∈ Σp. Write

p̃ = p
(x)
k + · · ·+ p

(x)
1 for the part of p of terms of degree at most k, so that ∂αp(x) 6= 0 for

some |α| ≤ k if and only if p̃ 6≡ 0. On one hand, if p̃ 6≡ 0, then ζ̂k(p, x, 1) <∞, whence

Θ
Hn,k

Σp
(x, r) .n,d ζ̂k(p, x, r)

1/k .n,d r
1/kζ̂k(p, x, 1)1/k → 0 as r → 0

by Lemma 4.1 and Lemma 2.5. In particular, if p̃ 6≡ 0, then Θ
Hn,k

Σp
(x, r) < δn,d,k for some

r > 0. On the other hand, if Θ
Hn,k

Σp
(x, r) < δn,d,k for some r > 0, then

(4.9) ζ̂k(p, x, r) < δ−1
n,d,k <∞

by Lemma 4.8, whence p̃ 6≡ 0. Moreover, in this case,

Θ
Hn,k

Σp
(x, sr) .n,d ζ̂k(p, x, sr)

1/k .n,d s
1/kζ̂k(p, x, r)

1/k .n,d,k s
1/k for all s ∈ (0, 1)

by Lemma 4.1, Lemma 2.5, and (4.9). �

Proof of Corollary 1.5. From (1.2) in Theorem 1.4, it immediately follows thatHn,k points
are (φ,Φ) detectable in Hn,d for φ = min{δn,k+1,k, . . . , δn,d,k} > 0 and some function Φ of
the form Φ(s) = Cs1/k for all s ∈ (0, 1) (see Definition A.12). �
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5. Structure of sets locally bilaterally well approximated by Hn,d

Now that we know Hn,k points are detectable in Hn,d, we may obtain Theorem 1.1 from
repeated use of Theorem A.14.

Proof of Theorem 1.1. Let n ≥ 2 and d ≥ 2 be given. By Remark 4.5 and Corollary 4.4,
Hn,k and Fn,k are closed local approximation classes and Hn,k is also translation invariant
for all k ≥ 1. Thus, we may freely make use the technology in §§A.3–A.5 of the appendix.
Using Definition A.13, Theorem 1.4 yields

Hn,k ∩H⊥n,k−1 = {Σp ∈ Hn,k : lim inf
r↓0

Θ
Hn,k−1

Σp
(0, r) > 0} = Fn,k for all k ≥ 2.

Suppose that A ⊆ Rn is locally bilaterally well approximated by Hn,d and put Ud = A.
Since Hn,d−1 points are detectable in Hn,d (by Corollary 1.5) and Ud is locally bilaterally
well approximated by Hn,d, by Theorem A.14 we can write

Ud = (Ud)Hn,d−1
∪ (Ud)H⊥n,d−1

=: Ud−1 ∪ Ad,

where Ud−1 and Ad are disjoint, Ud−1 is relatively open in Ud, Ud−1 is locally bilaterally
well approximated by Hn,d−1, and Ud is locally bilaterally well approximated along Ad
by Hn,d ∩ H⊥n,d−1 = Fn,d, that is, lim supr↓0 supx∈K Θ

Fn,d

Ud
(x, r) = 0 for every compact set

K ⊆ Ad. In particular, the latter property implies that every x ∈ Ad is an Fn,d point of
Ud by Theorem A.11. Next, since Hn,d−2 points are detectable in Hn,d−1, we may repeat
the argument, mutatis mutandis, to write

Ud−1 = (Ud−1)Hn,d−2
∪ (Ud−1)H⊥n,d−2

=: Ud−2 ∪ Ad−1,

where Ud−2 and Ad−1 are disjoint, Ud−2 is relatively open in Ud−1, Ud−2 is locally bilaterally
well approximated by Hn,d−2, Ud−1 is locally bilaterally well approximated along Ad−1 by
Fn,d−1, and every x ∈ Ad−1 is an Fn,d−1 point of Ud−1. In fact, since Ud−1 is relatively open
in Ud, we have Ud−2 is relatively open in Ud, Ud is locally bilaterally well approximated
along Ad−1 by Fn,d−1, and every x ∈ Ad−1 is an Fn,d−1 point of Ud, as well. After a finite
number of repetitions, this argument shows that

A = Ud = Ud−1 ∪ Ad = · · · = U1 ∪ A2 ∪ · · · ∪ Ad,
where the sets U1, A2, . . . , Ad are pairwise disjoint, U1 is relatively open in A, U1 is locally
bilaterally well approximated by Hn,1, Uk = U1 ∪A2 ∪ · · · ∪Ak is relatively open in A for
all 2 ≤ k ≤ d, Uk is locally bilaterally well approximated by Hn,k for all 2 ≤ k ≤ d, A is
locally bilaterally well approximated along Ak by Fn,k for all 2 ≤ k ≤ d, and every x ∈ Ak
is an Fn,k point of A for all 2 ≤ k ≤ d. Finally, assign A1 = U1. Since A1 relatively open
in A, A1 is locally bilaterally well approximated by Hn,1, and Hn,1 = Fn,1, we conclude
that every x ∈ A1 is a Fn,1 point of A by Theorem A.11. This verifies (i)–(iv) of Theorem
1.1 and (v) follows immediately from (ii) and (iii).

Next, we want to prove that A1 is relatively dense in A. Suppose that x ∈ A \ A1, say
x ∈ Ak for some k ≥ 2. To find points in A1 nearby x, we will rely on the following fact:
By Remark A.15, since Hn,1 points are detectable in Hn,d, there exist α, β > 0 such that

if Θ
Hn,d

A (y, r′) < α for all 0 < r′ ≤ r

and Θ
Hn,1

A (y, r) < β for some y ∈ A and r > 0, then y ∈ A1.
(5.1)
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To proceed, since x is an Fn,k point of A and Fn,k is closed, we can find a homogeneous
harmonic polynomial p : Rn → R and sequence of scales ri ↓ 0 such that r−1

i (A−x)→ Σp

in the Attouch-Wets topology (Σp is a tangent set of A at x). Pick any z ∈ Σp such that
|Dp|(z) 6= 0. (That we can always find such a point is evident, because the singular set of a

polynomial has dimension at most n−2, while dim Σp = n−1.) Then lims↓0 Θ
Hn,1

Σp
(z, s) = 0

by Theorem 1.4. In particular, there exists s1 > 0 such that

(5.2) Θ
Hn,1

Σp
(z, 3

2
s1) ≤ β/18.

Since r−1
i (A−x)→ Σp, there exist yi ∈ A such that zi := (yi−x)/ri → z. Replacing each

yi with y′i ∈ A such that |y′i − yi| ≤ ri/i, say, we may assume without loss of generality

that yi ∈ A for all i (because D̃0,r
[
r−1
i (A− y′i), r−1

i (A− yi)
]
≤ 1/ri → 0 for all r > 0).

Necessarily, yi → x, and thus, there exists s2 > 0 such that

(5.3) sup
i≥1

Θ
Hn,d

A (yi, s) ≤ α/2 < α for all s ≤ s2,

because A is locally bilaterally well approximated by Hn,d. Now, by quasimonotonicity of
bilateral approximation numbers (see Lemma A.10) and (5.2),

Θ
Hn,1

Σp
(zi,

1
2
s1) ≤ 2t+ 2(1 + t)Θ

Hn,1

Σp
(z, (1 + t)s1) ≤ 2t+ 3Θ

Hn,1

Σp
(z, 3

2
s1) ≤ 2t+ β/6

whenever |zi − z| ≤ ts1 ≤ 1
2
s1. With t = |zi − z|/s1, this yields

Θ
Hn,1

Σp
(zi,

1
2
s1) ≤ 2|zi − z|/s1 + β/6

for all i sufficient large such that |zi − z| ≤ 1
2
s1. Hence, for all i sufficient large such that

|zi − z| < s1/6 (guaranteeing z ∈ Σp ∩B(zi,
1
6
s1) 6= ∅),

Θ
Hn,1

r−1
i (A−x)

(zi,
1
6
s1) ≤ 3 D̃zi,

1
2
s1

[
A− x
ri

,Σp

]
+ 3Θ

Hn,1

Σp
(zi,

1
2
s1)

≤ 6 D̃z,s1

[
A− x
ri

,Σp

]
+ 6|z − zi|/s1 + β/2,

where we used the weak quasitriangle inequality in the first line and we used the quasi-
monotoncity of the relative Walkup-Wets distance in the second line (see Lemma A.1).
Since zi → z and r−1

i (A− x)→ Σp, we conclude that

(5.4) lim sup
i→∞

Θ
Hn,1

A (yi,
1
6
ris1) = lim sup

i→∞
Θ
Hn,1

r−1
i (A−x)

(zi,
1
6
s1) ≤ 2

3
β < β.

Note that 1
6
ris1 ≤ s2 for all i � 1, since ri → 0. Therefore, by (5.1), (5.3), and (5.4),

we have yi ∈ A1 for all sufficiently large i. Recalling that yi → x, it follows that x ∈ A1.
Since x ∈ A \ A1 was fixed arbitrarily, this proves (vi).

We now aim to prove dimension bounds on A and A \ A1 assuming that A is closed
and nonempty. Since Hn,d is a closed, translation invariant approximation class and Hn,1

points are detectable in Hn,d, the set

singHn,1
Hn,d = {(Σp)H⊥n,1

: Σp ∈ Hn,d and 0 ∈ (Σp)H⊥n,1
}

is also a local approximation class and A \ A1 is locally unilaterally well approximated
by singHn,1

Hn,d by Theorem A.17. By Theorem 1.4, applied with k = 1, the class
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singHn,1
Hn,d is precisely the class SHn,d = {Sp = Σp ∩ |Dp|−1(0) : Σp ∈ Hn,d, 0 ∈ Sp} of

all singular sets of nonconstant harmonic polynomials of degree at most d that include
the origin. Recall from the introduction that

Vol
(
{x ∈ B(0, 1/2) : dist(x,Σp) ≤ r}

)
≤ (C(n)d)d r for all Σp ∈ Hn,d

and
Vol
(
{x ∈ B(0, 1/2) : dist(x, Sp) ≤ r}

)
≤ C(n)d

2

r2 for all Sp ∈ SHn,d

by work of Naber and Valtorta [NV14]. Using an elementary Vitali covering argument
(e.g., see [Mat95, (5.4) and (5.6)]), it follows that Hn,d has an (n− 1, C(n, d), 1) covering
profile and SHn,d has an (n−2, C(n, d), 1) covering profile in the sense of Definition A.19.

Assume that A is a nonempty closed subset of Rn. Since A \ A1 is relatively closed
in A by (v), A \ A1 is closed in Rn, as well. By Theorem A.20, A has upper Minkowski
dimension at most n− 1, since A is closed, A is locally unilaterally well approximated by
Hn,d, and Hn,d has an (n− 1, C(n, d), 1) covering profile. Also, by Theorem A.20, A \A1

has upper Minkowski dimension at most n − 2, since A \ A1 is closed, A \ A1 is locally
unilaterally well approximated by SHn,d, and SHn,d has an (n − 2, C(n, d), 1) covering
profile. This establishes (viii) and the upper bound in (vii). To wrap up, observe that A1

is nonempty by (vi), A1 is locally closed by (ii), and A1 is locally Reifenberg vanishing
by (iii). Therefore, by Reifenberg’s topological disk theorem (e.g. see [DT12]), A1 is a
topological (n − 1)-manifold (and more, see Remark 1.3). Therefore, A1 has Hausdorff
and upper Minkowski dimension at least n− 1. This completes the proof of (vii). �

By examining the proof that A1 is relatively dense in A in the proof of Theorem 1.1,
one sees the only essential property about the cones Hn,1 and Hn,d, beyond detectability,

was that for every Σp ∈ Fn,k there exist some z ∈ Σp such that lim infs↓0 Θ
Hn,1

Σp
(z, s) = 0.

Thus, abstracting the argument, one obtains the following result.

Theorem 5.1. Let T and S be local approximation classes. Suppose that T points are
detectable in S, and

(5.5) for all S ∈ S ∩ T ⊥ there exists x ∈ S such that lim infr↓0 ΘTS (x, r) = 0.

If A is locally bilaterally well approximated by S, then the set AT described by Theorem
A.14 is relatively dense in A, i.e. AT ∩ A = A.

6. Dimension bounds in the presence of good topology

We now focus our attention on sets A that separate Rn into two connected components.
When A = Σp and p : Rn → R is harmonic, this occurs precisely when the positive set
Ω+
p = {x ∈ Rn : p(x) > 0} of p and the negative set Ω−p = {x ∈ Rn : p(x) < 0} of p

are pathwise connected. To start, let us prove Lemma 1.7 from the introduction, which
implies that Fn,k contains zero sets Σp that separate Rn into two components for all
dimensions n ≥ 4 and for all degrees k ≥ 2.

Proof of Lemma 1.7. We sketch the argument when a = b = 1, with the other cases
following from an obvious modification. Let q : R2 → R be a homogeneous harmonic
polynomial of degree k ≥ 2. Note that by elementary complex analysis, q can be written
as the real part of a complex polynomial q̃ : C→ C, q̃(z) = czk. Thus, Σq is the union of
k equiangular lines through the origin and the chambers of R2 \Σq alternate between the
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Figure 6.1. Let q : R2 → R denote a nonconstant homogeneous harmonic
polynomial (illustrated with degree 4). The light blue cells denote the
positive set of q and the medium blue cells denote the negative set of q.
Suppose that q(U) > 0, q(V1) > 0, and p(V1, V2) > 0, where p(W1,W2) ≡
q(W1) + q(W2). To move from (V1, V2) to (U,U) inside the positive set of p,
first send V2 to U along the yellow path and then move V1 to U along the
red path.

positive and negative sets of q. Let U = (x1, y1) be any point such that q(U) > 0. Then
p(U,U) > 0, as well, where p(W1,W2) ≡ q(W1) + q(W2). To show that the positive set of
p is connected, it suffices to show that any point (V1, V2) ∈ R2×R2 such that p(V1, V2) > 0
can be connected to (U,U) by a piecewise linear path in the positive set. If p(V1, V2) > 0,
then q(V1) > 0 or q(V2) > 0, say without loss of generality that q(V1) > 0. Then the
desired path from (V1, V2) to (U,U) is described in Figure 6.1 nearby. A similar argument
verifies that the negative set of p is connected and we are done. �

Our goal for the remainder of this section is to prove Theorem 1.8, which requires the
following notion of non-tangential accessibility due to Jerison and Kenig [JK82].

Definition 6.1 ([JK82]). A domain (i.e. a connected open set) Ω ⊂ Rn is called NTA
or non-tangentially accessible if there exist constants M > 1 and R > 0 for which the
following are true:

(i) Ω satisfies the corkscrew condition: for all Q ∈ ∂Ω and 0 < r < R, there exists
x ∈ Ω ∩B(Q, r) such that dist(x, ∂Ω) > M−1r.

(ii) Rn \ Ω satisfies the corkscrew condition.
(iii) Ω satisfies the Harnack chain condition: If x1, x2 ∈ Ω∩B(Q, r/4) for some Q ∈ ∂Ω

and 0 < r < R, and dist(x1, ∂Ω) > δ, dist(x2, ∂Ω) > δ, and |x1 − x2| < 2lδ for
some δ > 0 and l ≥ 1, then there exists a chain of no more than Ml overlapping
balls connecting x1 to x2 in Ω such that for each ball B = B(x, s) in the chain:

M−1s < gap(B, ∂Ω) < Ms, gap(B, ∂Ω) = inf
x∈B

inf
y∈∂Ω
|x− y|,

diamB >M−1 min{dist(x1, ∂Ω), dist(x2, ∂Ω)}, diamB = sup
x,y∈B

|x− y|.
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We refer to M and R as NTA constants of the domain Ω. When ∂Ω is unbounded, R =∞
is allowed. To distinguish between conditions (i) and (ii), the former may be called the
interior corkscrew condition and the latter may be called the exterior corkscrew condition.

Remark 6.2. In the definition of NTA domains, the additional restriction R = ∞ when
Ω is unbounded is sometimes imposed (e.g. see [KT99], [KT06], or [KPT09]) in order to
obtain globally uniform harmonic measure estimates on unbounded domains, but that
restriction is not essential in the geometric context of Theorem 1.8, and thus, we omit it.

An essential feature of NTA domains that we need below is that the NTA properties
persist under limits (with slightly different constants). When Γi = r−1

i (∂Ω − Qi) is a
sequence of pseudoblowups of the boundary ∂Ω of a 2-sided NTA domain Ω ⊂ Rn for
some Qi ∈ ∂Ω and ri > 0 such that Qi → Q ∈ ∂Ω and ri ↓ 0, the following lemma is
due to Kenig and Toro [KT06, Theorem 4.1]; also see [AM15, Lemma 1.5] for a recent
variant on uniform domains due to Azzam and Mourgoglou. For the proof of Lemma 6.3,
see Appendix B below.

Lemma 6.3. Suppose that Γi ⊂ Rn is a sequence of closed sets such that Rn\Γi = Ω+
i ∪Ω−i

is the union of complimentary NTA domains Ω+
i and Ω−i with NTA constants M and R

independent of i. If Γi → Γ 6= ∅ in the Attouch-Wets topology, then Rn \ Γ = Ω+ ∪ Ω− is
the union of complementary NTA domains Ω+ and Ω− with NTA constants 2M and R.

In the remainder of this section, we work with subclasses of Hn,d and Fn,k whose zero
sets Σp separate Rn into two distinct NTA components with uniform NTA constants.

Definition 6.4 (2-sided NTA restricted classes H∗n,d, H∗∗n,d, F∗n,k, F∗∗n,k). For all n ≥ 2 and
d ≥ 1, letH∗n,d denote the collection of all Σp ∈ Hn,d such that Ω±p = {x ∈ Rn : ±p(x) > 0}
are NTA domains with NTA constants M∗ = M and R∗ = ∞ for some fixed M > 1.
(We deliberately suppress the choice of M∗ from the notation.) Also, let H∗∗n,d denote
the collection of all Σp ∈ Hn,d such that Ω±p are NTA domains with NTA constants
M∗∗ = 2M∗ and R∗∗ =∞. Finally, set F∗n,k = H∗n,k ∩ Fn,k and F∗∗n,k = H∗∗n,k ∩ Fn,k for all
k ≥ 1.

Remark 6.5. The classes H∗n,d (hence H∗∗n,d) and F∗n,k (hence F∗∗n,k) are local approximation
classes (see Definition A.7), because R∗ = ∞, and it is apparent that H∗n,d is translation

invariant in the sense that Σp−x ∈ H∗n,d for all Σp ∈ H∗n,d and x ∈ Σp. Hence H∗n,d is also

translation invariant. By Corollary 4.4 and Lemma 6.3, H∗n,d ⊆ H∗∗n,d and F∗n,k ⊆ F∗∗n,k.
SinceHn,k points are detectable inHn,d for all 1 ≤ k ≤ d by Corollary 1.5 andH∗n,d ⊆ Hn,d,
we have Hn,k points are detectable in H∗n,d, as well. Finally, we reiterate that F∗n,k is
nonempty for some M∗ > 1 if and only if k = 1 and n ≥ 2; k ≥ 2 is even and n ≥ 4;
or, k ≥ 3 is odd and n ≥ 3. See Remark 1.10. The assertion that the interior of the
two connected components of Rn \ Σp are NTA domains when n = 3 and p = p(x, y, z)
is Szulkin’s polynomial (or any of Lewy’s odd degree polynomials) and when n = 4 and
p = p(x1, y1, x2, y2) is the zero set of one of the polynomials from Lemma 1.7 follows from
the fact that in each case Σp ∩ ∂B(0, 1) is a smooth hypersurface in the unit sphere and
Σp is a cone.

The following technical proposition, alluded to in the introduction after the statement
of Theorem 1.8, is a consequence of Lemma 6.3.
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Lemma 6.6. Suppose that A ⊆ Rn is closed and Rn \ A = Ω+ ∪ Ω− is a union of
complementary NTA domains. If A is locally bilaterally well approximated by Hn,d for
some n ≥ 2 and d ≥ 1, then A is locally bilaterally well approximated by H∗n,d for some
M∗ > 1 depending only on the NTA constants of Ω+ and Ω−.

Proof. Suppose that A is closed, A is locally bilaterally well approximated by Hn,d, and
Rn\A = Ω+∪Ω− is a union of complementary NTA domains with uniform NTA constants
M and R. On one hand, Ψ-Tan(A, x) ⊆ Hn,d = Hn,d for all x ∈ A by Theorem A.11 and
Corollary 4.4. On the other hand, for every x ∈ A and r > 0, the set (A−x)/r = Ω+

x,r∪Ω−x,r
is a union of complementary NTA domains Ω+

x,r and Ω−x,r with NTA constants Mx,r = M
and Rx,r = R/r. Thus, every pseudotangent set T = limi→0(A − xi)/ri ∈ Ψ-Tan(A, x)
separates Rn into two NTA domains with NTA constants MT = 2M and RT = ∞ by
Lemma 6.3, since Rxi,ri = R/ri →∞ as ri → 0. Therefore, Ψ-Tan(A, x) ⊆ H∗n,d for every
x ∈ A with M∗ = 2M . By Theorem A.11, it follows that A is locally bilaterally well
approximated by H∗n,d, as desired. �

In view of Lemma 6.6, Theorem 1.8 is a special case of the following theorem.

Theorem 6.7. Let n ≥ 2, d ≥ 2, and M∗ > 1. If A ⊆ Rn is closed and locally bilaterally
well approximated by H∗n,d, then

(i) A \ A1 = A2 ∪ · · · ∪ Ad has upper Minkowski dimension at most n− 3; and,
(ii) the “even singular set” A2∪A4∪A6∪· · · has Hausdorff dimension at most n−4.

To prove Theorem 6.7 using the technology of [BL15], we need to show the existence of
“covering profiles” (see Definition A.19) for the classes singHn,1

H∗n,d and singHn,d−1
H∗n,d

(see Definition A.16), which are well defined becauseH∗n,d is translation invariant andHn,k

points are detectable in H∗n,d by Remark 6.5. The following lemma proves the existence

of good covering profiles for singHn,k−1
H∗n,k for all degrees k ≥ 2.

Lemma 6.8. Let k ≥ 2 and assume that n + (k mod 2) ≥ 4. For every k homogeneous
harmonic polynomial p : Rn → R such that Rn \ Σp has two connected components,

(Σp)H⊥n,k−1
= {x ∈ Σp : lim inf

r→0
Θ
Hn,k−1

Σp
(x, r) > 0}

is a linear subspace V of Rn with dimV ≤ n− 4 + (k mod 2). In particular,

singHn,k−1
H∗n,k =

{
(Σp)H⊥n,k−1

: Σp ∈ H∗n,k, 0 ∈ (Σp)H⊥n,k−1

}
admits an (n− 4 + (k mod 2), C(n), 1) covering profile.

Proof. Suppose that k and n satisfy the hypothesis of the lemma and let p : Rn → R be
a k homogeneous harmonic polynomial. We will show that (Σp)

⊥
Hn,k−1

coincides with

V = {x0 ∈ Rn : p(x+ x0) = p(x) for all x ∈ Rn},

which is a linear subspace of Rn because p is k homogeneous. To start, note that

x0 ∈ (Σp)H⊥n,k−1
⇐⇒ ∂αp(x0) = 0 for all |α| ≤ k − 1

⇐⇒ p(x+ x0) ≡ q(x) for some q, where q : Rn → R is k homogeneous,
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where the first equivalence holds by Theorem 1.4 and the second equivalence holds by
Taylor’s theorem. Hence V ⊆ (Σp)H⊥n,k−1

, since p is k homogeneous. Conversely, using the

homogeneity of p and q, at any x0 ∈ (Σp)H⊥n,k−1
we obtain

p(x+ x0) = q(x) = λkq(x/λ) = λkp(x/λ+ x0) = p(x+ λx0) for all λ ∈ R \ {0}.

Letting λ→ 0, we conclude that p(x+x0) = p(x) for all x ∈ Rn whenever x ∈ (Σp)H⊥n,k−1
.

Thus, (Σp)H⊥n,k−1
⊆ V , as well.

To continue, suppose that Σp separates Rn into two components. Let p̃ : V ⊥ → R be
the image of p under the quotient map Rn → Rn/V ∼= V ⊥. Because V is the space of
invariant directions for p, the map p̃ is still a degree k homogenous harmonic polynomial
(in orthonormal coordinates for V ⊥) and

Σp = Σp̃ ⊕ V = {x+ v : x ∈ Σp̃ ⊆ V ⊥, v ∈ V }.

Hence Σp̃ separates V ⊥ into two components, since Σp separates Rn into two components.
It follows that dimV ⊥ ≥ 4, if k ≥ 2 is even, and dimV ⊥ ≥ 3, if k ≥ 3 is odd; e.g., see the
paragraph immediately preceding the statement of Lemma 1.7. Therefore, dimV ≤ n−4,
if k ≥ 2 is even, and dimV ≤ n− 3, if k ≥ 3 is odd.

Finally, by Theorem 1.4, Remark 6.5, and the first part of the lemma,

singHn,k−1
H∗n,k =

{
(Σp)H⊥n,k−1

: Σp ∈ F∗n,k
}
⊆
{

(Σp)H⊥n,k−1
: Σp ∈ F∗∗n,k

}
⊆

j⋃
i=0

G(n, i),

where j = n−4, if k ≥ 2 is even, and j = n−3, if k ≥ 3 is odd. Here each G(n, i) denotes
the Grassmannian of dimension i linear subspaces of Rn, which possesses an (i, C(i), 1)
covering profile; that is, V ∩B(0, r) can be covered by C(i)s−i balls B(vi, sr) centered in
V ∩ B(0, r) for all planes V ∈ G(n, i), r > 0, and 0 < s ≤ 1. (For example, this follows
from the fact that Lebesgue measure of any ball of radius r in Ri is proportional to ri.)
It follows that the class singHn,k−1

H∗n,k has an (n−4, C(n), 1) covering profile when k ≥ 2

is even, and singHn,k−1
H∗n,k has an (n−3, C(n), 1) covering profile when k ≥ 3 is odd. �

The covering profiles for singHn,k−1
H∗n,k from Lemma 6.8 will enable us to prove (ii)

in Theorem 6.7 and also to prove that A \ A1 has Hausdorff dimension at most n − 3.
However, to show that A \A1 has upper Minkowski dimension at most n− 3, we need to
find covering profiles for singHn,1

H∗n,d, whose existence does not automatically follow from
the covering profiles in Lemma 6.8. To proceed, we use the quantitative stratification and
volume estimates for singular sets of harmonic functions developed by Cheeger, Naber,
and Valtorta in [CNV15]. The following description of the stratification combines several
definitions from §1 of [CNV15]; see [CNV15, Definition 1.4, Definition 1.7, Remark 1.8,
and Definition 1.9].

Definition 6.9 ([CNV15]; quantitative stratification by symmetry). A smooth function
u : Rn → R is called 0-symmetric if u is a homogeneous polynomial and u is called
k-symmetric if u is 0-symmetric and there exists a k-dimensional subspace V such that

u(x+ y) = u(x) for all x ∈ Rn and y ∈ V .
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For all smooth u : B(0, 1)→ R, and for all x ∈ B(0, 1− r), define

Tx,ru(y) =
u(x+ ry)− u(x)(ffl

∂B(0,1)
|u(x+ rz)− u(x)|2 dσ(z)

)1/2
for all y ∈ B(0, 1).

(If the denominator vanishes, set Tx,r = ∞.) A harmonic function u : B(0, 1) → R
is called (k, ε, r, x)-symmetric if there exists a harmonic k-symmetric function p with´
∂B(0,1)

|p|2 dσ = 1 such that  
B(0,1)

|Tx,ru− p|2 < ε.

For all harmonic u : B(0, 1)→ R, define the (k, η, r)-effective singular stratum by

Skη,r(u) = {x ∈ B(0, 1) : u is not (k + 1, η, s, x)-symmetric for all s ≥ r}.

For harmonic functions, [CNV15, Theorem 1.10] gives the following Minkowski type
estimates for effective singular strata. In the statement, N(1, 0, u) denotes Almgren’s
frequency function with r = 1, x0 = 0, and f = u (recall Definition 3.3 above).

Theorem 6.10 ([CNV15]). If u : B(0, 1)→ R is a harmonic function with u(0) = 0 and
N(1, 0, u) ≤ Λ <∞, then for every η > 0 and k ≤ n− 2,

(6.1) Vol({x ∈ B(0, 1/2) : dist(x, Skη,r(u)) < r}) ≤ C(n,Λ, η)rn−k−η.

We now show that if η is small enough depending on n, d, and M∗, then the singular
set of Σp ∈ H∗n,d is contained in Sn−3

η,r (p).

Lemma 6.11. For all n ≥ 2, d ≥ 2, and M∗ > 1, there exists η > 0 with the following
property. If Σp ∈ H∗n,d, x0 ∈ Σp, and p is (n − 2, η, r, x0)-symmetric for some η ∈ (0, η)
and r > 0, then x0 is an Fn,1 point of Σp. Consequently, the set of all singular points of
Σp (that is, Fn,2 ∪ · · · ∪ Fn,d points of Σp) belongs to Sn−3

η,r (p) for all η ∈ (0, η) and r > 0.

Proof. Let n ≥ 2, d ≥ 2, and M∗ > 1 be given. Assume in order to obtain a contradiction
that for all i ≥ 1, there exist Σpi ∈ H∗n,d, ηi < 1/i, xi ∈ Σpi , and ri > 0 such that pi is
(n− 2, ηi, ri, xi)-symmetric and xi is not an Fn,1 point of Σpi . Equivalently, by Theorem
1.4, Dpi(xi) = 0. That is, the Taylor expansion for pi at xi has no nonzero linear terms.
By definition of almost symmetry, there exist (n − 2)-symmetric homogenous harmonic
polynomials hi such that

ffl
∂B(0,1)

|hi|2 dσ = 1 and

(6.2)

 
B(0,1)

|Txi,ripi − hi|
2 <

1

i
.

As everything is translation, dilation, and rotation invariant, we may assume without loss
of generality that for all i ≥ 1, xi = 0, ri = 1, and hi(y1, y2, . . . , yn) = hi(y1, y2, 0, . . . , 0)
for all y ∈ Rn. To ease notation, let us abbreviate qi ≡ T0,1pi. We note that

(6.3) ‖qi‖L2(B(0,1)) ∼n,d ‖qi‖L2(∂B(0,1)) ∼n,d 1 for all i ≥ 1,

where the first comparison holds by Lemma 3.8 and the second comparison holds by the
definition of T0,1pi.

We now claim that deg hi ≤ d for all i sufficiently large. To see this, suppose to the
contrary that l := deg hi > d for some i ≥ 1. Recalling both that spherical harmonics
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of different degrees are orthogonal on spheres centered at the origin and that hi is l
homogeneous with l > deg qi, we have

1 ∼n,d ‖qi‖2
L2(B(0,1)) .n,d

 
B(0,1)

(
q2
i + h2

i

)
=

 
B(0,1)

|qi − hi|2 <
1

i

by (6.2) and (6.3). This is impossible if i is sufficient large depending only on n and d.
Thus, deg hi ≤ d for all i sufficient large, as claimed. In particular,

(6.4) ‖hi‖L2(B(0,1)) ∼n,d ‖hi‖L2(∂B(0,1)) ∼n,d 1 for all i &n,d 1.

By (6.3), (6.4), Lemma 2.1, and Lemma 3.5, we conclude that the heights H(qi) ∼n,d 1
and H(qi) ∼n,d 1 for all sufficiently large i. Therefore, by passing to a subsequence of the
pair (qi, hi)

∞
i=1 (which we relabel), we may assume that qi → q in coefficients and hi → h

in coefficients for some nonconstant harmonic polynomials q and h of degree at most d.
On one hand, we have Σq ∈ H∗n,d ⊆ H∗∗n,d by Lemma 4.3 and Dq(0) = 0, since Dqi(0) = 0
for all i. Hence q has degree at least 2. On the other hand, we have h is homogeneous
and h(y1, y2, . . . , yn) = h(y1, y2, 0, . . . , 0) for all y ∈ Rn, because the same are true of the
polynomial hi for all i &n,d 1.

We are now ready to obtain a contradiction. Since qi → q and hi → h uniformly
on compact sets (see Remark ??), we have q ≡ h by (6.2). Thus, Σq ∈ F∗∗n,k for some
2 ≤ k ≤ d—in particular, Σq is the zero set of a homogeneous harmonic polynomial
of degree at least 2 that separates Rn into 2 components—and q depends on at most 2
variables. No such polynomial q exists (e.g. see Remark 6.5)! Therefore, for all n ≥ 2,
d ≥ 2, and M∗ > 1, there exists η > 0 such that if Σp ∈ H∗n,d, x0 ∈ Σp, and p is
(n − 2, η, r, x0)-symmetric for some η ∈ (0, η) and r > 0, then x0 is an Fn,1 point of Σp.
Consequently, if Σp ∈ H∗n,d and x0 ∈ Σp belongs to the singular set of p, then p is not
(n−2, η, r, x0) symmetric for all η ∈ (0, η) and r > 0. By definition of the singular strata,
we conclude that for all Σp ∈ H∗n,d the set of all singular points of Σp belongs to Sn−3

η,r (p)
for all η ∈ (0, η) and r > 0. �

At last, we are ready to prove Theorem 6.7 and Theorem 1.8.

Proof of Theorem 6.7 and Theorem 1.8. As noted earlier, Theorem 6.7 implies Theorem
1.8 by Lemma 6.6. Thus, it suffices to establish the former. Assume A ⊆ Rn is closed and
locally bilaterally well approximated by H∗n,d for some M∗ > 1. Then A can be written
as A = A1 ∪A2 ∪ · · · ∪Ad according to Theorem 1.1. In particular, Uk = A1 ∪ · · · ∪Ak is
relatively open in A and locally bilaterally well approximated by Hn,k for all 1 ≤ k ≤ d.
Hence Uk is also locally bilaterally well approximated by H∗∗n,k for all 1 ≤ k ≤ d, because

Ψ-Tan(A, x) ⊆ H∗n,d∩Hn,k ⊆ H∗∗n,k for all x ∈ Uk by Theorem A.11 and Remark 6.5. Also,
A \ A1 is closed in Rn, because A1 is relatively open in A and A is closed in Rn, and Ak
is σ-compact for each k ≥ 1, because Ak is relatively closed in Uk, Uk is relatively open
in A, and A is closed in Rn. Our goal is to prove that (i) dimM A \ A1 ≤ n − 3 and (ii)
dimH Ak ≤ n− 4 for all even k ≥ 2.

We begin with a proof of (i). By Remark 6.5, H∗∗n,d is translation invariant and Hn,1

points are detectable in H∗∗n,d. Thus, A \ A1 is locally unilaterally well approximated by

singHn,1
H∗∗n,d by Theorem A.17. By Lemma 6.11, Lemma ??, and Theorem 6.10, the class

singHn,1
H∗∗n,d admits an (n− 3 + η, C(n, d, η,M∗∗), 1) covering profile for all η > 0. Thus,
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since A \ A1 is closed, we have dimM A \ A1 ≤ n− 3 + η for all η > 0 by Theorem A.20.
Letting η ↓ 0, we conclude dimM A \ A1 ≤ n− 3, as desired.

We now prove (ii). Let k ≥ 2 be even. By Remark 6.5, H∗∗n,k−1 is translation invariant
and Hn,k−1 points are detectable in H∗∗n,k. Thus, Ak = Uk \ Uk−1 is locally unilater-

ally well approximated by singHn,k−1
H∗∗n,k by Theorem A.17. By Lemma 6.8, the class

singHn,k−1
H∗∗n,k admits an (n − 4, C(n), 1) covering profile. Thus, since Ak is σ-compact,

we have dimH Ak ≤ n− 4 by Theorem A.21, as desired. Because Hausdorff dimension is
stable under countable unions, dimH A2 ∪ A4 ∪ · · · ≤ n− 4, as well. �

7. Boundary structure in terms of interior and exterior harmonic
measures

Harmonic measure arises in classical analysis from the solution of the Dirichlet problem
and in probability as the exit distribution of Brownian motion. For nice introductions
to harmonic measure, see the books of Garnett and Marshall [GM05] and Mörters and
Peres [MP10]. One of our motivations for this work is the desire to understand the extent
to which the structure of the boundary of a domain in Rn, n ≥ 2, is determined by the
relationship between harmonic measures in the interior and the exterior of the domain.
This problem can be understood as a free boundary regularity problem for harmonic
measure. For an in-depth introduction to free boundary problems for harmonic measure,
see the book of Capogna, Kenig, and Lanzani [CKL05].

Given a simply connected domain Ω ⊂ R2, bounded by a Jordan curve, let ω+ and ω−

denote the harmonic measures associated to Ω+ = Ω and Ω− = R2\Ω, respectively, which
are supported on their common boundary ∂Ω = ∂Ω+ = ∂Ω−. Together, the theorems of
McMillan, Makarov, and Pommerenke (see [GM05, Chapter VI]) show that

ω+ � ω− � ω+ =⇒ ω+ � H1|G � ω+ and ω− � H1|G � ω−

for some set G ⊆ ∂Ω with σ-finite 1-dimensional Hausdorff measure and ω±(∂Ω \G) = 0;
furthermore, in this case, ∂Ω possesses a unique tangent line at Q for ω±-a.e. Q ∈ ∂Ω.
Here Hs denotes the s-dimensional Hausdorff measure of sets in Rn. Motivated by this
result, Bishop [Bis92] asked whether if on a domain in Rn, n ≥ 3,

(7.1) ω+ � ω− � ω+ =⇒ ω+ � Hn−1|G � ω+ and ω− � Hn−1|G � ω−

for some G ⊆ ∂Ω with σ-finite (n−1)-dimensional Hausdorff measure and ω±(∂Ω\G) = 0.
In [KPT09], Kenig, Preiss, and Toro proved that when Ω+ = Ω ⊂ Rn and Ω− = Rn \ Ω
are NTA domains in Rn, n ≥ 3, the mutual absolute continuity of ω+ and ω− on a set
E ⊆ ∂Ω implies that ω±|E has upper Hausdorff dimension n−1: there exists a set E ′ ⊆ E
of Hausdorff dimension n− 1 such that ω±(E \E ′) = 0, and ω±(E \E ′′) > 0 for every set
E ′′ ⊂ E with dimH E

′′ < n− 1. Moreover, in this case ω±|E � Hn−1|E � ω±|E provided
that Hn−1|∂Ω is locally finite (see Badger [Bad12], also [Bad13, Remark 6.19]). However,
at present it is still unknown whether or not (7.1) holds on domains for which Hn−1|∂Ω is
not locally finite. For some related inquiries, see the work of Lewis, Verchota, and Vogel
[LVV05], Azzam and Mourgoglou [AM15], Bortz and Hofmann [BH16], and the references
therein.

Remark 7.1 (Added in February 2017). Several months after the first version of this
paper appeared on the arXiv in September 2015, a solution to Bishop’s conjecture (7.1)
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was furnished by Azzam, Mourgoglou, and Tolsa [AMT16] and by Azzam, Mourgoglou,
Tolsa, and Volberg [AMTV16]. An important tool in these works is a new “bounded Riesz
transform” to “uniform rectifiability” criterion of Girela-Sarrión and Tolsa [GST16].

Finer information about the structure and size of the boundary under more stringent
assumptions on the relationship between ω+ and ω− has been obtained in [KT06], [Bad11],
[Bad13], [BL15], and [Eng16]. We summarize these results in Theorem 7.3 after recalling
the definition of the space VMO(dω) of functions of vanishing mean oscillation, which
extends the space of uniformly continuous bounded functions on ∂Ω.

Definition 7.2 ([KT06, Definition 4.2 and Definition 4.3]). Let Ω ⊂ Rn be an NTA
domain (with the NTA constant R =∞ when ∂Ω is unbounded) equipped with harmonic
measure ω. We say that f ∈ L2

loc(dω) belongs to BMO(dω) if and only if

sup
r>0

sup
Q∈∂Ω

( 
B(Q,r)

|f − fQ,r|2 dω
)1/2

<∞,

where fQ,r =
ffl
B(Q,r)

f dω denotes the average of f over the ball. We denote by VMO(dω)

the closure in BMO(dω) of the set of uniformly continuous bounded functions on ∂Ω.

Theorem 7.3 ([KT06, Bad11, Bad13, BL15, Eng16]). Assume that Ω+ = Ω ⊂ Rn and
Ω− = Rn \Ω are NTA domains (with the NTA constant R =∞ when ∂Ω is unbounded),
equipped with harmonic measures ω± on Ω±. If ω+ � ω− � ω+ and the Radon-Nikodym
derivative f = dω−/dω+ satisfies log f ∈ VMO(dω+), then the boundary ∂Ω satisfies the
following properties.

[KT06] There exist d ≥ 1 and M∗ > 1 depending on at most n and the NTA constants of
Ω+ and Ω− such that ∂Ω is locally bilaterally well approximated by H∗n,d.

[Bad11] ∂Ω can be partitioned into disjoint sets Γk, 1 ≤ k ≤ d, such that x ∈ Γk if and
only if x is an Fn,k point of ∂Ω. Moreover, Γ1 is dense in ∂Ω and ω±(∂Ω\Γ1) = 0.

[Bad13] Γ1 is relatively open in ∂Ω, Γ1 is locally bilaterally well approximated by Hn,1,
and Γ1 has Hausdorff dimension n− 1.

[BL15] ∂Ω has upper Minkowski dimension n− 1 and ∂Ω \ Γ1 = Γ2 ∪ · · · ∪ Γd has upper
Minkowski dimension at most n− 2.

[Eng16] If log f ∈ C l,α for some l ≥ 0 and α > 0 (resp. log f ∈ C∞, log f real analytic),
then Γ1 is a C l+1,α (resp. C∞, real analytic) (n− 1)-dimensional manifold.

Remark 7.4. The statements from [KT06] and [Bad11] recorded in Theorem 7.3 were
obtained by showing that the pseudotangent measures of the harmonic measures ω± of
Ω± are “polynomial harmonic measures” in [KT06] and by studying the “separation at
infinity” of cones of polynomial harmonic measures associated to polynomials of different
degrees in [Bad11] (also see [KPT09]). The statements from [Bad13] and [BL15] are
forerunners to and motivated the statement and proof of Theorem 1.1 in this paper.
However, we wish to emphasize that the structure theorem [Bad13, Theorem 5.10] and
dimension estimate on the singular set ∂Ω\Γ1 in [BL15, Theorem 9.3] required existence of
the decomposition from [Bad11] as part of their hypotheses. By contrast, in this paper, we
are able to establish the decomposition A = A1 ∪ · · · ∪Ad and obtain dimension estimates
on the singular set A \ A1 in Theorem 1.1 directly, without any reference to harmonic
measure or dependence on [Bad11].
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Theorem 1.1 and 1.8 of the present paper yield several new pieces of information about
the boundary of complimentary NTA domains with log f ∈ VMO(dω+), which we record
in Theorem 7.5.

Theorem 7.5. Under the hypothesis of Theorem 7.3, the boundary ∂Ω = Γ1 ∪ · · · ∪ Γd
satisfies the following additional properties.

(i) For all 1 ≤ k ≤ d, the set Uk := Γ1 ∪ . . . ∪ Γk is relatively open in ∂Ω and
Γk+1 ∪ · · · ∪ Γd is closed.

(ii) For all 1 ≤ k ≤ d, Uk is locally bilaterally well approximated by H∗∗n,k.
(iii) For all 1 ≤ k ≤ d, ∂Ω is locally bilaterally well approximated along Γk by F∗∗n,k,

i.e. lim supr↓0 supx∈K Θ
F∗∗n,k

∂Ω (x, r) = 0 for every compact set K ⊆ Γk.
(iv) For all 1 ≤ l < k ≤ d, Ul is relatively open in Uk and Γl+1 ∪ · · · ∪ Γk is relatively

closed in Uk.
(v) ∂Ω \ Γ1 = Γ2 ∪ · · · ∪ Γd has upper Minkowski dimension at most n− 3.

(vi) The “even singular set” Γ2 ∪ Γ4 ∪ · · · has Hausdorff dimension at most n− 4.
(vii) When n ≥ 3, the singular set ∂Ω \ Γ1 has Newtonian capacity zero.

Proof. Parts (i) and (iv) of the theorem are a direct consequence of Theorem 1.1. Parts
(ii) and (iii) follow from Theorem 1.1 in conjunction with Lemma 6.6, Theorem A.11, and
Remark 6.5 (see the proof of Theorem 1.8). Parts (v) and (vi) are a direct consequence
of Theorem 1.8. Newtonian capacity in Rn, n ≥ 3, is precisely the Riesz (n− 2)-capacity.
Thus, part (vii) follows from (v) and the fact that sets of finite s-dimensional Hausdorff
measure have Riesz s-capacity zero (see e.g. [MP10, Chapter 4] or [Mat95, Chapter 8]). �

Remark 7.6. The dimension bounds (v) and (vi) in Theorem 7.5 are sharp by example.
See Remark 1.10 and Remark 6.5.

Remark 7.7. The fact that ∂Ω \Γ1 has Newtonian capacity zero implies ω±(∂Ω \Γ1) = 0;
see [MP10, Chapter 8].

Appendix A. Local set approximation

A general framework for describing bilateral and unilateral approximations of a set
A ⊆ Rn by a class S of closed “model” sets is developed in [BL15]. In this appendix,
we give a brief, self-contained abstract of the main definitions and theorems from this
framework as used above, but refer the reader to [BL15] for full details and further results.
The principal results are two structure theorems for Reifenberg type sets; see Theorems
A.14 and A.17.

A.1. Distances between sets. If A,B ⊆ Rn are nonempty sets, the excess of A over
B is the asymmetric quantity defined by excess(A,B) = supa∈A infb∈B |a − b| ∈ [0,∞].
By convention, one also defines excess(∅, B) = 0, but leaves excess(A, ∅) undefined. The
excess is monotone,

excess(A,B) ≤ excess(A′, B′) whenever A ⊆ A′ and B ⊇ B′,

and satisfies the triangle inequality,

excess(A,C) ≤ excess(A,B) + excess(B,C).
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When A = {x} for some x ∈ Rn, excess({x}, B) is usually called the distance of x to B
and denoted by dist(x,B).

For all x ∈ Rn and r > 0, let B(x, r) denote the open ball with center x and radius r.
(In [BL15], B(x, r) denotes the closed ball, but see [BL15, Remark 2.4].) For arbitrary
sets A,B ⊆ Rn with B nonempty and for all x ∈ Rn and r > 0, define the relative excess
of A over B in B(x, r) by

d̃x,r(A,B) = r−1 excess(A ∩B(x, r), B) ∈ [0,∞).

Also, for all sets A,B ⊆ Rn with A and B nonempty and for all x ∈ Rn and r > 0, define
the relative Walkup-Wets distance between A and B in B(x, r) by

D̃x,r[A,B] = max
{

d̃x,r(A,B), d̃x,r(B,A)
}
∈ [0,∞).

Observe that D̃x,r[A,B] ≤ 2 if both A ∩ B(x, r) and B ∩ B(x, r) are nonempty; and

D̃x,r[A,B] ≤ 1 if both x ∈ A and x ∈ B.

Lemma A.1 ([BL15, Lemma 2.2, Remark 2.4]). Let A,B,C ⊆ Rn be nonempty sets, let
x, y ∈ Rn, and let r, s > 0.

• closure: D̃x,r[A,B] = D̃x,r[A,B] = D̃x,r[A,B] = D̃x,r[A,B].

• containment: D̃x,r[A,B] = 0 if and only if A ∩B(x, r) = B ∩B(x, r).

• quasimonotonicity: If B(x, r) ⊆ B(y, s), then D̃x,r[A,B] ≤ (s/r) D̃y,s[A,B].

• strong quasitriangle inequality: If d̃x,r(A,B) ≤ ε1 and d̃x,r(C,B) ≤ ε2, then

D̃x,r[A,C] ≤ (1 + ε2) D̃x,(1+ε2)r[A,B] + (1 + ε1) D̃x,(1+ε1)r[B,C].

• weak quasitriangle inequalities: If x ∈ B, then

D̃x,r[A,C] ≤ 2 D̃x,2r[A,B] + 2 D̃x,2r[B,C].

If B ∩B(x, r) 6= ∅, then

D̃x,r[A,B] ≤ 3 D̃x,3r[A,B] + 3 D̃x,3r[B,C].

• scale invariance: D̃x,r[A,B] = D̃λx,λr[λA, λB] for all λ > 0.

• translation invariance: D̃x,r[A,B] = D̃x+z,r[z + A, z +B] for all z ∈ Rn.

Remark A.2. The relative Hausdorff distance between A and B in B(x, r), defined by

Dx,r[A,B] = r−1 max
{

excess(A ∩B(x, r), B ∩B(x, r)),

excess(B ∩B(x, r), A ∩B(x, r))
}

whenever A ∩ B(x, r) and B ∩ B(x, r) are both nonempty, is a common, better-known

variant of the relative Walkup-Wets distance. We note that D̃x,r[A,B] ≤ Dx,r[A,B]
whenever both quantities are defined. Although the relative Hausdorff distance satisfies
the triangle inequality rather than just the weak and strong quasitriangle inequalities
enjoyed by the relative Walkup-Wets distance, the relative Hausdorff distance fails to
be quasimonotone (see [BL15, Remark 2.3]). This makes the relative Hausdorff distance
unsuitable for use in the local set aproximation framework below. The use of the relative
Walkup-Wets distance is deliberate and ensures that one can obtain structure theorems
for Reifenberg type sets.
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A.2. Attouch-Wets topology, tangent sets, and pseudotangent sets. Let C(Rn)
denote the collection of all nonempty closed sets in Rn. Let C(0) denote the subcollection
of all nonempty closed sets in Rn containing the origin. We endow C(Rn) and C(0) with
the Attouch-Wets topology (see [Bee93, Chapter 3] or [RW98, Chapter 4]; i.e. the topology
described by the following theorem.

Theorem A.3 ([BL15, Theorem 2.5]). There exists a metrizable topology on C(Rn) in
which a sequence (Ai)

∞
i=1 in C(Rn) converges to a set A ∈ C(Rn) if and only if

lim
i→∞

excess(Ai ∩B(0, r), A) = 0 and lim
i→∞

excess(A ∩B(0, r), Ai) = 0 for all r > 0.

Moreover, in this topology, C(0) is sequentially compact; i.e. for any sequence (Ai)
∞
i=1 in

C(0) there exists a subsequence (Aij)
∞
j=1 and A ∈ C(0) such that (Aij)

∞
j=1 converges to A

in the sense above.

We write Ai → A or A = limi→∞A (in C(Rn)) to denote that a sequence of (Ai)
∞
i=1 in

C(Rn) converges to a set A ∈ C(Rn) in the Attouch-Wets topology. If each set Ai ∈ C(0),
then we may write Ai → A in C(0) to emphasize that the limit A ∈ C(0), as well.

Lemma A.4 ([BL15, Lemma 2.6]). Let A,A1, A2, · · · ∈ C(Rn). The following statements
are equivalent:

(i) Ai → A in C(Rn);

(ii) limi→∞ D̃x,r[Ai, A] = 0 for all x ∈ Rn and for all r > 0;

(iii) limi→∞ D̃x0,rj [Ai, A] = 0 for some x0 ∈ Rn and for some sequence rj →∞.

The notions of tangent sets and pseudotangent sets of a closed set in the following
definition are modeled on notions of tangent measures (introduced by Preiss [Pre87]) and
pseudotangent measures (introduced by Kenig and Toro [KT99]) of a Radon measure.

Definition A.5 ([BL15, Definition 3.1]). Let T ∈ C(0), let A ∈ C(Rn), and let x ∈ A.
We say that T is a pseudotangent set of A at x if there exist sequences xi ∈ A and ri > 0
such that xi → x, ri → 0, and

A− xi
ri

→ T in C(0).

If xi = x for all i, then we call T a tangent set of A at x. Let Ψ-Tan(A, x) and Tan(A, x)
denote the collections of all pseudotangent sets of A at x and all tangent sets of A at x,
respectively.

Lemma A.6 ([BL15, Remark 3.3, Lemma 3.4, Lemma 3.5]). Tan(A, x) and Ψ-Tan(A, x)
are closed in C(0) and are nonempty for all A ∈ C(Rn) and x ∈ A. Moreover,

• If T ∈ Tan(A, x) and λ > 0, then λA ∈ Tan(A, x).
• If T ∈ Ψ-Tan(A, x) and λ > 0, then λT ∈ Ψ-Tan(A, x).
• If T ∈ Ψ-Tan(A, x) and y ∈ T , then T − y ∈ Ψ-Tan(A, x).

A.3. Reifenberg type sets and Mattila-Vuorinen type sets.

Definition A.7 ([BL15, Definition 4.1 and Definition 4.7]). Let A ⊆ Rn be nonempty.

(i) A local approximation class S is a nonempty collection of closed sets in C(0) such
that S is a cone; that is, for all S ∈ S and λ > 0, λS ∈ S.
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(ii) For every x ∈ Rn and r > 0, define the bilateral approximability ΘSA(x, r) of A by
S at location x and scale r by

ΘSA = inf
S∈S

D̃x,r[A, x+ S] ∈ [0,∞).

(iii) We say that x ∈ A is an S point of A if limr↓0 ΘSA(x, r) = 0.
(iv) We say that A is locally bilaterally ε-approximable by S if for every compact set

K ⊆ A there exists rK such that ΘSA(x, r) ≤ ε for all x ∈ K and 0 < r ≤ rK .
(v) We say that A is locally bilaterally well approximated by S if A is locally bilaterally

ε-approximable by S for all ε > 0.
(vi) For every x ∈ Rn and r > 0, define the unilateral approximability βSA(x, r) of A

by S at location x and scale r by

βSA(x, r) = inf
S∈S

d̃x,r(A, x+ S) ∈ [0, 1].

(vii) We say that A is locally unilaterally ε-approximable by S if for every compact set
K ⊆ A there exists rK such that βSA(x, r) ≤ ε for all x ∈ K and 0 < r ≤ rK .

(viii) We say that A is locally unilaterally well approximated by S if A is locally unilat-
erally ε-approximable by S for all ε > 0.

Remark A.8. Sets that are bilaterally approximated by S are called Reifenberg type sets
and sets that are unilaterally approximated by S are called Mattila-Vuorinen type sets
with deference to pioneering work of Reifenberg [Rei60] and Mattila and Vuorinen [MV90],
which investigated, respectively, regularity of sets that admit locally uniform bilateral
and unilateral approximations by S = G(n,m), the Grassmannian of m-dimensional
subspaces of Rn. The concept of (unilateral) approximation numbers first appeared in
the work of Jones [Jon90] in connection with the Analyst’s traveling salesman theorem.
For additional background, including examples of Reifenberg type sets that have appeared
in the literature, see the introduction of [BL15].

Remark A.9. For any nonempty closed set A ⊆ Rn and point x ∈ A, the set Tan(A, x)
of tangent sets of A at x and the set Ψ-Tan(A, x) of pseudotangent sets of A at x are
local approximation classes by Lemma A.6. We also note that from the definitions, it is
immediate that any set A ⊆ Rn which is locally bilaterally well approximated by some
local approximation class S is also locally unilaterally well approximated by S.

The following essential properties of bilateral approximation numbers appear across a
number of lemmas in [BL15, §4], which we consolidate into a single theorem statement.
See [BL15, Lemma 7.2] for the analogous properties of unilateral approximation numbers.

Lemma A.10 ([BL15, §4, Remark 2.4]). Let S be a local approximation class, let A ⊆ Rn

be nonempty, let x, y ∈ Rn, and let r, s > 0.

• size: 0 ≤ ΘSA(x, r)− dist(x,A)/r ≤ 1; thus, 0 ≤ ΘSA(x, r) ≤ 1 for all x ∈ A.
• scale invariance: ΘSA(x, r) = ΘSλA(λx, λr) for all λ > 0.
• translation invariance: ΘSA(x, r) = ΘSA+z(x+ z, r) for all z ∈ Rn.
• closure: ΘSA(x, r) = ΘS

A
(x, r)

• quasimonotonicity: If B(x, r) ⊆ B(y, s) and |x− y| ≤ ts, then

ΘSA(x, r) ≤ s

r

[
t+ (1 + t)ΘSA(y, (1 + t)s)

]
.
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In particular, if r < s, then ΘSA(x, r) ≤ (s/r)ΘSA(x, s).
• limits: If A,A1, A2, · · · ∈ C(Rn) and Ai → A in C(Rn), then

1

1 + ε
lim sup
i→∞

ΘSAi

(
x,

r

1 + ε

)
≤ΘSA(x, r) ≤ (1 + ε) lim inf

i→∞
ΘSAi

(x, r(1 + ε)) for all ε > 0.
.

The notions of S points and locally bilaterally and unilaterally well approximated sets
admit the following characterizations in terms of tangent sets and pseudotangent sets.
Here S denotes the closure of S in C(0) with respect to the Attouch-Wets topology.

Theorem A.11 ([BL15, Corollary 4.12, Corollary 4.15, Lemma 7.7, Theorem 7.10]). Let
S be a local approximation class and let A ⊆ Rn be a nonempty set and let x0 ∈ A. Then

(i) x0 is an S point of A if and only if Tan(A, x0) ⊆ S;
(ii) A is locally bilaterally well approximated by S if and only if

Ψ-Tan(A, x) ⊆ S for all x ∈ A;

(iii) A is locally unilaterally well approximated by S if and only if

Ψ-Tan(A, x) ⊆ {T ∈ C(0) : T ⊆ S for some S ∈ S} for all x ∈ A.
A.4. Detectability and structure theorems for Reifenberg type sets.

Definition A.12 ([BL15, Definition 5.8]). Let T and S be local approximation classes.
We say that T points are detectable in S if there exist a constant φ > 0 and a function
Φ : (0, 1) → (0,∞) with lim infs→0+ Φ(s) = 0 such that if S ∈ S and ΘTS (0, r) < φ, then
ΘTS (0, sr) < Φ(s) for all s ∈ (0, 1). To emphasize a choice of φ and Φ, we may say that T
points are (φ,Φ) detectable in S.

Definition A.13 ([BL15, Definition 5.1]). Let T be a local approximation class. The
bilateral singular class of T is the local approximation class T ⊥ given by

T ⊥ = {Z ∈ C(0) : lim inf
r↓0

ΘTZ (0, r) > 0} = {Z ∈ C(0) : Tan(Z, 0) ∩ T = ∅}.

The following structure theorem decomposes a set A ⊆ Rn that is locally bilaterally
well approximated by S into an open “regular part” AT and closed “singular part” AT ⊥ ,
on the condition that “regular” T points are detectable in S.

Theorem A.14 ([BL15, Theorem 6.2, Corollary 6.6, Corollary 5.12]). Let T and S be
local approximation classes. Suppose T points are (φ,Φ) detectable in S. If A ⊆ Rn is
locally bilaterally well approximated by S, then A can be written as a disjoint union

A = AT ∪ AT ⊥ (AT ∩ AT ⊥ = ∅),
where

(i) Ψ-Tan(A, x) ⊆ S ∩ T for all x ∈ AT , and
(ii) Tan(A, x) ⊆ S ∩ T ⊥ = {S ∈ S : ΘTS (0, r) ≥ φ for all r > 0} for all x ∈ AT ⊥.

Moreover:

(iii) AT is relatively open in A and AT is locally bilaterally well approximated by T .
(iv) A is locally bilaterally well approximated along AT ⊥ by S ∩ T ⊥ in the sense that

lim supr↓0 supx∈K ΘS∩T
⊥

A (x, r) = 0 for all compact sets K ⊆ AT ⊥.
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Remark A.15. Suppose T points are (φ,Φ) detectable in S and A is locally bilaterally
well approximated by S. From the proof that AT is open in the proof of [BL15, Theorem
6.2], there exist constants α, β > 0 depending only on φ and Φ such that if ΘSA(x, r′) < α
for all 0 < r′ ≤ r and ΘTA(x, r) < β for some x ∈ A and r > 0, then x ∈ AT .

A local approximation class S is called translation invariant if for all S ∈ S and x ∈ S,
S − x ∈ S. It is an exercise to show that if S is translation invariant, then its closure S
is translation invariant, as well. If T and S are local approximation classes such that

(A.1) S is translation invariant, and T points are (φ,Φ) detectable in S,

then every set X ∈ S is locally (in fact, globally) bilaterally well approximated by S,
whence X = XT ∪XT ⊥ and XT ⊥ is closed (since X is closed) by Theorem A.14.

Definition A.16 ([BL15, Definition 7.12]). Let T and S be local approximation classes.
Assume (A.1). We define the local approximation class of T singular parts of sets in S
by singT S = {XT ⊥ : X ∈ S and 0 ∈ XT ⊥}.

Theorem A.17 ([BL15, Theorem 7.14]). Let T and S be local approximation classes.
Assume (A.1). If A ⊆ Rn is locally bilaterally well approximated by S, then AT ⊥ is locally
unilaterally well approximated by singT S.

A.5. Covering profiles and dimension bounds for Mattila-Vuorinen type sets.
Finally, we record two upper bounds on the dimension of sets that are locally unilaterally
well approximated by a local approximation class S with a uniform covering profile.
Additional quantitative bounds for locally unilaterally ε-approximable sets may be found
in [BL15, §8].

For reference, let us recall a definition of Minkowski dimension; e.g., see [Mat95].

Definition A.18. Let A ⊆ Rn, let x ∈ Rn, and let r, s > 0. The (intrinsic) s-covering
number of A is defined by

N(A, s) := min

{
k ≥ 0 : A ⊆

k⋃
i=1

B(ai, s) for some ai ∈ A

}
.

For bounded sets A ⊆ Rn, the upper Minkowski dimension of A is given by

dimM(A) = lim sup
s↓0

log (N(A, s))

log(1/s)
.

For unbounded sets A ⊆ Rn, the upper Minkowski dimension of A is given by

dimM(A) = lim
t↑∞

(
dimM A ∩B(0, t)

)
.

Letting dimH(A) denote the usual Hausdorff dimension of a set A ⊆ Rn,

0 ≤ dimH(A) ≤ dimM(A) ≤ n for all A ⊆ Rn,

with dimH(A) < dimM(A) for certain sets. For the definition of Hausdorff dimension,
several equivalent definitions of Minkowski dimension, and related results, we refer the
reader to Mattila [Mat95].
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Definition A.19 ([BL15, Definition 8.2 and 8.4]). Let S be a local approximation class.
We say that S has an (α,C, s0) covering profile for some α > 0, C > 0, and s0 ∈ (0, 1]
provided N(S ∩B(0, r), sr) ≤ Cs−α for all S ∈ S, r > 0, and s ∈ (0, s0].

Theorem A.20 ([BL15, Corollary 8.9]). Let S be a local approximation class such that
S has an (α,C, s0) covering profile. If A ⊆ Rn is closed and A is locally unilaterally well
approximated by S, then dimM(A) ≤ α.

Theorem A.21 ([BL15, Corollary 8.12]). Let S be a local approximation class such that
S has an (α,C, s0) covering profile. If the subspace topology on A ⊆ Rn is σ-compact and
A is locally unilaterally well approximated by S, then dimH(A) ≤ α.

Appendix B. Limits of complimentary NTA domains

For reference, let us recall that a connected open set Ω ⊂ Rn is called an NTA domain
(see Definition 6.1 and Remark 6.2) if there exist constants M > 1 and R > 0 for which
the following are true:

(i) Ω satisfies the corkscrew condition: for all Q ∈ ∂Ω and 0 < r < R, there exists
x ∈ Ω ∩B(Q, r) such that dist(x, ∂Ω) > M−1r.

(ii) Rn \ Ω satisfies the corkscrew condition.
(iii) Ω satisfies the Harnack chain condition: If x1, x2 ∈ Ω∩B(Q, r/4) for some Q ∈ ∂Ω

and 0 < r < R, and dist(x1, ∂Ω) > δ, dist(x2, ∂Ω) > δ, and |x1 − x2| < 2lδ for
some δ > 0 and l ≥ 1, then there exists a chain of no more than Ml overlapping
balls connecting x1 to x2 in Ω such that for each ball B = B(x, s) in the chain:

M−1s < gap(B, ∂Ω) < Ms, gap(B, ∂Ω) = inf
x∈B

inf
y∈∂Ω
|x− y|,

diamB >M−1 min{dist(x1, ∂Ω), dist(x2, ∂Ω)}, diamB = sup
x,y∈B

|x− y|.

The constants M and R are called NTA constants of Ω, and the value R =∞ is allowed
when ∂Ω is unbounded. Lemma 6.3 asserts that if Rn \ Γi = Ω+

i ∪Ω−i , where Ω+
i and Ω−i

are complimentary NTA domains with NTA constants M and R independent of i, and
Γi → Γ 6= ∅ in the Attouch-Wets topology, then Rn \Γ = Ω+ ∪Ω−, where Ω+ and Ω− are
complimentary NTA domains with constants 2M and R.

Proof of Lemma 6.3. Assume that we are given a sequence (Γi,Ω
+
i ,Ω

−
i ), constants M and

R, and a set Γ satisfying the hypothesis of the lemma. We note and will frequently use

below that Rn \Ω±i = Ω∓i , Γi = ∂Ω±i , and Rn = Ω+
i ∪Γi ∪Ω−i by the separation condition

on Γi and the corkscrew conditions for Ω±i .
Step 0 (Definition of Ω+ and Ω−). Because the sequence (Γi)

∞
i=1 does not escape to

infinity (as Γi → Γ), neither do (Ω±i )∞i=1. Thus, there is a subsequence of (Γi,Ω
+
i ,Ω

−
i )

(which we relabel) and nonempty closed sets F+, F− ⊆ Rn such that Ω±i → F±. Here
and below, convergence of a sequence of nonempty closed sets in Rn is always taken with
respect to the Attouch-Wets topology; we refer the reader to §§A.1 and A.2 above for a
brief introduction to this topology and to [RW98, Chapter 4] or [Bee93, Chapter 3] for
the rest of the story. Consider the open sets Ω+ and Ω− defined by

Ω+ = Rn \ F− and Ω− = Rn \ F+.
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We will show that Rn \ Γ = Ω+ ∪ Ω− and Ω+ and Ω− are complementary NTA domains
with NTA constants 2M and R.

Step 1
2

(Ω+, Γ, and Ω− are disjoint). First, because Γi ⊆ Ω±i for all i ≥ 1, Γi → Γ, and

Ω±i → F±, we have Γ ⊆ F±, as well. Hence, by definition of Ω±,

Γ ∩ Ω± ⊆ F∓ ∩ Ω± = F∓ \ F∓ = ∅.
Next, suppose that x ∈ Ω±. Then x 6∈ F∓, whence dist(x, F∓) = δ for some δ > 0. Since

Ω∓i → F∓, it follows that dist(x,Ω∓i ) ≥ δ/2 for all i � 1. In particular, x ∈ Ω±i ⊆ Ω±i
for all i� 1, because Rn \ Ω∓i = Ω±i . Since Ω±i → F±, we obtain x ∈ F±. Thus, x 6∈ Ω∓

whenever x ∈ Ω±. We conclude that Ω+ ∩ Ω− = ∅.
Step 1 (Rn = Ω+ ∪ Γ ∪ Ω−). Let x ∈ Rn. Because Rn = Ω+

i ∪ Ω−i , at least one of the

following alternatives occur: x ∈ Ω+
i for infinitely many i or x ∈ Ω−i for infinitely many i.

Hence x ∈ F+ or x ∈ F−, since Ω+
i → F+ and Ω−i → F−. As x was arbitrary, we have

Rn = F+ ∪ F− = (F+ \ F−) ∪ (F+ ∩ F−) ∪ (F− \ F+) = Ω+ ∪ (F+ ∩ F−) ∩ Ω−.

Therefore, as soon as we show that F+ ∩ F− = Γ, we will have Rn = Ω+ ∪ Γ ∪ Ω+.

To prove that F+∩F− ⊆ Γ, suppose that y ∈ F+∩F−. Since Ω±i → F±, we can locate

points y±i ∈ Ω±i such that y±i → y. The line segment between y+ and y− must intersect

Γi = Ω+
i ∩ Ω−i , say Qi ∈ [y+

i , y
−
i ] ∩ Γi. Then Qi → y, and because Γi → Γ, we obtain

y ∈ Γ. Thus, F+ ∩ F− ⊆ Γ.
To prove that Γ ⊆ F+ ∩ F−, suppose that z ∈ Γ. Since Γi → Γ, there exists zi ∈ Γi

such that zi → Γ. Because Γi = ∂Ω+ = ∂Ω−, we can locate points z±i ∈ Ω±i ∩ B(zi, 1/i).

Then z±i → z, and because Ω±i → F±, we obtain z ∈ F+ ∩ F−. Thus, Γ ⊆ F+ ∩ F−.
Step 3

2
(∂Ω± ⊆ Γ). Since Ω+ and Ω− are open and disjoint (Steps 0 and 1

2
), Ω±

coincides with the interior of Ω± and Ω∓ is contained in the exterior of Ω±. Therefore,
the boundary of Ω± must be contained in Rn \ (Ω± ∪ Ω∓) = Γ (Step 1).

Step 2 (Corkscrew condition for Ω±). Suppose that Q ∈ ∂Ω± and 0 < r < R. By Step
3
2
, Q ∈ Γ. Since Γi → Γ, there exists Qi ∈ Γi = ∂Ω±i such that Qi → Q. By the corkscrew

condition for Ω±i , there exists a point y±i ∈ Ω±i ∩B(Qi,
3
4
r) such that

dist(y±i ,Ω
∓
i ) = dist(y±i , ∂Ω±i ) > 3

4
r/M.

Assume i ≥ 1 is sufficiently large such that

y±i ∈ B(Qi,
3
4
r) ⊂ B(Q, 4

5
r) and dist(y±i , F

∓) ≤ |y±i −Q| < 4
5
r.

Then dist(y±i , F
∓) = dist(y±i , F

∓∩B(Q, 4
5
r)). Hence, by the triangle inequality for excess,

dist(y±i ,Ω
∓
i ) ≤ dist(y±i , F

∓ ∩B(Q, 4
5
r)) + excess(F∓ ∩B(Q, 4

5
r),Ω∓i )

= dist(y±i , F
∓) + excess(F∓ ∩B(Q, 4

5
r),Ω∓i ).

The last term vanishes as i→∞, since Ω∓i → F∓ in the Attouch-Wets topology. Thus,

(B.1) dist(y±i , F
∓) ≥ dist(y±i ,Ω

∓
i )− excess(F∓ ∩B(Q, 4

5
r),Ω∓i ) > 2

3
r/M for all i� 1.

By compactness, we can choose subsequences (y±ij)
∞
j=1 of (y±i )∞i=1 such that y±ij → y± for

some y± ∈ B(Q, 4
5
r) ⊂ B(Q, r). By (B.1), it follows that dist(y±, F∓) ≥ 2

3
r/M > 1

2
r/M.
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Thus, y± ∈ Ω± ∩B(Q, r) and

dist(y±, ∂Ω±) = dist(y±, F∓) > 1
2
r/M.

Therefore, Ω± satisfies the corkscrew condition with constants 2M and R. We note that
by an obvious modification of the argument, one can show that Ω± satisfies the corkscrew
condition with constants M ′ and R for all M ′ > M .

Step 5
2

(∂Ω± = Γ). By Step 3
2
, ∂Ω± ⊆ Γ. To see that Γ ⊆ ∂Ω±, suppose that Q ∈ Γ.

By the proof of Step 2, the ball B(Q, r) contains points in Ω± for all 0 < r < R. Because
Ω∓ is disjoint from Ω±, it follows that Q ∈ ∂Ω±. We conclude that ∂Ω± = Γ.

Step 3 (Harnack chain condition for Ω±). Assume that x1, x2 ∈ Ω± ∩ B(Q, r/4) for
some Q ∈ Γ = ∂Ω± and 0 < r < R. Furthermore, assume that δ1 := dist(x1, ∂Ω) > δ,
δ2 := dist(x2, ∂Ω) > δ, and |x1 − x2| < 2lδ for some δ > 0 and l ≥ 1. We must show that
x1 can be connected to x2 in Ω± by a “short” chain of balls in Ω± remaining “far away”
from the boundary ∂Ω±, or equivalently, remaining “far away” from F∓. Since Γi → Γ,

there exists Qi ∈ Ω±i such that Qi → Q. Because Ω∓i → F∓ in the Attouch-Wets topology,
for all i ≥ 1 sufficiently large, r(1 + |Q−Qi|) < R, x1, x2 ∈ Ω±i ∩B(Qi, r(1 + |Q−Qi|)/4),
and

dist(x1, ∂Ω±i ) > δ1/2 > δ/2, dist(x2, ∂Ω±i ) > δ2/2 > δ/2,

and |x1 − x2| < 2lδ = 2l+1δ/2.

(The details are similar to those written in the proof of the corkscrew condition in Step 2.)
By the Harnack chain condition for Ω±i , we can find a chain of no more than M(l + 1) ≤
2Ml balls connecting x1 to x2 in Ω±i such that for each ball B = B(x, s) in the chain,

M−1s < gap(B, ∂Ω±i ) < Ms

and

diamB > M−1 min{dist(x1, ∂Ω±i ), dist(x2, ∂Ω±i )}.

Since Ω∓i → F∓ in the Attouch-Wets topology, it follows that for all sufficiently large i,

(2M)−1s < gap(B, ∂Ω±) < 2Ms

and

diamB > (2M)−1 min{dist(x1, ∂Ω±), dist(x2, ∂Ω±)}.
(Again, the details are similar to those in Step 2.) By the gap condition, we also know
each ball in the chain belongs to Ω±. Therefore, Ω± satisfies the Harnack chain condition
with constants 2M and R. We remark that given the discrete nature of the constant in
the Harnack chain condition (counting balls), we cannot expect to be able to replace 2M
by λM for arbitrary λ > 1.

Step 4 (Ω+ and Ω− are connected). It is well known that every NTA domain is a
uniform domain with constants that depend only on the interior corkscrew condition and
Harnack chain condition; e.g., see [AHM+14, Theorem 2.15]. Explicitly, this means that
for every M > 1 and R > 0, there exists C > 1 and c ∈ (0, 1) such that for every NTA
domain Ω ⊆ Rn with NTA constants M and R, and for every x0, x1 ∈ Ω, there exists a
continuous path γ : [0, 1] → Ω such that γ(0) = x0, γ(1) = x1, length(γ) ≤ C|x0 − x1|,
and dist(γ(t), ∂Ω) ≥ cmin{dist(x0, ∂Ω), dist(x1, ∂Ω)} for all t ∈ [0, 1].
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Let x0 and x1 be arbitrary distinct points in Ω±, and set

δ = min{dist(x0, ∂Ω±), dist(x1, ∂Ω±)} = min{dist(x0, F
∓), dist(x1, F

∓)}.

Assign B = B(x0, 3C|x0−x1|+3δ), where C is the constant from the previous paragraph.
Note that B contains x0, x1, and every path passing through x0 of length no greater than
C|x0 − x1|, and the closest point in F∓ for each item listed above, with room to spare.

Since Ω∓i → F∓ in the Attouch-Wets topology,

(B.2) excess(Ω∓i ∩B,F∓) < 1
3
cδ and excess(F∓ ∩B,Ω∓i ) < 1

3
cδ for all i� 1,

where c is the constant from the previous paragraph. Pick any i such that (B.2) holds.

Then dist(x0,Ω
∓
i ) ≥ (1 − c/3)δ > 2

3
δ and dist(x1,Ω

∓
i ) ≥ (1 − c/3)δ > 2

3
δ. In particular,

x0, x1 ∈ Ω±i and min{dist(x0, ∂Ω±i ), dist(x1, ∂Ω±i )} > 2
3
δ. Since Ω±i is an NTA domain

with NTA constants M and R, by the previous paragraph we can find a continuous
path γ : [0, 1] → Ω±i such that γ(0) = x0, γ(1) = x1, length(γ) ≤ C|x0 − x1|, and

dist(γ(t),Ω∓i ) = dist(γ(t), ∂Ω±i ) > 2
3
cδ for all t ∈ [0, 1]. Using (B.2) once again, we obtain

dist(γ(t), F∓) > 1
3
cδ for all t ∈ [0, 1]. In particular, γ(t) ∈ Ω± for all t ∈ [0, 1]. Thus,

γ is a continuous path joining x0 to x1 inside the set Ω±. Since x0 and x1 were fixed
arbitrarily, we conclude that Ω± is connected.

Conclusion. We have shown that Rn \ Γ = Ω+ ∪ Ω− (Step 1), where Ω+ and Ω−

are open (Step 0), connected (Step 4), and satisfy corkscrew (Step 2) and Harnack chain
conditions (Step 3) with constants 2M and R. Therefore, Rn\Γ = Ω+∪Ω− is the union of
complimentary NTA domains Ω+ and Ω− with NTA constants 2M and R, as desired. �
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