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Abstract

We investigate the interplay between the local and asymptotic geometry of a set A ⊆ Rn and the
geometry of model sets S ⊂ P(Rn), which approximate A locally uniformly on small scales. The
framework for local set approximation developed in this paper unifies and extends ideas of Jones,
Mattila and Vuorinen, Reifenberg, and Preiss. We indicate several applications of this framework to
variational problems that arise in geometric measure theory and partial differential equations. For
instance, we show that the singular part of the support of an (n − 1)-dimensional asymptotically
optimally doubling measure in Rn (n > 4) has upper Minkowski dimension at most n − 4.

2010 Mathematics Subject Classification: 49J52 (primary); 28A75, 35R35, 49Q20 (secondary)

1. Introduction

In this article, we investigate the structure and size of sets A ⊆ Rn that admit
uniform local approximations by a class of model sets S . The sets A that we
consider have one of the following forms.

METADEFINITION.

• A is locally ε-approximable by S if for every compact set K ⊆ A there is some
initial scale rK > 0 such that for all x ∈ K and 0 < r 6 rK there is a model set
Sx,r ∈ S such that A is ε-close to Sx,r near x at scale r .
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• A is locally well approximated by S if A is locally ε-approximable by S for all
ε > 0.

For example, when S = G(n,m) is the Grassmannian of m-dimensional
subspaces of Rn , an embedded C1 submanifold Mm ⊆ Rn is locally well
approximated by S . However, since no stability conditions are imposed on
the approximating sets Sx,r in the metadefinition, sets that are locally well
approximated by G(n,m) in general may not admit classical tangent planes or
may even have locally infinite m-dimensional Hausdorff measure.

Different meanings may be attached to the phrase ‘A is ε-close to Sx,r near
x at scale r ’ appearing in the metadefinition, resulting in different models of
local set approximation. The principal distinction between models of local
set approximation that have appeared in the literature is the directionality
of approximation: that is, the symmetry or asymmetry of approximation
measurements. On the one hand, if the distance between an approximated
set A and an approximating set Sx,r is measured by how close A is to Sx,r and by
how close Sx,r is to A, then the approximation is bilateral. On the other hand, if
the distance between A and its approximant Sx,r is measured only by how close A
is to Sx,r , then the approximation is unilateral. The decision to use a bilateral or
unilateral approximation model should depend on the application of the model.

EXAMPLE 1.1 (S = G(n,m), bilateral approximation: Reifenberg flat sets).
The prototypical example of local set approximation is due to Reifenberg [31],
who considered sets that admit uniform local bilateral approximations by m-
dimensional planes in Rn (1 6 m 6 n − 1) to study the regularity of solutions of
the Plateau problem in arbitrary codimension n − m. Following [14], these sets
are now called Reifenberg flat sets.

A set A ⊆ Rn is (ε, r0) Reifenberg flat if for all x ∈ A and 0 < r 6 r0

there exists a plane Px,r ∈ G(n,m) such that dist(a, x+ Px,r ) 6 εr for
all a ∈ A∩B(x, r) and dist(p, A)6 εr for all p ∈ (x+Px,r )∩B(x, r).

The main result on Reifenberg flat sets in [31] is Reifenberg’s topological disk
theorem: for all 1 6 m 6 n−1 there exists δ = δ(n,m) > 0 such that, if A ⊆ Rn is
closed and (δ, r0)Reifenberg flat for some r0 > 0, then A is locally homeomorphic
to a ball in Rm . For a detailed formulation of Reifenberg’s topological disk
theorem, see [10].

EXAMPLE 1.2 (S = G(n,m), unilateral approximation: linear approximation
property). Mattila and Vuorinen [25] introduced a unilateral local approximation
scheme in the context of obtaining dimension bounds on quasiconformal images
of spheres.
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Figure 1. The class M consists of planes, Y -type sets, and T -type sets.

A set A ⊆ Rn has the m-dimensional (ε, r0) linear approximation
property if for all x ∈ A and 0 < r 6 r0 there exists a plane Px,r ∈
G(n,m) such that dist(a, x + Px,r ) 6 εr for all a ∈ A ∩ B(x, r).

Mattila and Vuorinen proved that for all 1 6 m 6 n − 1 there exists C = C(n,
m) > 1 such that, if A ⊆ Rn has the m-dimensional (ε, r0) linear approximation
property for some r0 > 0, then the upper Minkowski dimension of A is at most
m +Cε2. Simple examples (variations on the Von Koch snowflake) show that the
dependence on ε in the dimension bound is sharp.

Additional approximation schemes of Reifenberg type have appeared in several
contexts. The common feature of these models is that local errors are measured
bilaterally in terms of the mutual distance between the approximated set A and
the approximating sets Sx,r .

EXAMPLE 1.3 (S = two-dimensional Almgren minimal cones in R3, bilateral
approximation). Let M denote the collection of two-dimensional Almgren
minimal cones in R3, which by the classification of Taylor [33] have one of three
fundamental types (see Figure 1). The first type of minimal cones are planes. The
second type of minimal cones are Y -type sets, which are unions of three half
planes whose boundaries meet at 120◦ along a line. The third and final type of
minimal cones are T -type sets, which can be described as six-sheeted cones over
the spine of a regular tetrahedron.

In [6], David, De Pauw, and Toro generalize Reifenberg’s topological disk
theorem to sets that are locally approximable by M. That is, they prove that
there exists δ > 0 such that, if A ⊆ R3 is closed and locally δ-approximable in
the sense of Example 1.1, but with approximating planes Px,r ∈ G(n,m) replaced
by approximating minimal cones Mx,r ∈M, then A is locally homeomorphic to
an open subset of a plane, a Y -type set, or a T -type set. Moreover, they show that
A decomposes into three sets A = A1 ∪ A2 ∪ A3, where A1 is locally Reifenberg
flat, A looks like a Y -type set whose spine contains x near each x ∈ A2, and A
looks like a T -type set with vertex at x near each x ∈ A3.
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EXAMPLE 1.4 (S = graphs of Lipschitz functions, bilateral approximation).
Let L = L(n, N ) denote the collection of all (rotations of) graphs of Lipschitz
functions f : Rn−1→ R such that f (0) = 0 and f has Lipschitz constant at most
N . In [20], Lewis and Nyström investigated the boundary behavior of solutions
to the p-Laplace equation (a canonical nonlinear degenerate elliptic equation)
in certain rough domains whose boundaries admit local uniform approximations
by L in a Hausdorff distance sense. This class includes Lipschitz domains and
domains whose boundaries are Reifenberg flat.

EXAMPLE 1.5 (S = zero sets of harmonic polynomials in Rn , bilateral
approximation). Let H =H(n, d) denote the class of all zero sets of nonconstant
harmonic polynomials p : Rn → R of degree at most d such that p(0) = 0.
In [13], Kenig and Toro showed that solutions for a certain two-phase free
boundary problem for harmonic measures on two-sided domains in Rn are locally
well approximated by H in a Hausdorff distance sense. Refined information
about the structure and size of the free boundary was obtained by Badger [1, 2]
by studying the geometry of abstract sets approximated by H and measures on
their support. For instance, in [2], Badger showed that, if A ⊆ Rn is closed, A is
locally well approximated by H, and A looks pointwise on small scales like the
zero set of a homogeneous harmonic polynomial, then A = A1 ∪ A2, where A1

is locally well approximated by G(n, n − 1), while near each x ∈ A2 the set A
looks locally like the zero set of a homogeneous harmonic polynomial of degree
at least 2.

EXAMPLE 1.6 (S = supports of m-uniform measures in Rn , bilateral
approximation). A Borel measure µ on Rn is m-uniform if µ(B(x, r)) = c rm

for all x in the support of µ and for all r > 0. A Borel measure µ on Rn is
m-asymptotically optimally doubling if

R(µ, K , r) := sup
x∈K

sup
1/26τ61

∣∣∣∣µ(B(x, τr))
µ(B(x, r))

− τm

∣∣∣∣→ 0 as r ↓ 0

for every compact set K in the support of µ. Let U = U(n,m) denote the
collection of supports of m-uniform measures in Rn . The support of an m-
asymptotically optimally doubling measure in Rn is locally well approximated
by U (see [21, Theorem 3.8]).

In [17], Kowalski and Preiss showed that the support of an (n − 1)-uniform
measure in Rn is either an (n − 1)-dimensional plane or the light cone C = {x ∈
Rn : x2

1 + x2
2 + x2

3 = x2
4} (in some orthonormal coordinates). Uniform measures

in codimension n − m > 2 have resisted a complete classification, but partial
descriptions of them have been given by Preiss [30], Kirchheim and Preiss [16],
and Tolsa [34]. The structure of m-asymptotically optimally doubling measures µ
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whose doubling characteristic decays locally uniformly at a Hölder rate (that
is R(µ, K , r) 6 CK rα for all 0 < r 6 rK ) was studied by David et al. [7],
Preiss et al. [29], and Lewis [21]. In [7, 29], it was proved that the support of
µ is an m-dimensional C1,β submanifold of Rn away from a closed set of zero
m-dimensional Hausdorff measure. Furthermore, Preiss, Tolsa, and Toro prove
that when m = n − 1 the support of µ is an m-dimensional C1,β submanifold
away from a closed set of Hausdorff dimension at most n − 4. Recently, in [21],
Lewis has proved that when n = 4 and m = 3 the support of µ admits local C1,β

parameterizations at every point either by open subsets of a three-dimensional
plane or by open subsets of the light cone C .

Unilateral local approximation of sets by G(n,m) was introduced
independently by Jones [11], and it is now an important tool in the theory
of quantitative rectifiability (for example, see [8]).

EXAMPLE 1.7. In [11], Jones introduced the idea of a unilateral approximation
number, now called a Jones beta number βE(Q), which measures how closely
the set E ⊆ Rn is to lying on a straight line inside a cube Q in a scale-invariant
fashion. Specifically,

βE(Q) = (diam Q)−1 inf
`

sup
x∈E∩Q

dist(x, `),

where the infimum ranges over all straight lines (that is, one-dimensional affine
subspaces) in Rn . Jones (when n = 2) and Okikiolu [28] (when n > 3) proved
that a bounded set E ⊆ Rn is a subset of a rectifiable curve in Rn if and only if
β(E)2 :=∑Q βE(3Q)2 diam Q <∞, where the sum ranges over all dyadic cubes
Q ⊂ Rn; moreover, the length of the shortest curve containing E is comparable
(up to dimensional constants) to diam E + β(E)2. Bilateral variants of Jones beta
numbers were later introduced in [8, 35].

The goal of this essay is to initiate the study of Reifenberg and Jones–Mattila–
Vuorinen models of local set approximation in fuller generality than has been
previously done. We develop a framework for describing bilateral and unilateral
approximation of a set A ⊆ Rn by a general class S of closed sets in Rn . First
we lay the theoretical foundation of the framework in Sections 2–4 and 7. Then
we direct our attention to two questions. How does the geometry of model sets
transfer to the geometry of an approximated set? And, what does a set look like
if it is approximated by several types of model sets? For instance, with respect to
the first question, we generalize Mattila and Vuorinen’s dimension bound from
Example 1.2 to sets that are unilaterally approximated by model sets S that
possess a uniform ‘covering profile’ (see Section 8). And, with respect to the
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second question, we establish decomposition theorems for Reifenberg type sets
that encompass the decompositions in Examples 1.3 and 1.5 as special cases (see
Section 6). Some new applications and examples illustrating these general results
are given in Section 9. For example, we show that the singular part of the support
of an (n − 1)-dimensional asymptotically optimally doubling measure in Rn (see
Example 1.6) has upper Minkowski dimension at most n − 4 for all n > 4. At
the end of Section 9, we discuss a few open problems and directions for future
research.

A central tool in our analysis that we wish to highlight is the notion of a tangent
set of a closed set in Rn , which is modeled on Preiss’ notion of a tangent measure
of a Radon measure on Rn from [30]. Roughly speaking, a tangent object (set
or measure) is the limiting object obtained by zooming in on a point of the
object along a sequence of shrinking scales going to zero. One of the fundamental
properties of tangent measures established by Preiss is the connectedness of the
cone Tan(µ, x) of tangent measures to µ at a point x in the support of µ. A natural
question is whether a similar phenomenon holds for sets. We answer this question
in the affirmative. A precise definition of tangent sets appears in Section 3. It
turns out that many properties of tangent measures also hold for tangent sets. In
particular, in Section 5 we show that the collection Tan(A, x) of tangent sets of a
closed set A at x ∈ A is connected in a certain strong sense: if Tan(A, x) ⊆ S and
T is ‘separated at infinity’ in S , then either Tan(A, x) ⊆ T or Tan(A, x) ⊆ S\T .
See Section 5 for a precise formulation. This feature of tangent sets is used in
concert with the ‘T point detection property’ (see Definition 5.7) to analyze the
structure of Reifenberg type sets in Section 6. Tangent sets and pseudotangents
sets (a related notion obtained by zooming in on a set along a convergent sequence
of points in the set) are also used to provide characterizations of Reifenberg type
sets in Section 4 and characterizations of Mattila–Vuorinen type sets in Section 7.

REMARK 1.8. In this paper, although we only develop the theory of local set
approximation in the Euclidean spaces Rn (n > 1), we do not overly rely
on the affine structure of Rn . Rather, the limited geometric features of Rn

that we use are that Rn is a proper metric space (that is, closed balls are
compact), Rn is translation invariant (that is, for all z, w ∈ Rn there exists an
isometry τz,w : Rn → Rn such that τz,w(z) = w), and Rn is dilation invariant
(that is, for all r > 0 there exists a similarity δr : Rn → Rn such that dist(δr (x),
δr (y)) = r dist(x, y) for all x, y ∈ Rn). Because these geometric properties are
shared by finite-dimensional Banach spaces and (sub-Finsler) Carnot groups (for
example, see Le Donne [19]), it is the authors’ belief that the theory of local set
approximation developed below should transfer to these spaces upon making the
appropriate notational changes.
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2. Distances between sets and convergence of closed sets

For any A ⊆ Rn , let A denote the closure of A in Rn . For all x ∈ Rn and r > 0,
let B(x, r) = {y ∈ Rn : |x− y| 6 r} denote the closed ball in Rn with center x and
radius r . Let C(x) denote the collection of all closed subsets of Rn that contain x .
Also let C(A) = ⋃x∈A C(x) denote the collection of all closed subsets of Rn that
contain some point of A.

The basic building block that we use below to construct distances between sets
is the excess of one set over another. Let A, B ⊆ Rn be nonempty. The excess of
A over B is the quantity defined by

ex(A, B) = sup
a∈A

inf
b∈B
|a − b| ∈ [0,∞]. (2.1)

By convention, we also assign ex(∅, B) = 0, but leave the expression ex(A,∅)
undefined. When A = {x}, the excess of {x} over B is precisely the distance
dist(x, B) of x to B. Geometrically, the excess of A over B is less than (at
most) some ε > 0 precisely when A is contained in the open (closed) ε-tubular
neighborhood of B. Some key properties of excess include the following.

• Closure: ex(A, B) = ex(A, B) = ex(A, B) = ex(A, B); if A 6= ∅ and A is
bounded, then there exist ā ∈ A and b̄ ∈ B such that ex(A, B) = |ā − b̄|.
• Containment: ex(A, B) = 0 if and only if A ⊆ B.

• Monotonicity: if A ⊆ A′ and B ⊇ B ′, then ex(A, B) 6 ex(A′, B ′).

• Triangle inequality: ex(A,C) 6 ex(A, B)+ ex(B,C).

We leave the proof of these properties as an exercise for the reader. We emphasize
that excess is an asymmetric quantity and is allowed to be infinite.

For all x ∈ Rn and r > 0, and for all A, B ⊆ Rn with B nonempty, we define
the relative excess of A in B(x, r) over B as

d̃ x,r (A, B) := 1
r

ex(A ∩ B(x, r), B) ∈ [0,∞). (2.2)

We include the factor 1/r in the definition of relative excess so that d̃ x,r is scale
invariant in the sense that

d̃ x,r (A, B) = d̃ λx,λr (λA, λB) for all λ > 0. (2.3)

Relative excess is also translation invariant in the sense that

d̃ x,r (A, B) = d̃ x+z,r (z + A, z + B) for all z ∈ Rn. (2.4)
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In contrast to the excess, the relative excess of one set over another is always
finite. Moreover, if B contains x , then d̃ x,r (A, B) 6 1; and if B ∩ B(x, r) 6= ∅,
then d̃ x,r (A, B) 6 2. Relative excess inherits the following additional properties
from excess.

LEMMA 2.1. Let A, B,C ⊆ Rn with B and C nonempty, let x, y ∈ Rn , and let
r, s > 0.

• Closure: d̃ x,r (A, B) = d̃ x,r (A, B) 6 d̃ x,r (A, B) = d̃ x,r (A, B), and moreover,
d̃ x,r (A, B) 6 (1+ δ) d̃ x,r(1+δ)(A, B) for all δ > 0.

• Containment: d̃ x,r (A, B) = 0 if and only if A ∩ B(x, r) ⊆ B.

• Monotonicity: If B(x, r) ⊆ B(y, s), A ⊆ A′ and B ⊇ B ′, then

d̃ x,r (A, B) 6
s
r

d̃ y,s(A′, B ′). (2.5)

• Strong quasitriangle inequality: If d̃ x,r (A, B) 6 ε, then

d̃ x,r (A,C) 6 d̃ x,r (A, B)+ (1+ ε) d̃ x,r(1+ε)(B,C). (2.6)

• Weak quasitriangle inequalities: If x ∈ B, then

d̃ x,r (A,C) 6 d̃ x,r (A, B)+ 2 d̃ x,2r (B,C). (2.7)

If B ∩ B(x, r) 6= ∅, then

d̃ x,r (A,C) 6 d̃ x,r (A, B)+ 3 d̃ x,3r (B,C). (2.8)

Proof. We prove the quasitriangle inequalities, but leave the other standard
properties to the reader. The strong quasitriangle inequality holds trivially if
A ∩ B(x, r) = ∅. Thus suppose that A ∩ B(x, r) is nonempty and that d̃ x,r (A,
B) 6 ε for some ε > 0. Fix a ∈ A ∩ B(x, r), and fix δ > 0. By the closure and
monotonicity properties of excess, there exists b̄ ∈ B such that

|a − b̄| = ex({a}, B) 6 ex(A ∩ B(x, r), B) = r d̃ x,r (A, B) 6 rε.

Similarly, there exists c ∈ C such that

|b̄ − c| 6 ex({b},C)+ δ 6 ex(B ∩ B(x, r(1+ ε)),C)+ δ
= r(1+ ε) d̃ x,r(1+ε)(B,C)+ δ.
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Hence, combining the two displayed equations,

ex({a},C) 6 |a − b̄| + |b̄ − c| 6 r d̃ x,r (A, B)+ r(1+ ε) d̃ x,r(1+ε)(B,C)+ δ.
Letting δ→ 0 and then taking the supremum over all a in A∩ B(x, r), we obtain

ex(A ∩ B(x, r),C) 6 r d̃ x,r (A, B)+ r(1+ ε) d̃ x,r(1+ε)(B,C).

The strong quasitriangle inequality follows by dividing the last line through by r .
If x ∈ B, then d̃ x,r (A, B) 6 1. Similarly, if B(x, r)∩ B 6= ∅, then d̃ x,r (A, B) 6 2
Thus, the weak quasitriangle inequalities follow from the strong quasitriangle
inequality.

For all x ∈ Rn and r > 0, define

D̃x,r [A, B] = max{̃d x,r (A, B), d̃ x,r (B, A)} ∈ [0,∞) (2.9)

for all nonempty sets A, B ⊆ Rn . To the authors’ knowledge, the quantity D̃x,r [·, ·]
(without the normalization factor 1/r ) first appeared in a paper by Walkup and
Wets [36]. (For further context, see the bibliographic notes in [32, Chapter 4].)
Thus, we call D̃x,r [·, ·] the relative Walkup–Wets distance in B(x, r).

If A and B both contain x , then D̃x,r [A, B] 6 1; if A and B both intersect
B(x, r), then D̃x,r [A, B] 6 2. The relative Walkup–Wets distance inherits the
following properties from the relative excess.

LEMMA 2.2. Let A, B,C ⊆ Rn be nonempty sets, let x, y ∈ Rn , and let r, s > 0.

• Closure: D̃x,r [A, B] 6 D̃x,r [A, B] 6 (1+ δ) D̃x,r(1+δ)[A, B] for all δ > 0.

• Containment: D̃x,r [A, B] = 0 if and only if A ∩ B(x, r) ⊆ B and B ∩ B(x,
r) ⊆ A. In particular, D̃x,r [A, B] = 0 if and only if A∩ B(x, r) = B ∩ B(x, r).

• Monotonicity: If B(x, r) ⊆ B(y, s), then

D̃x,r [A, B] 6 s
r

D̃y,s[A, B]. (2.10)

• Strong quasitriangle inequality: If d̃ x,r (A, B) 6 ε1 and d̃ x,r (C, B) 6 ε2, then

D̃x,r [A,C] 6 (1+ ε2) D̃x,r(1+ε2)[A, B] + (1+ ε1) D̃x,r(1+ε1)[B,C]. (2.11)

• Weak quasitriangle inequalities: If x ∈ B, then

D̃x,r [A,C] 6 2 D̃x,2r [A, B] + 2 D̃x,2r [B,C]. (2.12)

If B ∩ B(x, r) 6= ∅, then

D̃x,r [A,C] 6 3 D̃x,3r [A, B] + 3 D̃x,3r [B,C]. (2.13)
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• Scale invariance:

D̃x,r [A, B] = D̃λx,λr [λA, λB] for all λ > 0. (2.14)

• Translation invariance:

D̃x,r [A, B] = D̃x+z,r [z + A, z + B] for all z ∈ Rn. (2.15)

Proof. We will derive the quasitriangle inequalities for the relative Walkup–Wets
distance, but leave verification of the other properties of D̃x,r [·, ·] to the reader.

Suppose that d̃ x,r (A, B) 6 ε1 and d̃ x,r (C, B) 6 ε2. Since d̃ x,r (A, B) 6 ε1,

d̃ x,r (A,C) 6 d̃ x,r (A, B)+ (1+ ε1) d̃ x,r(1+ε1)(B,C)
6 (1+ ε2) d̃ x,r(1+ε2)(A, B)+ (1+ ε1) d̃ x,r(1+ε1)(B,C)

by the strong quasitriangle inequality and monotonicity of relative excess.
Similarly, since d̃ x,r (C, B) 6 ε2,

d̃ x,r (C, A) 6 (1+ ε1) d̃ x,r(1+ε1)(C, B)+ (1+ ε2) d̃ x,r(1+ε2)(B, A).

Thus, noting that max{a + b, c + d} 6 max{a, d} +max{b, c}, we obtain

D̃x,r [A,C] = max{̃d x,r (A,C), d̃ x,r (C, A)}
6 max{(1+ ε2) d̃ x,r(1+ε2)(A, B)+ (1+ ε1) d̃ x,r(1+ε1)(B,C),
(1+ ε1) d̃ x,r(1+ε1)(C, B)+ (1+ ε2) d̃ x,r(1+ε2)(B, A)}

6 max{(1+ ε2) d̃ x,r(1+ε2)(A, B), (1+ ε2) d̃ x,r(1+ε2)(B, A)}
+ max{(1+ ε1) d̃ x,r(1+ε1)(B,C), (1+ ε1) d̃ x,r(1+ε1)(C, B)}
= (1+ ε2) D̃x,r(1+ε2)[A, B] + (1+ ε1) D̃x,r(1+ε1)[B,C].

Therefore, the relative Walkup–Wets distance satisfies the strong quasitriangle
inequality. The weak quasitriangle inequalities then follow, since d̃ x,r (A, B) 6 1
and d̃ x,r (C, B) 6 1 if x ∈ B, while d̃ x,r (A, B) 6 2 and d̃ x,r (C, B) 6 2 if B ∩
B(x, r) 6= ∅.

REMARK 2.3. It is an unfortunate but unavoidable fact that the relative Walkup–
Wets distance D̃x,r [·, ·] does not satisfy the triangle inequality. To rectify this, one
might be tempted to instead work with the relative Hausdorff distance Dx,r [·, ·]
defined by

Dx,r [A, B] = 1
r

max{ex(A∩ B(x, r), B∩ B(x, r)), ex(B∩ B(x, r), A∩ B(x, r))}
(2.16)
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for all sets A and B that intersect B(x, r). Although the relative Hausdorff
distance does satisfy the triangle inequality Dx,r [A,C] 6 Dx,r [A, B] + Dx,r [B,
C], the quantity is deficient in other respects. One of the main defects in terms
of our applications below is that the relative Hausdorff distance does not satisfy
the monotonicity property (2.10). To see this, take A = {0, 1} ⊂ R1 and Bi = {0,
1+ 1/ i} ⊂ R1. Then D0,1[A, Bi ] = 1 and D0,1+1/ i [A, Bi ] = 1/(i + 1), so

D0,1[A, Bi ]
D0,1+1/ i [A, Bi ] = i + 1→∞ as i →∞.

For additional reasons to work with the relative Walkup–Wets distance instead of
with the relative Hausdorff distance, see Remarks 2.8 and 4.17.

REMARK 2.4. We could also have defined the relative excess and the Walkup–
Wets distance using intersections with open balls U (x, r) instead of intersections
with closed balls B(x, r); the decision of which convention to use is largely a
matter of taste. If the definition with open balls is selected, then Lemmas 2.1
and 2.2 hold, except that the inequality in the closure properties becomes an
equality: d̃ x,r (A, B) = d̃ x,r (A, B) and D̃0,r [A, B] = D̃0,r [A, B] (intersections
with open balls).

We now recall a convenient topology on the space of all nonempty closed sets
in Rn .

THEOREM 2.5. There exists a metrizable topology on the collection C(Rn) of all
nonempty closed sets in Rn in which a sequence (Ai)

∞
i=1 of nonempty closed sets

converges to a set A ∈ C(Rn) if and only if

lim
i→∞

ex(Ai∩B(0, r), A) = 0 and lim
i→∞

ex(A∩B(0, r), Ai) = 0 for all r > 0.

(2.17)

Moreover, for every compact set K ⊂ Rn , the subcollection C(K ) of C(Rn),
consisting of all closed sets that intersect K , is sequentially compact; that is,
for any sequence (Ai)

∞
i=1 of sets in C(K ) there exist a subsequence (Ai j )

∞
j=1 and a

set A ∈ C(K ) such that (Ai j )
∞
j=1 converges to A in the sense of (2.17).

In variational analysis, the topology on C(Rn) described in Theorem 2.5 is
called the Attouch–Wets topology; for further information, including a proof of
Theorem 2.5, see [3, Chapter 3], [32, Chapter 4], or [9, Chapter 8]. Below, we
always endow C(Rn) with the Attouch–Wets topology, and we write Ai → A
or A = limi→∞ Ai (in C(Rn)) to denote that a sequence (Ai)

∞
i=1 of sets in C(Rn)

converges to a set A ∈ C(Rn) in the sense of (2.17). If each set Ai belongs to C(K )
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for some compact set K ⊂ Rn , then we may also write Ai → A in C(K ) to
emphasize that the limit A belongs to C(K ) as well.

LEMMA 2.6. Let A, A1, A2, . . . ∈ C(Rn). The following statements are equiv-
alent.

(i) Ai → A in C(Rn).

(ii) limi→∞ D̃x,r [Ai , A] = 0 for all x ∈ Rn and for all r > 0.

(iii) limi→∞ D̃x0,r j [Ai , A] = 0 for some x0 ∈ Rn and for some sequence r j →∞.

Proof. The proof follows immediately from (2.17) and (2.10).

LEMMA 2.7. Let A, A1, A2, . . . ∈ C(Rn). If Ai → A in C(Rn), then, for all
nonempty B ⊆ Rn , for all x ∈ Rn , and for all r > 0,

1
1+ ε lim sup

i→∞
D̃x,r/(1+ε)[Ai , B]

6 D̃x,r [A, B] 6 (1+ ε) lim inf
i→∞

D̃x,(1+ε)r [Ai , B] for all ε > 0 (2.18)

and

lim sup
ε↓0

lim sup
i→∞

D̃x,r/(1+ε)[Ai , B] 6 D̃x,r [A, B] 6 lim inf
ε↓0

lim inf
i→∞

D̃x,r(1+ε)[Ai , B].
(2.19)

Proof. The proof nicely illustrates the use of the strong quasitriangle inequality.
Suppose that Ai → A in C(Rn). Fix a nonempty set B ⊆ Rn , x ∈ Rn , and r > 0.

Let ε > 0 be arbitrary. On the one hand, d̃ x,r (A, Ai) 6 ε for all i sufficiently
large, since Ai → A in C(Rn). On the other hand, writing L = d̃ x,r (B, A),

d̃ x,r (B, Ai) 6 d̃ x,r (B, A)+ (1+ L) d̃ x,r(1+L)(A, Ai)

by the strong quasitriangle inequality for the relative excess. In particular,

M = sup
i

d̃ x,r (B, Ai) <∞,

since Ai → A in C(Rn). Hence, by the strong quasitriangle inequality for the
Walkup–Wets distance,

D̃x,r [A, B] 6 (1+ M) D̃x,r(1+M)[A, Ai ] + (1+ ε) D̃x,r(1+ε)[Ai , B]
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for all i sufficiently large. Thus, since Ai → A in C(Rn),

D̃x,r [A, B] 6 (1+ ε) lim inf
i→∞

D̃x,r(1+ε)[Ai , B].

This establishes the upper bound for D̃x,r [A, B] in (2.18). We can reach the lower
bound by a similar argument.

Note that d̃ x,r/(1+ε)(Ai , A) 6 ε for all i sufficiently large, since Ai → A
in C(Rn). Let N = d̃ x,r/(1+ε)(B, A) < ∞. Then, by the strong quasitriangle
inequality for the Walkup–Wets distance,

D̃x,r/(1+ε)[Ai , B] 6 (1+ N ) D̃x,r(1+N )/(1+ε)[Ai , A] + (1+ ε) D̃x,r [A, B]
for all i sufficiently large. Rearranging terms yields

D̃x,r [A, B] > 1
1+ ε D̃x,r/(1+ε)[Ai , B] − 1+ N

1+ ε D̃x,r(1+N )/(1+ε)[Ai , A]

for all i sufficiently large. Thus, since Ai → A in C(Rn),

D̃x,r [A, B] > 1
1+ ε lim sup

i→∞
D̃x,r/(1+ε)[Ai , B],

as desired.
Finally, suppose that 0 < ε 6 ε′. Then, by (2.18),

D̃x,r [A, B] 6 (1+ ε) lim inf
i→∞

D̃x,r(1+ε)[Ai , B] 6 (1+ ε′) lim inf
i→∞

D̃x,r(1+ε)[Ai , B].

Hence
D̃x,r [A, B] 6 (1+ ε′) lim inf

ε↓0
lim inf

i→∞
D̃x,r(1+ε)[Ai , B].

Thus, letting ε′ ↓ 0, we obtain

D̃x,r [A, B] 6 lim inf
ε↓0

lim inf
i→∞

D̃x,r(1+ε)[Ai , B].

This establishes the upper bound for D̃x,r [A, B] in (2.19). The lower bound in
(2.19) follows from the lower bound in (2.18) by a parallel argument.

REMARK 2.8. Suppose that we declare Ai → A in C(0) relative to the
Hausdorff distance if limi→∞D0,r [Ai , A] = 0 for all r > 0. Then, with respect
to convergence relative to the Hausdorff distance, C(0) is not sequentially
compact. Indeed, let Ai = {0, 1 + 1/ i} ⊂ R1, and suppose that (Ai)

∞
i=1 has a
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subsequence (Ai j)
∞
j=1 which converges relative to the Hausdorff distance to some

A ∈ C(0). On the one hand, since

lim
i→∞

D0,r [Ai , A] = 0 and lim
i→∞

D0,r [Ai , {0, 1}] = 0 for all r > 1,

the triangle inequality for the Hausdorff distance yields D0,r [A, {0, 1}] = 0 for
all r > 1. This implies that A = {0, 1}. On the other hand, (Ai j)

∞
j=1 does not

converge relative to the Hausdorff distance to {0, 1}, because D0,1[Ai , {0, 1}] = 1
for all i > 1. Nevertheless, Ai → {0, 1} in the Attouch–Wets topology, because

lim
i→∞

D̃0,r [Ai , {0, 1}] = 0 for all r > 0.

This example indicates another advantage of working with the relative Walkup–
Wets distance instead of the relative Hausdorff distance.

3. Tangent sets and pseudotangent sets

In this section, we define and establish some essential properties of tangent
sets and pseudotangent sets, which are closely modeled on tangent measures
(introduced by Preiss [30]) and pseudotangent measures (introduced by Kenig
and Toro [15]). The main novelty in our presentation is the distinction made
between bounded and unbounded pseudotangents; see the discussion following
Lemma 3.7.

DEFINITION 3.1 (Tangent sets and pseudotangent sets). Let A, T, D ⊆ Rn

be nonempty sets with A and T closed, and let x ∈ A. We say that T is a
pseudotangent set of A at x directed along D if there exist sequences xi ∈ A
and ri > 0 such that xi → x , ri → 0,

A − xi

ri
→ T in C(0), (3.1)

and
xi − x

ri
∈ D for all i. (3.2)

If D = Rn , that is, if no restrictions are imposed on xi − x , then we call T a
pseudotangent set of A at x . If D = {0}, that is, if xi = x for all i , then we call T
a tangent set of A at x . Let TanD(A, x), Ψ -Tan(A, x), and Tan(A, x) denote the
collections of all pseudotangent sets of A at x directed along D, all pseudotangent
sets of A at x , and all tangent sets of A at x , respectively.

REMARK 3.2. A closed set A ∈ C(x) containing x ∈ Rn can be identified
with a pointed metric space (A, d|A, x), where d|A denotes the restriction of the
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Euclidean metric to A. In geometry, a metric tangent of A at x (see, for example,
[4, 18]) is a Gromov–Hausdorff limit of a sequence of pointed metric spaces
(A, r−1

i d|A, x) for some ri → 0. Although related, the concepts of metric tangents
and tangent sets are distinct, because metric tangents are identified up to isometry,
whereas tangent sets are not identified under isometries.

REMARK 3.3. Since C(0) is sequentially compact, Ψ -Tan(A, x) ⊆ C(0), and
the collection TanD(A, x) of pseudotangent sets of A at x directed along D is
nonempty as long as

A − x
ri
∩ D ∩ B(0, s) 6= ∅ for some sequence ri → 0 and some s > 0.

In particular, Ψ -Tan(A, x) and Tan(A, x) are nonempty for all A ∈ C(x).

LEMMA 3.4. TanD(A, x) is closed in C(0) for all A ∈ C(x) and nonempty
D ⊆ Rn .

Proof. Let D ⊆ Rn be a nonempty set, and let A ⊂ Rn be a closed set containing
x . Suppose that Ti ∈ TanD(A, x) for all i > 1 and that limi→∞ Ti = T for some
T ∈ C(0). By the definition of pseudotangents directed along D, for each i > 1 we
can find sequences x i

j ∈ A and r i
j > 0 such that lim j→∞ x i

j = x , lim j→∞ r i
j = 0,

lim j→∞(A− x i
j)/r i

j = Ti and (x i
j − x)/r i

j ∈ D for all j > 1. For each i > 1, pick
k(i) > 1 large enough so that xi := x i

k(i) and ri := r i
k(i) satisfy |xi − x | 6 1/ i ,

ri 6 1/ i , and

D̃0,i

[
A − xi

ri
, Ti

]
6

1
i2
. (3.3)

Then xi ∈ A and ri > 0 for all i > 1, limi→∞ xi = x , limi→∞ ri = 0, and (xi −
x)/ri ∈ D for all i > 1. Moreover, for all r > 0 and for all i > r ,

D̃0,r/2

[
A − xi

ri
, T
]
6 2 D̃0,r

[
A − xi

ri
, Ti

]
+ 2 D̃0,r [Ti , T ]

6
2i
r

D̃0,i

[
A − xi

ri
, Ti

]
+ 2 D̃0,r [Ti , T ] 6 2

ri
+ 2 D̃0,r [Ti , T ],

where the first line holds by the weak quasitriangle inequality since 0 ∈ Ti , and
the second line holds by monotonicity and (3.3). Hence, for all r > 0,

lim sup
i→∞

D̃0,r/2

[
A − xi

ri
, T
]
6

2
r

lim sup
i→∞

1
i
+ 2 lim sup

i→∞
D̃0,r [Ti , T ] = 0.

Thus, T = limi→∞(A − xi)/ri is a pseudotangent set of A at x directed along D.
Therefore, TanD(A, x) is closed in C(0).
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LEMMA 3.5. Let A ∈ C(x), and let D ⊆ Rn be nonempty.

• If B ∈ TanD(A, x) and λ > 0, then λB ∈ TanλD(A, x).

• If B ∈ Ψ -Tan(A, x) and y ∈ B, then B − y ∈ Ψ -Tan(A, x).

Proof. Let A ∈ C(x), and let D ⊆ Rn be nonempty. Suppose that B ∈ TanD(A, x)
and that λ > 0. Since B is a pseudotangent of A at x directed along D, there exist
sequences xi ∈ A and ri > 0 with (xi − x)/ri ∈ D such that xi → x , ri → 0, and
(A − xi)/ri → B. For all r > 0,

lim
i→∞

D̃0,r

[
A − xi

ri/λ
, λB

]
= lim

i→∞
D̃0,r/λ

[
A − xi

ri
, B
]
= 0.

Hence λB = limi→∞(A − xi)/(ri/λ) and (xi − x)/(ri/λ) ∈ λD for all i > 1.
Therefore, λB ∈ TanλD(A, x).

Now suppose that B ∈ Ψ -Tan(A, x), and let y ∈ B. Since B is a pseudotangent
of A at x , there exist sequences xi ∈ A and ri > 0 such that xi → x , ri → 0, and
(A − xi)/ri → B. Since y ∈ B = limi→∞(A − xi)/ri , there is also a sequence
zi ∈ A such that (zi − xi)/ri → y. On the one hand, zi → x , because |zi − x | 6
|zi − xi | + |xi − x | 6 ri(|y| + 1) + |xi − x | for i � 1, xi → x , and ri → 0. On
the other hand, (A − zi)/ri → B − y, because, for all r > 0,

D̃0,r

[
A − zi

ri
, B − y

]
6 2 D̃0,2r

[
A − zi

ri
,

A − xi

ri
− y

]
+ 2 D̃0,2r

[
A − xi

ri
− y, B − y

]
6

1
r

∣∣∣∣ zi − xi

ri
− y

∣∣∣∣+ 2 D̃y,2r

[
A − xi

ri
, B
]
,

(zi − xi)/ri → y, and (A − xi)/ri → B. Therefore, B − y is a pseudotangent of
A at x .

LEMMA 3.6. Let A ∈ C(x).

• If B ∈ Tan(A, x) and C ∈ Tan(B, 0), then C ∈ Tan(A, x).

• If B ∈ Ψ -Tan(A, x) and C ∈ Ψ -Tan(B, y) for some y ∈ B, then C ∈
Ψ -Tan(A, x).

Proof. Suppose that B ∈ Tan(A, x) and C ∈ Tan(B, 0). Since C is a tangent
set of B at 0, there exists a sequence ri > 0 such that ri → 0 and B/ri → C .
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By Lemma 3.5, B/ri ∈ Tan(A, x) for all i > 1. Therefore, C = limi→∞ B/ri ∈
Tan(A, x) = Tan(A, x) by Lemma 3.4.

Similarly, suppose that B ∈ Ψ -Tan(A, x) and C ∈ Ψ -Tan(B, y) for some
y ∈ B. Since C is a pseudotangent of B at y, there exist sequences yi ∈ B and
si > 0 such that yi → y, si → 0, and (B − yi)/si → C . By Lemma 3.5,
(B − yi)/si ∈ Ψ -Tan(A, x) for all i > 1. Therefore, C = limi→∞(B − yi)/si ∈
Ψ -Tan(A, x) = Ψ -Tan(A, x) by Lemma 3.4.

LEMMA 3.7. Let A ∈ C(x), and let D ⊆ Rn be nonempty. If D is bounded, then
for all B ∈ TanD(A, x) there exist C ∈ Tan(A, x) and y ∈ C ∩ D such that
B = C − y.

Proof. Suppose that D ⊆ Rn is nonempty and bounded, and let B ∈ TanD(A, x).
Since B is a pseudotangent of A at x directed along D, there exist sequences
xi ∈ A and ri > 0 with xi → x and ri → 0 such that (A − xi)/ri → B and
(xi − x)/ri ∈ D for all i > 1. Because D is bounded, we may assume—by
passing to a subsequence of (xi , ri)

∞
i=1—that (xi − x)/ri → y for some y ∈ D.

To finish the proof, it suffices to show that (A − x)/ri → B + y, for then
C := B + y ∈ Tan(A, x), y ∈ C ∩ D, and B = C − y.

To that end, note that, for all r > 0 and i > 1,

D̃0,r

[
A − x

ri
− y, B

]
6 2 D̃0,2r

[
A − x

ri
− y,

A − xi

ri

]
+ 2 D̃0,2r

[
A − xi

ri
, B
]

6
1
r

∣∣∣∣ xi − x
ri
− y

∣∣∣∣+ 2 D̃0,2r

[
A − xi

ri
, B
]
,

where the weak quasitriangle inequality in the first line is valid since 0 ∈ (A −
xi)/ri . Thus, for all r > 0,

lim sup
i→∞

D̃y,r

[
A − x

ri
, B + y

]
= lim sup

i→∞
D̃0,r

[
A − x

ri
− y, B

]
6

1
r

lim sup
i→∞

∣∣∣∣ xi − x
ri
− y

∣∣∣∣+ 2 lim sup
i→∞

D̃0,2r

[
A − xi

ri
, B
]
= 0,

because (xi − x)/ri → y and (A − xi)/ri → B. Therefore, (A − x)/ri →
B + y.

By a slight abuse of terminology, (a bounded pseudotangent set can be an
unbounded set—and vice versa) call a pseudotangent set T ∈ Ψ -Tan(A, x) a
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bounded pseudotangent set or an unbounded pseudotangent set of A at x provided
that T = limi→∞(A − xi)/ri for some sequences xi ∈ A and ri > 0 with xi → x
and ri → 0 whose ‘direction set’{

xi − x
ri
: i > 1

}
is bounded or unbounded, respectively. We let bΨ -Tan(A, x) and uΨ -Tan(A, x)
denote the collections of all bounded pseudotangent sets of A at x and all
unbounded pseudotangent sets of A at x , respectively, so

Ψ -Tan(A, x) = bΨ -Tan(A, x) ∪ uΨ -Tan(A, x).

Using this new language, Lemma 3.7 says that every bounded psuedotangent set
of A at x is the translate of a tangent set of A at x .

LEMMA 3.8. Let A ∈ C(x).

• If B ∈ bΨ -Tan(A, x) and λ > 0, then λB ∈ bΨ -Tan(A, x).

• If B ∈ uΨ -Tan(A, x) and λ > 0, then λB ∈ uΨ -Tan(A, x).

• If B ∈ bΨ -Tan(A, x) and y ∈ B, then B − y ∈ bΨ -Tan(A, x).

• If B ∈ uΨ -Tan(A, x) and y ∈ B, then B − y ∈ uΨ -Tan(A, x).

Proof. By Lemma 3.5, if T is a pseudotangent of A at x directed along {(xi −
x)/ri} and λ > 0, then λT is a pseudotangent of A directed along {λ(xi − x)/ri}.
Since {(xi − x)/ri} and {λ(xi − x)/ri} are simultaneously bounded or unbounded,
it follows that bΨ -Tan(A, x) and uΨ -Tan(A, x) are invariant under dilations.

To show that bΨ -Tan(A, x) and uΨ -Tan(A, x) are invariant under translations,
we consult the proof of Lemma 3.5. If T is a pseudotangent set of A at x directed
along {(xi − x)/ri} and y ∈ T , then there exists a sequence zi ∈ A with (zi −
xi)/ri → y such that T − y is a pseudotangent set of A at x directed along

zi − x
ri
= x − xi

ri
+ zi − xi

ri
.

Since {(zi− xi)/ri} is bounded, {(xi− x)/ri} and {(zi− x)/ri} are simultaneously
bounded or unbounded. Therefore, bΨ -Tan(A, x) and uΨ -Tan(A, x) are
translation invariant.

REMARK 3.9. Let A ∈ C(x). Because bΨ -Tan(A, x) = ⋃∞
j=1 TanB(0, j)(A, x),

a sequence Ti of bounded pseudotangent sets of A at x may converge to an
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unbounded pseudotangent set T of A at x that is not a bounded pseudotangent
set of A at x . Thus, in general, bΨ -Tan(A, x) is not closed in C(0). (For a specific
example, consider bΨ -Tan(A, 0), where A is the set given in Remark 5.5 below.)

REMARK 3.10. To avoid technicalities related to issues of convergence, we have
only defined tangent and pseudotangent sets of nonempty closed sets A ⊆ Rn .
However, suppose that A ⊆ Rn is an arbitrary nonempty set, not necessarily
closed, and let x ∈ A. Furthermore, suppose that for some sequence ri → 0 we
have (A − x)/ri → T for some T ∈ Tan(A, x). Then, for all r > 0,

lim sup
i→∞

D̃0,r

[
A − x

ri
, T
]
6 lim sup

i→∞
D̃0,r

[
A − x

ri
, T

]

= lim sup
i→∞

D̃0,r

[
A − x

ri
, T

]
= 0, (3.4)

where the inequality holds by the closure property of the relative Walkup–Wets
distance and the final equality holds since (A − x)/ri → T in the Attouch–Wets
topology. We interpret Equation (3.4) to mean that the tangent sets T of A at
x ∈ A are reasonable candidates for ‘geometric blow-ups’ of A at x even though
the set A is not necessarily closed.

4. Bilateral approximation and Reifenberg type sets

In this section, we develop basic methods for studying the local geometry of a
set A ⊆ Rn via bilateral approximations using the foundations laid in Sections 2
and 3 above.

DEFINITION 4.1 (Reifenberg type sets). Let A ⊆ Rn be nonempty.

(i) A local approximation class S is a nonempty collection of sets in C(0) such
that S is a cone; that is, for all S ∈ S and λ > 0, λS ∈ S .

(ii) For every x ∈ Rn and r > 0, define the (bilateral) approximability ΘS
A (x, r)

of A by S at location x and scale r by

ΘS
A (x, r) = inf

S∈S
D̃x,r [A, x + S] ∈ [0,∞).

(iii) We say that x ∈ A is an S point of A if limr↓0Θ
S
A (x, r) = 0.

(iv) We say that A is (bilaterally) (ε, r0)-approximable by S if ΘS
A (x, r) 6 ε for

all x ∈ A and 0 < r 6 r0.
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(v) We say that A is locally (bilaterally) ε-approximable by S if for every
compact set K ⊆ A there exists rK such that ΘS

A (x, r) 6 ε for all x ∈ K
and 0 < r 6 rK .

(vi) We say that A is locally (bilaterally) well approximated by S if A is locally
(bilaterally) ε-approximable by S for all ε > 0.

REMARK 4.2. Let ε > 0. A nonempty set A ⊆ Rn is locally ε′-approximable by
S for all ε′ > ε if and only if lim supr↓0 supx∈K Θ

S
A (x, r) 6 ε for every compact

set K ⊆ A.

We now collect some basic properties of approximability. Monotonicity of
the Walkup–Wets distance is used at several points—directly and indirectly
via Lemma 2.6 or Lemma 3.6. Thus, to obtain results such as Lemma 4.10,
Theorem 4.11, and Theorem 4.14, it is crucial that approximability is defined
using the Walkup–Wets distance instead of the Hausdorff distance. See
Remark 4.17.

LEMMA 4.3 (Size). Let S be a local approximation class. For all nonempty sets
A ⊆ Rn , locations x ∈ Rn , and scales r > 0,

dist(x, A)
r

6 ΘS
A (x, r) 6 1+ dist(x, A)

r
.

In particular, 0 6 ΘS
A (x, r) 6 1 for all x ∈ A.

Proof. Let A ⊆ Rn (a nonempty set), x ∈ Rn , and r > 0 be given. For the lower
bound, simply note that ΘS

A (x, r) > infS∈S d̃ x,r (x + S, A) > dist(x, A)/r , since
0 ∈ S for all S ∈ S . To verify the upper bound, pick any set S ∈ S . On the one
hand, for all y ∈ (x + S) ∩ B(x, r),

dist(y, A) 6 |y − x | + dist(x, A) 6 r + dist(x, A).

Hence d̃ x,r (x + S, A) 6 1 + dist(x, A)/r . On the other hand, for all z ∈ A ∩
B(x, r), dist(z, x + S) 6 |z − x | 6 r . Hence d̃ x,r (A, x + S) 6 1. Therefore,
ΘS

A (x, r) 6 D̃x,r [A, x + S] 6 1+ dist(x, A)/r .

LEMMA 4.4 (Scale and translation invariance). Let S be a local approximation
class, let A ⊆ Rn be nonempty, let x ∈ Rn , and let r > 0. Then

ΘS
A (x, r) = ΘS

λA(λx, λr) for all λ > 0, and
ΘS

A (x, r) = ΘS
A+z(x + z, r) for all z ∈ Rn.
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Proof. To check invariance under dilation, pick λ > 0. Then

ΘS
A (x, r) = inf

S∈S
D̃x,r [A, x + S] = inf

S∈S
D̃λx,λr [λA, λx + λS]

= inf
S∈S

D̃λx,λr [λA, λx + S] = ΘS
λA(λx, λr),

where the second equality holds by dilation invariance of the relative Walkup–
Wets distance, and the penultimate equality holds since S is a cone. To verify
invariance under translation, let z ∈ Rn . Then

ΘS
A (x, r) = inf

S∈S
D̃x,r [A, x + S] = inf

S∈S
D̃x+z,r [A+ z, x + z + S] = ΘS

A+z(x + z, r)

by translation invariance of the relative Walkup–Wets distance.

LEMMA 4.5 (Closure). Let S be a local approximation class, and let A ⊆ Rn

be nonempty. For all x ∈ Rn and r > 0, ΘS
A (x, r) 6 ΘS

A
(x, r) 6 (1 + δ)ΘS

A (x,
(1+ δ)r) for all δ > 0.

Proof. Recall that every set in a local approximation class is closed. Let S, T ∈ S ,
and let δ > 0. On the one hand, the closure property of the relative Walkup–Wets
distance gives

ΘS
A (x, r) 6 D̃x,r [A, x + S] 6 D̃x,r [A, x + S] = D̃x,r [A, x + S].

On the other hand, the closure property of the relative Walkup–Wets distance
gives

ΘS
A (x, r) 6 D̃x,r [A, x + T ] = D̃x,r [A, x + T ] 6 (1+ δ) D̃x,(1+δ)r [A, x + T ].

Taking the infimum over all S, T ∈ S , we conclude that

ΘS
A (x, r) 6 ΘS

A (x, r) 6 (1+ δ)ΘS
A (x, (1+ δ)r)

for all δ > 0.

LEMMA 4.6 (Monotonicity). Let S be a local approximation class, and let
A ⊆ Rn be a nonempty set. If B(x, r) ⊆ B(y, s) and |x − y| 6 ts, then

ΘS
A (x, r) 6

s
r
(t + (1+ t)ΘS

A (y, (1+ t)s)). (4.1)

In particular, if 0 < r 6 s, then

ΘS
A (x, r) 6

s
r
ΘS

A (x, s). (4.2)
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Proof. Suppose that B(x, r) ⊆ B(y, s) and that |x − y| 6 ts. Let S ∈ S be fixed,
and write ρ = d̃ y,s(A, y+S). Since d̃ y,s(x+S, y+S) 6 t , the strong quasitriangle
inequality implies that

D̃y,s[A, x + S] 6 (1+ ρ) D̃y,(1+ρ)s[x + S, y + S] + (1+ t) D̃y,(1+t)s[A, y + S]
6 t + (1+ t) D̃y,(1+t)s[A, y + S].

Thus, by monotonicity,

ΘS
A (x, r) 6 D̃x,r [A, x+S] 6 s

r
D̃y,s[A, x+S] 6 s

r
(t+(1+t) D̃y,(1+t)s[A, y+S]).

Taking the infimum over S ∈ S yields (4.1).

LEMMA 4.7 (Limits). Let S be a local approximation class, and let A, A1, A2,

. . . ∈ C(Rn). If Ai → A in C(Rn), then, for all x ∈ Rn and r > 0,

1
1+ ε lim sup

i→∞
ΘS

Ai

(
x,

r
1+ ε

)
6 ΘS

A (x, r) 6 (1+ ε) lim inf
i→∞

ΘS
Ai
(x, r(1+ ε)) for all ε > 0 (4.3)

and

lim sup
ε↓0

lim sup
i→∞

ΘS
Ai

(
x,

r
1+ ε

)
6 ΘS

A (x, r) 6 lim inf
ε↓0

lim inf
i→∞

ΘS
Ai
(x, r(1+ ε)).

(4.4)

Proof. Let ε > 0 be given. For the lower bound in (4.3), fix T ∈ S . Then, by
Lemma 2.7,

1
1+ ε lim sup

i→∞
ΘS

Ai

(
x,

r
1+ ε

)
6

1
1+ ε lim sup

i→∞
D̃x,r/(1+ε)[Ai , x + T ]

6 D̃x,r [A, x + T ].
Taking the infimum over all T ∈ S , we immediately obtain

1
1+ ε lim sup

i→∞
ΘS

Ai

(
x,

r
1+ ε

)
6 ΘS

A (x, r).

For the upper bound in (4.3), choose a subsequence (Ai j)
∞
j=1 of (Ai)

∞
i=1 such that

lim inf
i→∞

ΘS
Ai
(x, r(1+ ε)) = lim

j→∞
ΘS

Ai j
(x, r(1+ ε)).
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Also choose a sequence (S j)
∞
j=1 of sets in S such that

D̃x,r(1+ε)[Ai j , x + S j ] 6 ΘS
Ai j
(x, r(1+ ε))+ 1

j
for all j > 1. (4.5)

Since C(0) is sequentially compact, there exist a subsequence (S jk)
∞
k=1 of (S j)

∞
j=1

and a set S ∈ C(0) such that S jk → S in C(Rn). Let L = d̃ x,2r (x + S, A). Then,
for all k > 1,

d̃ x,r (x + S jk, Ai jk) 6 d̃ x,r (x + S jk, x + S)+ 2 d̃ x,2r (x + S, Ai jk)

6 d̃ x,r (x + S jk, x + S)+ 2 d̃ x,2r (x + S, A)
+ 2(1+ L) d̃ x,2(1+L)r (A, Ai jk)

by the weak quasitriangle inequality and strong quasitriangle inequality for
relative excess, respectively. In particular, since S jk → S in C(Rn) and Ai jk → A
in C(Rn),

M = sup
k

d̃ x,r (x + S jk, Ai jk) <∞.

Thus, for all k sufficiently large such that d̃ x,r (A, Ai jk) 6 ε,

ΘS
A (x, r) 6 D̃x,r [A, x + S jk]

6 (1+ M) D̃x,r(1+M)[A, Ai jk] + (1+ ε) D̃x,r(1+ε)[Ai jk, x + S jk]
6 (1+ M) D̃x,r(1+M)[A, Ai jk] + (1+ ε)

(
ΘAi jk (x, r(1+ ε))+

1
k

)
by the strong quasitriangle inequality and (4.5). It follows that

ΘS
A (x, r) 6 (1+ ε) lim

k→∞
ΘAi jk (x, r(1+ ε)) = (1+ ε) lim inf

i→∞
ΘAi (x, r(1+ ε)).

This establishes (4.3). Finally, (4.4) can be derived from (4.3) using the same
argument used to derive (2.19) from (2.18).

Given a local approximation class S , let S denote the closure of S in C(0). We
now introduce two closely related families of local approximation classes.

DEFINITION 4.8 (Bilateral ε-enlargements). Let S be a local approximation
class. For all ε > 0, define

(S; ε)Θ0,∞ = {Ŝ ∈ C(0) : ΘS
Ŝ
(0, r) 6 ε for all r > 0}

and

(S; ε)ΘRn ,∞ = {Ŝ ∈ C(0) : ΘS
Ŝ
(x, r) 6 ε for all x ∈ Ŝ and all r > 0}.
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DEFINITION 4.9. A local approximation class S is translation invariant if, for
all S ∈ S and x ∈ S, the translate S − x ∈ S .

LEMMA 4.10. Let S be a local approximation class, and let ε > 0. Then
(S; ε)ΘRn ,∞ and (S; ε)Θ0,∞ are local approximation classes. Moreover, the following
hold.

• (S; ε)ΘRn ,∞ and (S; ε)Θ0,∞ are closed in C(0) and (S; 0)Θ0,∞ = S .

• (S; ε)ΘRn ,∞ is the maximal translation-invariant local approximation class that
is contained in (S; ε)Θ0,∞.

Proof. Both (S; ε)ΘRn ,∞ and (S; ε)Θ0,∞ are local approximation classes, because
approximability ΘS

A (x, r) is scale invariant; that is, ΘS
λA(λx, λr) = ΘS

A (x, r) for
all λ > 0.

To show that (S; ε)Θ0,∞ is closed in C(0), suppose that Ai → A in C(0) for some
sequence (Ai)

∞
i=1 in (S; ε)Θ0,∞. By Lemma 4.7, for all r > 0,

ΘS
A (0, r) 6 lim inf

δ↓0
lim inf

i→∞
ΘS

Ai
(0, (1+ δ)r) 6 lim inf

δ↓0
lim inf

i→∞
ε = ε,

since each set Ai ∈ (S; ε)Θ0,∞. Hence A ∈ (S; ε)Θ0,∞, and thus (S; ε)Θ0,∞ is closed
in C(0).

In the special case when ε = 0, we have S ⊆ (S; 0)Θ0,∞, because S ⊆ (S; 0)Θ0,∞
and (S; 0)Θ0,∞ is closed. On the other hand, suppose that A ∈ (S; 0)Θ0,∞. Then, for
all k > 1, we can find Sk ∈ S such that D̃0,k[A, Sk]6 1/k2, becauseΘS

A (0, k)= 0.
By monotonicity,

D̃0,r [A, Sk] 6 (k/r) D̃0,k[A, Sk] 6 1/rk

for all r > 0 and for all k > r . It follows that Sk → A in C(0). Hence A ∈ S and
(S; 0)Θ0,∞ ⊆ S. Therefore, (S; 0)Θ0,∞ = S .

Clearly (S; ε)ΘRn ,∞ ⊆ (S; ε)Θ0,∞, and (S; ε)ΘRn ,∞ is translation invariant. Suppose
that T ⊆ (S; ε)Θ0,∞ and that T is translation invariant. Let T ∈ T , and let x ∈ T .
Then

ΘS
T (x, r) = ΘS

T−x(0, r) 6 ε for all r > 0,

because T − x ∈ T ⊆ (S; ε)Θ0,∞. Hence T ∈ (S; ε)ΘRn ,∞ for all T ∈ T . Thus T ⊆
(S; ε)ΘRn ,∞ for all translation-invariant T ⊆ (S; ε)Θ0,∞. Therefore, (S; ε)ΘRn ,∞ is the
maximal translation-invariant local approximation class contained in (S; ε)Θ0,∞.

To show that (S; ε)ΘRn ,∞ is closed in C(0), it suffices by the previous paragraph
to check that (S; ε)ΘRn ,∞ is translation invariant. To that end, let A ∈ (S; ε)ΘRn ,∞,
and fix x ∈ A. By the sequential definition of closure, there exists a sequence
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(Ai)
∞
i=1 of sets in (S; ε)ΘRn ,∞ such that Ai → A. Choose points xi ∈ Ai for all

i > 1 so that xi → x . Then each Ai − xi ∈ (S; ε)ΘRn ,∞ by translation invariance of
(S; ε)ΘRn ,∞. We claim that Ai − xi → A − x . Indeed, for any r > 0,

D̃−x,r [A − x, Ai − xi ] 6 2 D̃−x,2r [A − x, Ai − x] + 2 D̃−x,2r [Ai − x, Ai − xi ]
= 2 D̃0,2r [A, Ai ] + 2 D̃−x,2r [Ai − x, Ai − xi ]
6 2 D̃0,2r [A, Ai ] + |x − xi |

r
,

where the first inequality holds because −x ∈ Ai − x . Hence, since Ai → A and
xi → x ,

lim sup
i→∞

D̃−x,r [A − x, Ai , xi ] = 0 for all r > 0.

Thus, Ai − xi → A− x and A− x ∈ (S; ε)ΘRn ,∞. Therefore, (S; ε)ΘRn ,∞ is closed.

The following theorem connects the S points of a set A with the tangent sets
of A.

THEOREM 4.11. Let A ⊆ Rn , let x ∈ A, and let ε > 0. Then lim supr↓0Θ
S
A (x,

r) 6 ε if and only if Tan(A, x) ⊆ (S; ε)Θ0,∞.

COROLLARY 4.12. Let A ⊆ Rn , and let x ∈ A. Then x is an S point of A if and
only if Tan(A, x) ⊆ S .

Proof of Theorem 4.11. Fix a nonempty set A ⊆ Rn , x ∈ A, and ε > 0. Suppose
that lim supr↓0Θ

S
A (x, r) 6 ε, and let T ∈ Tan(A, x), say T = limi→∞(A − x)/ri

for some sequence ri → 0. Choose any scale r > 0 and a small error δ > 0. By
Lemmas 4.7, 4.4, and 4.5,

ΘS
T (0, r) 6 (1+ δ) lim inf

i→∞
ΘS
(A−x)/ri

(0, (1+ δ)r)
= (1+ δ) lim inf

i→∞
ΘS

A (x, (1+ δ)rri)

6 (1+ δ)2 lim inf
i→∞

ΘS
A (x, (1+ δ)2rri) 6 (1+ δ)2ε,

where the last inequality holds because lim supr↓0Θ
S
A (x, r) 6 ε. Letting δ → 0,

we see that ΘS
T (0, r) 6 ε for all r > 0. Therefore, T ∈ (S; ε)Θ0,∞ for all T ∈

Tan(A, x).
Conversely, suppose that Tan(A, x) ⊆ (S; ε)Θ0,∞. Choose a sequence ri → 0

such that
lim
i→∞

ΘS
A (x, ri) = lim sup

r→0
ΘS

A (x, r).
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Since C(0) is sequentially compact, we may assume (by passing to a subsequence)
that (A − x)/ri → T for some T ∈ Tan(A, x). By Lemmas 4.5, 4.4, and 4.7,

lim
i→∞

ΘS
A (x, ri) 6 lim sup

i→∞
ΘS

A (x, ri) = lim sup
i→∞

ΘS
(A−x)/ri

(0, 1)

6 (1+ δ)ΘS
T (0, 1+ δ) 6 (1+ δ)ε

for all δ > 0, where the last inequality holds since T ∈ (S; ε)Θ0,∞. Letting δ→ 0,
we obtain lim supr→0Θ

S
A (x, r) = limi→∞ΘS

A (x, ri) 6 ε.

COROLLARY 4.13. Let A ⊆ Rn , let x ∈ A, and let ε > 0.

• If Tan(A, x) ∩ (S; ε)Θ0,∞ 6= ∅, then lim infr→0Θ
S
A (x, r) 6 ε.

• If lim infr→0Θ
S
A (x, r) = 0, then Tan(A, x) ∩ S 6= ∅.

Proof. Suppose that T ∈ Tan(A, x) ∩ (S; ε)Θ0,∞, say T = limi→∞(A − x)/ri for
some ri → 0. Then, as in the proof of Theorem 4.11,

lim sup
i→∞

ΘS
A (x, ri) 6 lim sup

i→∞
ΘS
(A−x)/ri

(0, 1) 6 (1+ δ)ΘS
T (0, 1+ δ) 6 (1+ δ)ε,

where the last inequality holds since T ∈ (S; ε)Θ0,∞. Letting δ → 0, we conclude
that lim infr→0Θ

S
A (x, r) 6 lim supi→∞Θ

S
A (x, ri) 6 ε.

For the second statement, suppose that x ∈ A ⊆ Rn and that lim infr→0Θ
S
A (x,

r) = 0. Then limi→∞ΘS
A (x, ri) = 0 for some sequence ri → 0. Passing to a

subsequence, we may assume that (A− x)/ri → B for some B ∈ Tan(A, x). For
all 0 < r 6 1/4,

ΘS
B (0, r) 6 2 lim inf

i→∞
ΘS
(A−x)/ri

(0, 2r)

= 2 lim inf
i→∞

ΘS
A (x, 2rri) 6 4 lim inf

i→∞
ΘS

A (x, 4rri)

6
1
r

lim inf
i→∞

ΘS
A (x, ri) = 0

by Lemmas 4.7 and 4.4–4.6. Hence, by Corollary 4.12, Tan(B, 0) ⊆ S . Pick any
C ∈ Tan(B, 0). Then C ∈ Tan(A, x) by Lemma 3.6. Therefore, C ∈ Tan(A, x)
∩ S . In particular, Tan(A, x) ∩ S 6= ∅.

The following theorem characterizes locally ε-approximable sets in terms of
the pseudotangent sets of their closure.

THEOREM 4.14. Let A ⊆ Rn be nonempty, and let ε > 0. The following are
equivalent.
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(i) A is locally ε′-approximable by S for all ε′ > ε.

(ii) Ψ -Tan(A, x) ⊆ (S; ε)Θ0,∞ for all x ∈ A.

(iii) Ψ -Tan(A, x) ⊆ (S; ε)ΘRn ,∞ for all x ∈ A.

COROLLARY 4.15. Let A ⊆ Rn be nonempty. Then A is locally well
approximated by S if and only if Ψ -Tan(A, x) ⊆ S for all x ∈ A.

Proof of Theorem 4.14. Fix ε > 0. On the one hand, (iii) ⇒ (ii) is immediate,
because (S; ε)ΘRn ,∞ ⊆ (S; ε)Θ0,∞. On the other hand, (ii) ⇒ (iii), because
(S; ε)ΘRn ,∞ is the maximal translation-invariant local approximation class
contained in (S; ε)Θ0,∞ by Lemma 4.10, and Ψ -Tan(A, x) is a translation-
invariant local approximation class by Lemma 3.5. To complete the proof, we
will show that (i) is equivalent to (ii).

Suppose that A is locally ε′-approximable by S for all ε′ > ε. Then, by
Remark 4.2,

lim sup
r↓0

sup
x∈K

ΘS
A (x, r) 6 ε (4.6)

for every compact subset K ⊆ A. Let T ∈ Ψ -Tan(A, x) for some x ∈ A, say that
T = limi→∞(A − yi)/ri for some sequences yi ∈ A and ri > 0 such that yi → x
and ri → 0. For each i > 1, choose xi ∈ A such that |xi − yi | 6 ri/ i . Then, since,
for all s > 0,

D̃0,s

[
A − xi

ri
, T

]
6

1
s

∣∣∣∣ xi − yi

ri

∣∣∣∣+ 2 D̃0,2s

[
A − yi

ri
, T

]
,

we have that (A − xi)/ri → T as well. Fix a scale r > 0 and an error δ > 0.
By Lemmas 4.7, 4.4, and 4.5, and by (4.6) applied with the compact set K =
{x} ∪ {xi : i > 1} ⊆ A,

ΘS
T (0, r) 6 (1+ δ) lim inf

i→∞
ΘS
(A−xi )/ri

(0, (1+ δ)r)
= (1+ δ) lim inf

i→∞
ΘS

A (xi , (1+ δ)rri)

6 (1+ δ)2 lim inf
i→∞

ΘS
A (xi , (1+ δ)2rri) 6 (1+ δ)2ε.

Letting δ → 0, we obtain ΘS
T (0, r) 6 ε for all r > 0. This shows that T ∈

(S; ε)Θ0,∞ and Ψ -Tan(A, x) ⊆ (S; ε)Θ0,∞ for all x ∈ A. Therefore, (i)⇒ (ii).
Finally, suppose that Ψ -Tan(A, x) ⊆ (S; ε)Θ0,∞ for all x ∈ A. Fix a compact set

K ⊆ A. Let xi ∈ K and ri → 0 be sequences such that

lim
i→∞

ΘS
A (xi , ri) = lim sup

r↓0
sup
x∈K

ΘS
A (x, r).
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Passing to a subsequence of (xi , ri)
∞
i=1, we may assume (since K and C(0) are

sequentially compact) that xi → x for some x ∈ K and (A − xi)/ri → T for
some T ∈ Ψ -Tan(A, x). By Lemmas 4.5, 4.4 and 4.7,

lim
i→∞

ΘS
A (xi , ri) 6 lim sup

i→∞
ΘS

A (xi , ri)

= lim sup
i→∞

ΘS
(A−xi )/ri

(0, 1) 6 (1+ δ)ΘS
T (0, 1+ δ) 6 (1+ δ)ε

for all δ > 0, where the last inequality holds since T ∈ (S; ε)Θ0,∞. Letting
δ → 0, we obtain lim supr→0 supx∈K Θ

S
A (x, r) = limi→∞ΘS

A (xi , ri) 6 ε. Thus,
by Remark 4.2, A is locally ε′-approximable by S for all ε′ > ε. Therefore,
(ii)⇒ (i).

REMARK 4.16. In Definition 4.1, we defined sets locally ε-approximable
by S intrinsically with uniform bounds on approximability in each compact
subset K ⊆ A. Alternatively, one could define sets locally ε-approximable by
S extrinsically with uniform bounds on approximability in K ∩ A for each
compact set K ⊂ Rn . The two definitions agree when A is closed. The analog of
Theorem 4.14 in the extrinsic case reads as follows.

For all ε′ > ε and for all compact sets K ⊂ Rn there exists r0 > 0 such
that ΘS

A (x, r) 6 ε′ for all x ∈ A ∩ K and for all 0 < r 6 r0 if and only if
Ψ -Tan(A, x) ⊆ (S; ε)Θ0,∞ for all x ∈ A.

REMARK 4.17. We view Theorems 4.11 and 4.14 as validations that defining the
bilateral approximability of a set using the relative Walkup–Wets distance is the
‘correct’ approach. Analogous statements using the relative Hausdorff distance
instead of the relative Walkup–Wets distance fail for general local approximation
classes. For example, consider

S = {0} ∪
⋃
i∈Z
∂B(0, 2i) ⊂ Rn and S = {λS : λ > 0}.

Then S is a local approximation class, and, moreover, S is closed in C(0). Let
ri = 2−i − 3−i for all i > 1, and let e be a unit vector. Construct A ∈ C(0) by
adding extra points to S:

A = S ∪ {ri e | i > 1}.
Intuitively, it is clear that tangent sets of A at 0 belong to S , because the
extra point ri e added to S at scale 2−i to form A become relatively closer and
closer to S as i → ∞. Indeed, since Θ S

A(0, r) → 0 as r → 0, we know that
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Tan(A, 0) ⊆ S by Corollary 4.12. However, for the Hausdorff distance analog of
bilateral approximability, one can show that

inf
S′∈S

D0,ri [S′, A] > 1/4 for all i � 1.

Therefore, there is no analog of Theorem 4.11 for the relative Hausdorff distance.

5. Connectedness of the cone of tangent sets at a point

Our goal in this section is to prove that the cone of tangent sets at a point
is connected in a certain sense. This result (Theorem 5.3) is motivated by an
analogous property of tangent measures established by Preiss [30, Theorem 2.6].
Also, see Kenig et al. [12, Theorem 2.1 and Corollary 2.1]. Following the
proof of Theorem 5.3, we identify and analyze a useful criterion for checking
the hypothesis of Theorem 5.3 called the ‘T point detection property’; see
Definition 5.7 and the subsequent discussion.

DEFINITION 5.1. Let T be a local approximation class. We define the (bilateral)
singular class of T to be the local approximation class T ⊥ given by

T ⊥ = {C ∈ C(0) : lim inf
r↓0

ΘT
C (0, r) > 0} = {C ∈ C(0) : Tan(C, 0) ∩ T = ∅}.

DEFINITION 5.2. Let T and S be local approximation classes. We say that T is
(bilaterally) separated at infinity in S if there exists φ > 0 such that

lim sup
r↑∞

ΘT
S (0, r) > φ for all S ∈ S\T .

To emphasize a choice of some φ > 0, we may say that T is φ separated at
infinity in S .

THEOREM 5.3 (Connectedness of the cone of tangent sets at a point). Suppose
that T is separated at infinity in S . If Tan(A, x) ⊆ S for some A ∈ C(x), then
either Tan(A, x) ⊆ T or Tan(A, x) ⊆ T ⊥.

Proof. Suppose that T is φ separated at infinity in S for some 0 < φ 6 1, so

inf
S∈S\T

lim sup
r→∞

ΘT
S (0, r) > φ. (5.1)

Let A ∈ C(x) for some x ∈ Rn . The conclusion of the theorem follows
immediately from two claims:

Tan(A, x) ⊆ S and Tan(A, x) ∩ T 6= ∅ H⇒ Tan(A, x) ⊆ T (5.2)
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and
Tan(A, x) ⊆ S\T H⇒ Tan(A, x) ⊆ T ⊥. (5.3)

To start, let us prove (5.3). Suppose for contradiction that Tan(A, x) ⊆ S\T ,
but there exists B ∈ Tan(A, x)\T ⊥. First off, lim infr→0Θ

T
B (0, r) = 0, since

B 6∈ T ⊥. Thus, by Corollary 4.13, there exists C ∈ Tan(B, 0) ∩ T . However, by
Lemma 3.6, C ∈ Tan(A, x) ⊆ S\T . We have asserted that there exists C ∈ T
such that C ∈ S\T , which is absurd. Therefore, if Tan(A, x) ⊆ S\T , then
Tan(A, x) ⊆ T ⊥.

It remains to verify (5.2). Suppose for contradiction that Tan(A, x) ⊆ S and
Tan(A, x)∩ T 6= ∅, but Tan(A, x)∩ S\T 6= ∅. Choose tangent sets T ∈ Tan(A,
x) ∩ T and R ∈ Tan(A, x) ∩ S\T . Then there exist sequences ti ↓ 0 and ri ↓ 0
such that (A − x)/ti → T and (A − x)/ri → R. Passing to subsequences as
needed, we may assume without loss of generality that 4ri < ti for all i > 1.

Now, since R ∈ S\T , there exists some scale c > 0 such that ΘT
R (0, c) > φ/2

by (5.1). Let us abbreviate:

ΘT
A (x, tc) = ΘT

(A−x)/t(0, c) =: Θ(t) for all t > 0.

On the one hand, since (A − x)/ti → T and T ∈ T ,

lim sup
i→∞

Θ(ti) 6 2ΘT
T (0, 2c) = 0

by Lemma 4.7. On the other hand, since (A − x)/ri → R and ΘT
R (0, c) > φ/2,

lim inf
i→∞

Θ(2ri) = lim inf
i→∞

ΘT
(A−x)/ri

(0, 2c) >
1
2
ΘT

R (0, c) >
φ

4
by Lemmas 4.4 and 4.7.

Note thatΘ(t) ∈ [0, 1] for all t > 0 by Lemma 4.3. In fact,Θ(t) ∈ (0, 1] for all
t > 0. (Otherwise, if Θ(t0) = 0 for some t0 > 0, then ΘA(x, tc) 6 (t0/t)ΘA(x,
t0c)= 0 for all t 6 t0 by monotonicity, forcing Tan(A, x)⊆ T by Corollary 4.12.)
For all j > 1, set

I j = (2− j , 2− j+1], I+j =
∞⋃

k= j

Ik = (0, 2− j+1], and I−j =
j⋃

k=1

Ik = (2− j , 1].

For all t > 0, there exists a unique j > 1 with Θ(t) ∈ I j . By monotonicity, we
obtain the weak jump bound:

Θ(t) ∈ Ik H⇒ Θ(αt) ∈ I+k−1 for all α ∈ [1/2, 1] and t > 0. (5.4)

Let p > 1 be the unique integer such that φ ∈ Ip.
We now aim to construct a sequence si → 0 such that (A − x)/si converges to

some tangent set of A at x that lies in neither T nor S\T .
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CLAIM. For all i � 1, there exists si ∈ (2ri , ti) such that Θ(si) ∈ Ip+3,
Θ(t) ∈ I+p+3 for all t ∈ [si , ti ] and limi→∞ ti/si = ∞.

Proof of Claim. Choose i0 large enough so that, for i > i0, Θ(2ri) > φ/4
and Θ(ti) 6 φ/16. Let ki be the unique integer such that Θ(ti) ∈ Iki . Note that
Θ(ti) ∈ I+p+4 (since φ ∈ Ip). Fix i > i0, and consider the sequence 2−m ti for m > 0.
Because 4ri < ti , there exists an integer M > 1 such that 2−M−1ti 6 2ri < 2−M ti .
By monotonicity,

φ

4
6 Θ(2ri) 6 2Θ(2−M ti).

Hence φ/8 6 Θ(2−M ti) ∈ I−p+3. Therefore, by the weak jump bound (5.4), there
exists at least one integer m ∈ {1, . . . ,M} such that Θ(2−m ti) ∈ Ip+3. Define m i

to be the smallest integer with this property, and put si := 2−mi ti .
By construction, si ∈ (2ri , ti) and Θ(si) ∈ Ip+3. Suppose that t ∈ (si , ti ]. Then

there exists an integer m with 0 6 m < m i such that t ∈ (2−(m+1)ti , 2−m ti ]. By the
minimality of m i ,Θ(2−m ti) ∈ I+p+4. Hence, by the weak jump bound,Θ(t) ∈ I+p+3
for all t ∈ (si , ti ].

Finally, we note that ti/si = 2mi . By the weak jump bound, m i > ki − (p + 3).
Because Θ(ti) → 0, we have ki → ∞ as i → ∞. Therefore, ti/si → ∞ as
i →∞.

We now return to the proof of (5.2). Passing to a subsequence, we may assume
that (A − x)/si → S for some tangent set S ∈ Tan(A, x) ⊆ S . By the claim, for
all i � 1, ΘT

(A−x)/si
(0, c) = Θ(si) ∈ (2−(p+3), 2−(p+2)]. Hence, by Lemma 4.7,

ΘT
S (0, 2c) > 1

2 lim sup
i→∞

ΘT
(A−x)/si

(0, c) > 2−(p+4).

It follows that S 6∈ T . On the other hand, by Lemma 4.7,

ΘT
S (0, r) 6 2 lim inf

i→∞
ΘT
(A−x)/si

(0, 2r) = 2 lim inf
i→∞

Θ((2r/c)si) 6 2−(p+1)

for all r > c/2, since Θ(t) ∈ (0, 2−(p+2)] for all t ∈ [si , ti ] and lim infi→∞ ti/si >

2r/c. Thus, S ∈ S\T , but lim supr→∞Θ
T
S (0, r) 6 2−(p+1) < φ. This violates

(5.1). Therefore, if Tan(A, x) ⊆ S and Tan(A, x) ∩ T 6= ∅, then Tan(A, x)
⊆ T .

COROLLARY 5.4. Let T and S be local approximation classes. If T is separated
at infinity in S and T is translation invariant, then, for all A ∈ C(x),

bΨ -Tan(A, x) ⊆ S and bΨ -Tan(A, x) ∩ T 6= ∅ H⇒ bΨ -Tan(A, x) ⊆ T .

Proof. Assume that T is separated at infinity in S and that T is translation
invariant. Suppose that bΨ -Tan(A, x) ⊆ S and bΨ -Tan(A, x) ∩ T 6= ∅. Choose
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B ∈ bΨ -Tan(A, x)∩T . By Lemma 3.7, there exist C ∈ Tan(A, x) and y ∈ C such
that B = C − y. Equivalently, C = B − (−y) for some −y ∈ B. Hence C ∈ T ,
because T is translation invariant. Thus, Tan(A, x) ⊆ bΨ -Tan(A, x) ⊆ S and
Tan(A, x) ∩ T 6= ∅. Because T is separated at infinity in S , we conclude that
Tan(A, x) ⊆ T by Theorem 5.3. Therefore, bΨ -Tan(A, x) ⊆ T , because every
bounded pseudotangent set is the translate of a tangent set (Lemma 3.7) and T is
translation invariant.

REMARK 5.5. The analog of Theorem 5.3 and Corollary 5.4 for arbitrary
(unbounded) pseudotangent sets is false. For example, consider

A = {(x, y) ∈ R2 : x = 0 or y = 0},
which is the union of the x-axis X = {(x, 0) : x ∈ R} and the y-axis Y = {(0,
y) : y ∈ R} in the plane. Let S consist of X , Y , and all translates of A. One can
readily check that S is a closed translation-invariant local approximation class
and that ΘS

A (x, r) = 0 for all x ∈ A and r > 0. Hence Ψ -Tan(A, x) ⊆ S by
Corollary 4.15. It is also easy to check that T := {X} is separated at infinity
in S and that T is translation invariant. Let xi = (1/ i, 0) and ri = 1/ i2. Then
X = limi→∞(A− xi)/ri is an unbounded psuedotangent of A at the origin. Thus,
Ψ -Tan(A, (0, 0)) ∩ T 6= ∅, but Ψ -Tan(A, (0, 0)) 6⊆ T .

We end the section with several criteria for checking separation at infinity.

LEMMA 5.6. Let T and S be local approximation classes, and let φ > 0. If for
all S ∈ S there is a function ΦS : (0, 1) → (0,∞) with lim infs→0+ΦS(s) = 0
such that

ΘT
S (0, r) < φ H⇒ ΘT

S (0, sr) < ΦS(s) for all s ∈ (0, 1),

then T is φ separated at infinity in S .

Proof. Suppose for contradiction that there exist S ∈ S\T and r0 > 0 such that
ΘT

S (0, r) < φ for all r > r0. Because S 6∈ T , there exists r1 > r0 such that
ΘT

S (0, r1) > 0. Since lim infs→0+ΦS(s) = 0, we can choose s < 1 such that
Φ(s) 6 ΘT

S (0, r1). Hence ΘT
S (0, r1) = ΘT

S (0, s(r1/s)) < Φ(s) 6 ΘT
S (0, r1),

which is absurd.

The following property of local approximation classes, which we informally
call ‘detectability’, is a uniform version of the criterion for separation at infinity
in Lemma 5.6. In the next section, we shall see that, where separation at infinity
gives pointwise information about the tangents of sets, detectability yields locally
uniform information about the tangents and pseudotangents of sets.
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DEFINITION 5.7 (T point detection property). Let T , S be local approximation
classes. We say that T points are detectable in S if there exist a constant φ > 0
and a functionΦ : (0, 1)→ (0,∞) with lim infs→0+Φ(s) = 0 such that, if S ∈ S
and ΘT

S (0, r) < φ, then ΘT
S (0, sr) < Φ(s) for all s ∈ (0, 1). To emphasize a

choice of φ and Φ, we may say that T points are (φ,Φ) detectable in S .

EXAMPLE 5.8. Given n > 2 and d > 1, let H(n, d) denote the collection of zero
sets of nonconstant harmonic polynomials p : Rn → R of degree at most d such
that p(0) = 0. Then G(n, n − 1) points (‘flat points’) are (δn,d,Cn,ds) detectable
in H(n, d) by [2, Theorem 1.4].

Detectability implies separation at infinity in a stronger sense than in
Lemma 5.6.

LEMMA 5.9. If T points are (φ,Φ) detectable in S , then T is φ separated at
infinity in S .

Proof. Suppose for contradiction that T points are (φ,Φ) detectable in S , but
that there exists S ∈ S\T such that lim supr→∞Θ

T
S (0, r) < φ. Then there exist

δ > 0 and r0 > 0 such that ΘT
S (0, r) < φ/(1+ δ) for all r > r0. Since S ∈ S\T ,

there exists a sequence Si ∈ S\T with Si → S in C(0). Passing to a subsequence,
we may assume that D̃0,i [Si , S] 6 1/ i2 for all i > 1. Then, by monotonicity,

D̃0,r [Si , S] 6 1
ir

for all i > r.

Because S 6∈ T , there exists r1 > r0 such that ΘS(0, r1) > 0. Pick any s < 1 such
that Φ(s) 6 ΘS(0, r1)/4. By the weak quasitriangle inequality,

ΘT
S (0, r1) 6 2ΘT

Si
(0, 2r1)+ 1

ir1
= 2ΘSi

(
0, s

2r1

s

)
+ 1

ir1
for all i > 2r1.

Note that

lim sup
i→∞

ΘT
Si

(
0,

2r1

s

)
6 (1+ δ)ΘT

S

(
0, (1+ δ)2r1

s

)
< φ

by Lemma 4.7. Thus, by the detectability hypothesis,

ΘT
S (0, r1) 6 2ΘSi

(
0, s

2r1

s

)
+ 1

ir1
< 2Φ(s)+ 1

ir1

6
1
2
ΘS(0, r1)+ 1

ir1
for all i � 2r1.
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We have reached a contradiction. Therefore, if T points are (φ,Φ) detectable in
S , then T is φ separated at infinity in S .

The terminology in Definition 5.7 is justified by the following statement, whose
proof demonstrates the utility of Theorem 5.3.

LEMMA 5.10. If T points are (φ,Φ) detectable in S , S ∈ S , and ΘT
S (0, r) < φ

for some r > 0, then 0 is a T point of S.

Proof. Assume that T points are (φ,Φ) detectable in S . Then T is separated at
infinity in S by Lemma 5.9. Suppose that S ∈ S and ΘT

S (0, r) < φ for some
r > 0. Then we can find η > 0 such that ΘT

S (0, r) < φ/(1 + η). Since S ∈ S ,
there exists a sequence Si ∈ S such that Si → S in C(Rn).

Let σ > 0 be given. Choose s < min{σ, 1} such that Φ(s) 6 σ , and fix a
parameter ε ∈ (0, σ ] to be specified later. Since Si → S, we can pick j > 1 large
enough so that

D̃0,r/(1+sε)[S, S j ] < sε and D̃0,2r/(1+sε)[S, S j ] < ε

2
.

Since d̃ 0,r/(1+sε)(S j , S) < sε and 0 ∈ S, the strong quasitriangle inequality implies
that

ΘT
S j

(
0,

r
1+ sε

)
6 (1+ sε)ΘT

S (0, r)+ 2 D̃0,2r/(1+sε)[S, S j ]

< (1+ sε)
φ

1+ η + ε.

We now specify that ε was chosen so that φ(1+ sε)/(1+η)+ ε 6 φ. Then, since
S j ∈ S and ΘT

S j
(0, r/(1+ sε)) < ϕ, detectability implies that

ΘT
S j

(
0,

sr
1+ sε

)
< Φ(s) 6 σ.

Thus, by the weak quasitriangle inequality and monotonicity,

ΘT
S

(
0,

sr
2(1+ sε)

)
6 2ΘT

S j

(
0,

sr
1+ sε

)
+ 2 D̃0,sr/(1+sε)[S, S j ]

6 2ΘT
S j

(
0,

sr
1+ sε

)
+ 2

s
D̃0,r/(1+sε)[S, S j ]

6 2σ + 2ε 6 4σ.
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We have shown that for all σ > 0 there exists t = sr/2(1+ sε) such that ΘT
S (0,

t) 6 4σ . Note that t → 0 as σ → 0. Hence lim inft→0Θ
T
S (0, t) = 0, and thus

Tan(S, 0) ∩ T 6= ∅ by Corollary 4.13. On the other hand, Tan(S, 0) ⊆ S , since
S ∈ S . Invoking Theorem 5.3, we conclude that Tan(S, 0) ⊆ T . Therefore, 0 is a
T point of S by Corollary 4.12.

COROLLARY 5.11. If T points are (φ,Φ) detectable in S , then

S ∩ T ⊥ = {S ∈ S : ΘT
S (0, r) > φ for all r > 0}.

Before giving our last criterion for separation at infinity, we record an
auxiliary lemma, which encapsulates a crucial feature of detectability: good
approximability estimates at one scale yield better approximability estimates at a
smaller scale.

LEMMA 5.12 (Improving approximability on smaller scales). Suppose that T
points are (φ,Φ) detectable in S . For all β ′ < φ/4 and γ ′ > 0 there exist α′ > 0
and s < 1/8 with the following property: if A ⊆ Rn is nonempty, ΘS

A (x, r) < α′,
and ΘT

A (x, r) < β ′ for some x ∈ A and r > 0, then ΘT
A (x, sr) < γ ′.

Proof. Let β ′ < φ/4 and γ ′ > 0 be given. Choose s < 1/8 such that Φ(8s) 6
γ ′/4, and choose α′ > 0 to be the lesser of φ/4 − β ′ and sγ ′/2. Without loss of
generality, suppose that 0 ∈ A ⊆ Rn , ΘS

A (0, r) < α′, and ΘT
A (0, r) < β ′. Then

there exist S ∈ S and T ∈ T such that D̃0,r [A, S] < α′ and D̃0,r [A, T ] < β ′. By
the weak quasitriangle inequality and the closure property of the relative Walkup–
Wets distance,

D̃0,r/4[S, T ] 6 2 D̃0,r/2[S, A] + 2 D̃0,r/2[A, T ]
6 4 D̃0,r [S, A] + 4 D̃0,r [A, T ] < 4α′ + 4β ′.

Hence ΘT
S (0, r/4) 6 D̃0,r/4[S, T ] < φ, because α′ 6 φ/4 − β ′. But T points

are (φ,Φ) detectable in S , so ΘT
S (0, 2sr) < Φ(8s) 6 γ ′/4. Hence there exists

T ′ ∈ T such that D̃0,2sr [S, T ′] < γ ′/4. On the other hand, since D̃0,r [A, S] < α′,
we have D̃0,2sr [A, S] < α′/2s by monotonicity. Thus, by the weak quasitriangle
inequality,

D̃0,sr [A, T ′] 6 2 D̃0,2sr [A, S] + 2 D̃0,2sr [S, T ′] < α′/s + γ ′/2.
Therefore, ΘT

A (0, sr) 6 D̃0,sr [A, T ′] < α′/s + γ ′/2 6 γ ′, because α′ 6 sγ ′/2.

We now give a criterion for separation at infinity for ε-enlargements.
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LEMMA 5.13. Suppose that T points are (φ,Φ) detectable in S . For all ψ > 0
and δ > 0 such that ψ + δ < φ/8, there exists ε∗ > 0 such that (T ; δ)Θ0,∞ is ψ
separated at infinity in (S; ε)Θ0,∞ for all ε < ε∗.

Proof. Assume that T points are (φ,Φ) detectable in S . Let ψ > 0 and δ > 0
such that ψ + δ < φ/8 be given, fix ε∗ > 0 to be specified later, and pick any
ε < ε∗. We abbreviate:

P := (S; ε)Θ0,∞ and Q := (T ; δ)Θ0,∞.
Choose any η > 0 small enough so that 2ψ + 2δ + 2η < φ/4.

Suppose that A ∈ P and ΘQ
A (0, r) < ψ for some r > 0. On the one hand,

since ΘQ
A (0, r) < ψ , there exists T̂ ∈ Q such that D̃0,r [A, T̂ ] < ψ . Also, since

ΘT
T̂
(0, r) 6 δ, there exists T ∈ T such that D̃0,r [T̂ , T ] 6 δ + η. Hence, by the

weak quasitriangle inequality,

ΘT
A (0, r/2) 6 D̃0,r/2[A, T ] < 2ψ + 2δ + 2η < φ/4.

On the other hand,ΘS
A (0, r/2) 6 ε < ε∗, because A ∈ P . Let α′ > 0 and s < 1/8

be constants from Lemma 5.12 corresponding to β ′ = 2ψ + 2δ + 2η and γ ′ =
min{ψ, δ}, and set ε∗ = α′. Then ΘQ

A (0, sr/2) 6 ΘT
A (0, sr/2) < min{ψ, δ} by

Lemma 5.12. To summarize, we have shown that, if A ∈ P and ΘQ
A (0, r) < ψ

for some r > 0, then ΘQ
A (0, (s/2)r) 6 ΘT

A (0, (s/2)r) < min{ψ, δ}.
Thus, by induction,

A ∈ P and ΘQ
A (0, r) < ψ for some r > 0

H⇒ ΘQ
A (0, (s/2)

kr) < δ for all k > 1. (5.5)

Now suppose that A ∈ P and lim supr↑∞Θ
Q
A (0, r) < ψ . Then there is an r0 > 0

such that ΘQ
A (0, r) < ψ for all r > r0 > 0. Hence ΘQ

A (0, r) < δ for all r > 0 by
(5.5). That is, A ∈ Q. We have shown that for all A ∈ P either lim supr↑∞Θ

Q
A (0,

r) > ψ or A ∈ Q. Therefore, Q is ψ separated at infinity in P .

COROLLARY 5.14. If T points are (φ,Φ) detectable in S , δ 6 φ/32, andΦ(t)6
δ/4, then (T ; δ)Θ0,∞ is φ/16 separated at infinity in (S; ε)Θ0,∞ for all ε < tφ/16.

Proof. Given δ 6 φ/32, set ψ = φ/16 and η = φ/64. Then β ′ = 2δ + 2ψ +
2η 6 14φ/64 and γ ′ = min{ψ, δ} = δ. Thus, by the proof of Lemma 5.12, α′ =
min{φ/4 − β ′, sγ ′/2} = sδ/2 for any s < 1/8 such that Φ(8s) 6 γ ′/4 = δ/4.
Therefore, writing t = 8s, we have ε∗ = α′ = tδ/16 for any t < 1 such that
Φ(t) 6 δ/4.
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6. Decompositions of Reifenberg type sets

In this section, we address the question of what a Reifenberg type set looks
like when it is approximated by several kinds of model sets. The basic result
(Theorem 6.1) is a direct application of the connectedness of the cone of tangent
sets at a point (Theorem 5.3).

THEOREM 6.1 (Pointwise decomposition). Let T and S be local approximation
classes. Suppose that T is separated at infinity in S . If A ⊆ Rn is locally well
approximated by S , then A can be written as a disjoint union

A = AT ∪ AT ⊥ (AT ∩ AT ⊥ = ∅), (6.1)

where Tan(A, x) ⊆ S ∩ T for all x ∈ AT and Tan(A, x) ⊆ S ∩ T ⊥ for all
x ∈ AT ⊥ .

Proof. Suppose that T is separated at infinity in S , and let A ⊆ Rn be locally
well approximated by S . Then Tan(A, x) ⊆ Ψ -Tan(A, x) ⊆ S for all x ∈ A by
Corollary 4.15. Define

AT = {x ∈ A : Tan(A, x) ∩ T 6= ∅}
and

AT ⊥ = {x ∈ A : Tan(A, x) ∩ T = ∅}.
Then A = AT ∪AT ⊥ and AT ∩AT ⊥ = ∅. It follows immediately from Theorem 5.3
that Tan(A, x) ⊆ T for all x ∈ AT and Tan(A, x) ⊆ T ⊥ for all x ∈ AT ⊥ .

In the remainder of the section, we discuss two variations of Theorem 6.1. First,
we show that, if T points are detectable in S , then (i) the set AT in Theorem 6.1
is locally well approximated by T (see Theorem 6.2) and (ii) A is locally well
approximated along AT ⊥ by T ⊥ (see Definition 6.5 and Corollary 6.6). Second,
we establish a decomposition theorem for sets that are locally ε-approximable by
S , but are not necessarily locally well approximated by S (see Theorem 6.7).

THEOREM 6.2 (Open/closed decomposition). Let T and S be local
approximation classes. Suppose that T points are detectable in S . If A ⊆ Rn is
locally well approximated by S , then A can be written as a disjoint union

A = AT ∪ AT ⊥ (AT ∩ AT ⊥ = ∅), (6.2)

where Ψ -Tan(A, x) ⊆ S ∩T for all x ∈ AT and Tan(A, x) ⊆ S ∩T ⊥ for all x ∈
AT ⊥ . Moreover, AT is relatively open in A, and AT is locally well approximated
by T .
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REMARK 6.3. The inception for Theorem 6.2 is a similar decomposition for
closed sets A ⊆ Rn that can be locally well approximated by zero sets of harmonic
polynomials, given by the first author in [2, Theorem 5.10], but which required an
additional a priori assumption on the tangents of A. In Theorem 6.2, we are able
to abolish this extra hypothesis by incorporating the connectedness of the cone of
tangent sets (established in Section 5 above) in the proof of Theorem 6.2.

To aid in the proof of Theorem 6.2, we first establish an auxiliary lemma, which
is a generalization of [2, Lemma 5.9].

LEMMA 6.4. Suppose that T points are (φ,Φ) detectable in S . For all γ > 0
there exist α > 0 and β > 0 such that, if x ∈ A ⊆ Rn ,

ΘS
A (x, r

′) < α for all 0 < r ′ 6 r, (6.3)

and ΘT
A (x, r) < β, then ΘT

A (x, r
′) < γ for all 0 < r ′ 6 r .

Proof. Assume that T points are (φ,Φ) detectable in S . Let γ > 0 be given.
Replacing γ with a smaller value if necessary, we may assume without loss of
generality that γ < φ/4. Let x ∈ A ⊆ Rn . By Lemma 5.12, applied with β ′ =
γ < φ/4 and γ ′ = γ , there exist α′ > 0 and s < 1/8 so

ΘS
A (x, t) < α′ and ΘT

A (x, t) < γ H⇒ ΘT
A (x, st) < γ. (6.4)

Set α = α′ and β = sγ .
To finish the lemma, assume that (6.3) holds for some r > 0 and that ΘT

A (x,
r) < β. Then, by monotonicity,

ΘT
A (x, tr) < β/t 6 β/s = γ for all s 6 t 6 1. (6.5)

Induction on (6.5) using (6.3) and (6.4) gives ΘT
A (x, r

′) < γ for all 0 < r ′

6 r .

Proof of Theorem 6.2. Assume that T points are (φ,Φ) detectable in S for some
φ < 1. Then T is separated at infinity in S by Lemma 5.9. Let α and β be the
constants from Lemma 6.4 corresponding to γ = φ/8. Set β̃ = min{β/6, 1/2}.
Suppose that A ⊆ Rn is locally well approximated by S . Then Ψ -Tan(A, x) ⊆ S
by Corollary 4.15. To continue, partition A into two sets:

AT =
{

x ∈ A : lim inf
r↓0

ΘT
A (x, r) < β̃

}
and

AT ⊥ =
{

x ∈ A : lim inf
r↓0

ΘT
A (x, r) > β̃

}
.
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Then A = AT ∪AT ⊥ and AT ∩AT ⊥ = ∅. Since lim infr→0Θ
T
A (x, r)= 0 whenever

Tan(A, x) ∩ T 6= ∅ by Corollary 4.13, it is clear that Tan(A, x) ⊆ S\T for all
x ∈ AT ⊥ . Thus, Tan(A, x) ⊆ T ⊥ for all x ∈ AT ⊥ by Theorem 5.3. It remains to
show that AT is relatively open in A, that AT is locally well approximated by T ,
and that Ψ -Tan(A, x) ⊆ T for all x ∈ AT .

Fix x0 ∈ AT . Because A is locally well approximated by S , there is a scale
r0 ∈ (0, 1] such that

ΘS
A (x, r

′) 6 α/2 < α for all x ∈ A ∩ B(x0, 1) and 0 < r ′ 6 r0.

Since x0 ∈ AT , lim infr→0Θ
T
A (x0, r) < β̃. Hence there exists r1 ∈ (0, r0/4] such

that ΘT
A (x0, 4r1) < β̃. By monotonicity (Lemma 4.6), for all x ∈ A such that

|x − x0| 6 β̃(2r1),

ΘT
A (x, r1) 6 2(β̃ + (1+ β̃)ΘT

A (x0, (1+ β̃)2r1))

6 2(β̃ + 2ΘT
A (x0, 4r1)) < 6β̃ 6 β.

Therefore, by Lemma 6.4,

ΘT
A (x, r

′) < φ/8 for all x ∈ A ∩ B(x0, β̃(2r1)) and 0 < r ′ 6 r1. (6.6)

Fix x ∈ A∩ B(x0, β̃(2r1)). We will now show that Tan(A, x)∩T 6= ∅. Recall that
Tan(A, x) ⊆ Ψ -Tan(A, x) ⊆ S . Pick any S ∈ Tan(A, x), say (A−x)/si → S ∈ S
for some sequence si → 0. By (6.6) and Lemmas 4.7 and 4.5,

ΘT
S (0, 1/2) 6 2 lim inf

i→∞
ΘT
(A−x)/si

(0, 1)

= 2 lim inf
i→∞

ΘT
A (x, si) 6 4 sup

0<r ′6r1

ΘT
A (x, r

′) 6 φ/2.

Hence Tan(S, 0)⊆ T by Lemma 5.10, and thus Tan(A, x)∩T 6= ∅ by Lemma 3.6.
Therefore, A ∩ B(x0, β̃(2r1)) ⊆ AT by Corollary 4.13. Since x0 ∈ AT was fixed
arbitrarily, we conclude that AT is relatively open in A.

It now remains to show that AT is locally well approximated by T and that
Ψ -Tan(A, x) ⊆ T for all x ∈ AT . Fix any compact set K ⊆ AT and 0 < τ 6 3.
Redefine α and β to be the constants from Lemma 6.4 corresponding to γ = τ/6.
Because A is locally well approximated by S , there exists r2 > 0 such that

ΘS
A (x, r

′) 6 α/2 < α for all x ∈ K and 0 < r ′ 6 r2.

For each x ∈ K , choose rx ∈ (0, r2/4] so that A ∩ B(x, 8rx) ⊆ AT and ΘT
A (x,

4rx) < β. Then ΘT
AT
(x, r ′) = ΘT

A (x, r
′) < γ for all 0 < r ′ 6 4rx by Lemma 6.4.
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By monotonicity, we conclude that

ΘT
AT
(y, r ′) 6 2(γ + (1+ γ )ΘT

AT
(x, (1+ γ )2r ′))

6 2(γ + 2ΘT
A (x, 4r ′)) < 6γ = τ

for all x ∈ K , |y − x | 6 γ (2rx), and 0 < r ′ 6 rx . Finally, extracting a finite
subcover of K from {B(x, γ (2rx)) : x ∈ K }, it follows that there exists rK > 0
such that ΘT

AT
(y, r ′) < τ for all y ∈ K and for all 0 < r ′ 6 rK . Therefore,

AT is locally τ -approximable by T for all τ > 0. That is, AT is locally well
approximated by T . Because A and AT coincide locally near all x ∈ AT , it
follows from Corollary 4.15 that Ψ -Tan(A, x) ⊆ T for all x ∈ AT .

With additional terminology, we can say something more about the singular set
AT ⊥ appearing in Theorem 6.2.

DEFINITION 6.5. Let S a local approximation class, and let A′ ⊆ A ⊆ Rn be
nonempty. We say that A is locally well approximated along A′ by S if, for all
compact sets K ⊆ A′,

lim sup
r↓0

sup
x∈K

ΘS
A (x, r) = 0.

COROLLARY 6.6. If T points are (φ,Φ) detectable in S and A is locally well
approximated by S , then A is locally well approximated along AT ⊥ by S ∩ T ⊥.

Proof. Assume that T points are (φ,Φ) detectable in S . Then, by Corollary 5.11,

S ′ := S ∩ T ⊥ = {S ∈ S : ΘT
S (0, r) > φ for all r > 0}.

We note for later use that S ∩ T ⊥ is closed.
Let A ⊆ Rn be locally well approximated by S , and decompose A = AT ∪ AT ⊥

as in Theorem 6.2. If AT ⊥ is empty, then there is nothing to prove. Thus, we
may suppose that AT ⊥ is nonempty. In particular, since Tan(A, x) ⊆ S ′ for all
x ∈ AT ⊥ , we know that S ′ is nonempty. Let β̃ be the constant appearing in the
proof of Theorem 6.2, so

lim inf
r↓0

ΘT
A (x, r) > β̃ for all x ∈ AT ⊥ . (6.7)

Suppose in order to obtain a contradiction that there exist a compact set K ⊆ AT ⊥

and c0 > 0 such that

lim sup
r↓0

sup
x∈K

ΘS ′
A (x, r) > c0 > 0.
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Choose sequences ri > 0 and xi ∈ K such that ΘS ′
A (xi , ri) > c0 for all i > 1

and ri → 0. Because K and C(0) are sequentially compact, we may pass to a
subsequence of (ri , xi)

∞
i=1 to assume that xi → x for some x ∈ K and (A −

xi)/ri → S for some S ∈ Ψ -Tan(A, x) ⊆ S . Then, by Lemmas 4.7, 4.4, and 4.5,

ΘS ′
S (0, 2) >

1
2

lim sup
i→∞

ΘS ′
(A−xi )/ri

(0, 1) = 1
2

lim sup
i→∞

ΘS ′
A (xi , ri)

>
1
2

lim sup
i→∞

ΘS ′
A (xi , ri) >

c0

2
.

In particular, S 6∈ S ′ = S ∩ T ⊥. Hence ΘT
S (0, r) < φ for some r > 0, and thus 0

is a T point of S by Lemma 5.10.
We are now ready to derive a contradiction. Let α and β be the constants from

Lemma 6.4 corresponding to γ = β̃/2. On the one hand, since A is locally well
approximated by S , there exists ρ > 0 such that

ΘS
A (x, r) 6 α/2 < α for all x ∈ K and for all 0 < r 6 ρ.

On the other hand, because 0 is a T point of S, we can pick λ > 0 such that
ΘT

S (0, 2λ) 6 β/4. Then, by Lemmas 4.4, 4.5, and 4.7 (as above),

lim sup
i→∞

ΘT
A (xi , λri) 6 2ΘT

S (0, 2λ) 6 β/2 < β.

Pick any i > 1 large enough so that ΘT
A (xi , λri) < β and λri 6 ρ. Then, by

Lemma 6.4, ΘT
A (xi , r) < β̃/2 for all 0 < r 6 λri . Thus, lim supr↓0Θ

T
A (xi , r) 6

β̃/2 < β̃, violating (6.7). We have reached a contradiction. Therefore, A is locally
well approximated along AT ⊥ by S ′ = S ∩ T ⊥.

Our last goal of the section is to establish a perturbation of Theorem 6.2, where
sets locally well approximated by S are replaced by sets locally ε-approximable
by S .

THEOREM 6.7 (Open/closed decomposition with ε-enlargements). Suppose that
T points are (φ,Φ) detectable in S . Given any δ 6 φ/32 and t < 1 such that
Φ(t) 6 δ/4, and given ε < tδ/16, let

P = (S; ε)Θ0,∞ and Q = (T ; δ)Θ0,∞.
If A ⊆ Rn is locally ε-approximable by S , then A can be written as a disjoint
union

A = AQ ∪ AQ⊥ (AQ ∩ AQ⊥ = ∅),
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where Ψ -Tan(A, x) ⊆ P ∩ Q for all x ∈ AQ and Tan(A, x) ⊆ P ∩ Q⊥ for all
x ∈ AQ⊥ . Moreover, AQ is relatively open in A, and AQ is locally δ-approximable
by T .

To enable the proof of Theorem 6.7, we first establish a variant of Lemma 6.4.

LEMMA 6.8. Suppose that T points are (φ,Φ) detectable in S . Let δ 6 φ/32
be given, and write Q = (T ; δ)Θ0,∞. For all γ 6 φ/24 and s < 1/8 such that
Φ(8s) 6 γ /4, if x ∈ A ⊆ Rn ,

ΘS
A (x, r

′) <
sγ
2

for all 0 < r ′ 6 r, (6.8)

and ΘQ
A (x, r) < sγ /2, then ΘT

A (x, r
′) < γ for all 0 < r ′ 6 sr/2.

Proof. Assume that T points are (φ,Φ) detectable in S . Let δ 6 φ/32 and Q =
(T ; δ)Θ0,∞. Let γ 6 φ/24 be given. Suppose that x ∈ A ⊆ Rn . By Lemma 5.12,
applied with β ′ = γ + 4δ 6 φ/6 and γ ′ = γ , there exist α′ > 0 and s < 1/8 so
that

ΘS
A (x, t) < α′ and ΘT

A (x, t) < γ + 4δ H⇒ ΘT
A (x, st) < γ. (6.9)

Reviewing the proof of Lemma 5.12, s < 1/8 can be chosen to be any number
such that Φ(8s) 6 γ ′/4 = γ /4 and α′ = min{φ/4 − β ′, sγ ′/2} = sγ /2. Set
α = α′ and β = sγ /2.

To finish the lemma, assume that (6.8) holds for some r > 0 andΘQ
A (x, r) < β.

Then, by monotonicity,

ΘQ
A (x, tr) < β/t 6 β/s = γ /2 for all s 6 t 6 1.

Thus, by the weak quasitriangle inequality,

ΘT
A (x, tr/2) < γ + 4δ for all s 6 t 6 1. (6.10)

(Indeed, pick T̂ ∈ Q with D̃x,tr [A, x + T̂ ] < γ/2 and T ∈ T with D̃0,tr [T̂ , T ] <
2δ. Then ΘT

A (x, tr/2) 6 D̃x,tr/2[A, x + T ] 6 2 D̃x,tr [A, x + T̂ ] + 2 D̃x,tr [x + T̂ ,
x + T ] < γ + 4δ.) Induction on (6.10) using (6.8) and (6.9) gives ΘT

A (x, r
′) < γ

for all 0 < r ′ 6 sr/2.

Proof of Theorem 6.7. Assume that T points are (φ,Φ) detectable in S for some
φ < 1. Let δ 6 φ/32, t < 1 such that Φ(t) 6 δ/4, and ε < tδ/16 be given, and
define P = (S; ε)Θ0,∞ and Q = (T ; δ)Θ0,∞. Note that Q is separated at infinity
in P by Corollary 5.14. Let s = t/8 so that Φ(8s) = Φ(t) 6 δ/4, and put γ̃ =
min{sδ/12, 1/2}. Now suppose that A ⊆ Rn is locally ε-approximable by S . Note



Local set approximation 43

that Ψ -Tan(A, x) ⊆ P for all x ∈ A by Theorem 4.14. To proceed, partition A
into two sets:

AQ =
{

x ∈ A : lim inf
r↓0

ΘQ
A (x, r) < γ̃

}
and

AQ⊥ =
{

x ∈ A : lim inf
r↓0

ΘQ
A (x, r) > γ̃

}
.

Then A = AQ∪AQ⊥ and AQ∩AQ⊥ = ∅. Since lim infr→0Θ
Q
A (x, r)= 0 whenever

Tan(A, x) ∩ Q 6= ∅ by Corollary 4.13, it is clear that Tan(A, x) ⊆ P\Q for all
x ∈ AQ⊥ . It follows that Tan(A, x) ⊆ Q⊥ for all x ∈ AQ⊥ by Theorem 5.3. To
complete the proof of the theorem, we must show that AQ is relatively open in A;
AQ is locally δ-approximable by T ; and Ψ -Tan(A, x) ⊆ Q for all x ∈ AQ.

Fix x0 ∈ AQ. Since A is locally ε-approximable by S , there exists r0 ∈ (0, 1]
such that

ΘS
A (x, r

′) 6 ε < sδ/2 for all x ∈ A ∩ B(x0, 1) and 0 < r ′ 6 r0.

Since x0 ∈ AQ, lim infr→0Θ
Q
A (x0, r) < γ̃ . Hence there exists r1 ∈ (0, r0/4] such

thatΘQ
A (x0, 4r1) < γ̃ . By monotonicity, for all x ∈ A such that |x− x0| 6 γ̃ (2r1),

ΘQ
A (x, r1) 6 2(γ̃ + (1+ γ̃ )ΘQ

A (x0, (1+ γ̃ )2r1))

6 2(γ̃ + 2ΘQ
A (x0, 4r1)) < 6γ̃ 6 sδ/2.

Therefore, by Lemma 6.8 with γ = δ,

ΘT
A (x, r

′) < δ for all x ∈ A ∩ B(x0, γ̃ (2r1)) and 0 < r ′ 6 sr1/2. (6.11)

Fix x ∈ A∩B(x0, γ̃ (2r1)). Then lim supr→0Θ
T
A (x, r)6 δ by (6.11). Thus, Tan(A,

x) ⊆ Q by Theorem 4.11, and lim infr→0Θ
Q
A (x, r) = 0 by Corollary 4.13. Hence

A ∩ B(x0, γ̃ (2r1)) ⊆ AQ. Since x0 ∈ AQ was fixed arbitrarily, we conclude that
AQ is relatively open in A.

It now remains to show that AQ is locally δ-approximable by T and to show
that Ψ -Tan(A, x) ⊆ Q for all x ∈ AQ. Let K be a compact subset of AQ. By
(6.11), for every x ∈ AQ there exists rx > 0 such that ΘT

AQ
(y, r ′) = ΘT

A (y,
r ′) < δ for all y ∈ AQ ∩ B(x, γ̃ rx) and for all 0 < r ′ 6 srx/8. Thus, by extracting
a finite subcover of K from {B(x, γ̃ rx) : x ∈ K }, it follows that there exists
rK > 0 such thatΘT

AQ
(y, r ′) < δ for all y ∈ K and for all 0 < r ′ 6 rK . Therefore,

AQ is locally δ-approximable by T . Because A and AQ coincide locally near all
x ∈ AQ, Ψ -Tan(A, x) ⊆ Q for all x ∈ AQ by Theorem 4.14.
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7. Unilateral approximation and Mattila–Vuorinen type sets

We now turn to discussion of unilateral variants of the concepts introduced in
Section 4. The following definition generalizes Jones’ beta numbers and Mattila
and Vuorinen’s linear approximation property to unilateral approximation of a set
A by closed sets in an arbitrary local approximation class S .

DEFINITION 7.1 (Mattila–Vuorinen type sets). Let S be a local approximation
class, and let A ⊆ Rn .

(i) For all x ∈ Rn and r > 0, define the unilateral approximability βS
A (x, r) of

A by S at location x and scale r by

βS
A (x, r) = inf

S∈S
d̃ x,r (A, x + S).

(ii) We say that A is unilaterally (ε, r0)-approximable by S if βS
A (x, r) 6 ε for

all x ∈ A and 0 < r 6 r0.

(iii) We say that A is locally unilaterally ε-approximable by S if, for all compact
sets K ⊆ A, there exists rK > 0 such that βS

A (x, r) 6 ε for all x ∈ K and
0 < r 6 rK .

(iv) We say that A is locally unilaterally well approximated by S if A is locally
unilaterally ε-approximable by S for all ε > 0.

LEMMA 7.2 (Properties of βS
A (x, r)). Let S be a local approximation class, let

A ⊆ Rn be nonempty, let x, y ∈ Rn , and let r, s > 0.

• Comparison with bilateral approximability: βS
A (x, r) 6 ΘS

A (x, r).

• Size: 0 6 βS
A (x, r) 6 1; βS

A (x, r) = 0 if A ∩ B(x, r) = ∅.
• Scale invariance: βS

A (x, r) = βS
λA(λx, λr) for all λ > 0.

• Translation invariance: βS
A (x, r) = βS

A+z(x + z, r) for all z ∈ Rn .

• Closure: βS
A (x, r) 6 βS

A
(x, r) 6 (1+ δ)βS

A (x, (1+ δ)r) for all δ > 0.

• Monotonicity: If A ⊆ A′, B(x, r) ⊆ B(y, s) and |x − y| 6 ts, then

βS
A (x, r) 6

s
r
(t + βS

A′(y, s)). (7.1)
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• Limits: If A, A1, A2, . . . ∈ C(Rn) and Ai → A in C(Rn), then

1
1+ ε lim sup

i→∞
βS

Ai

(
x,

r
1+ ε

)
6 βS

A (x, r) 6 (1+ ε) lim inf
i→∞

βS
Ai
(x, r(1+ ε)) for all ε > 0. (7.2)

Proof. The properties of unilateral approximability can be verified by modifying
the proofs of the properties of bilateral approximability given in Section 4. Details
are left to the reader.

REMARK 7.3. It immediately follows from the definitions that any subset of a
Reifenberg type set is a Mattila–Vuorinen type set. If A is locally bilaterally ε-
approximable by S and B ⊆ A, then B is locally unilaterally ε-approximable by
S . The converse of this fact is generally false, as shown by the following example
due to David and Toro.

EXAMPLE 7.4 [10, Example 12.4]. Let G(3, 2) denote the set of two-dimensional
linear subspaces of R3, which is a closed linear approximation class. For all
0 < δ � 1 and for all 0 < ε � δ, there exists a Möbius strip M ⊂ R3

with the following property: M is unilaterally (ε, r0)-approximable by G(3, 2)
for all r0 > 0, but M cannot be extended to a set N , which is bilaterally (δ, r1)-
approximable by G(3, 2), for any r1 & 1.

Our next goal is to characterize unilaterally approximable sets in terms of the
tangent and pseudotangent sets of their closure.

DEFINITION 7.5 (Unilateral ε-enlargements). Let S be a local approximation
class. For all ε > 0, define

(S; ε)β0,∞ = {A ∈ C(0) : βS
A (0, r) 6 ε for all r > 0}

and

(S; ε)βRn ,∞ = {A ∈ C(0) : βS
A (x, r) 6 ε for all x ∈ A and all r > 0}.

LEMMA 7.6. Let S be a local approximation class, and let ε > 0. Then (S; ε)βRn ,∞
and (S; ε)β0,∞ are closed local approximation classes, and (S; ε)βRn ,∞ is the
maximal translation-invariant local approximation class that is contained in
(S; ε)β0,∞.

Proof. Both (S; ε)βRn ,∞ and (S; ε)β0,∞ are local approximation classes, because
unilateral approximability βS

A (x, r) is scale invariant by Lemma 7.2.
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To show that (S; ε)β0,∞ is closed in C(0), suppose that Ai → A in C(0) for some
sequence (Ai)

∞
i=1 in (S; ε)β0,∞. By Lemma 7.2, for all r > 0,

βS
A (0, r) 6 lim inf

δ↓0
lim inf

i→∞
βS

Ai
(0, (1+ δ)r) 6 lim inf

δ↓0
lim inf

i→∞
ε = ε,

since each set Ai ∈ (S; ε)β0,∞. Hence A ∈ (S; ε)β0,∞, and thus (S; ε)β0,∞ is closed
in C(0).

It is clear that (S; ε)βRn ,∞ ⊆ (S; ε)β0,∞ and that (S; ε)βRn ,∞ is translation
invariant. Suppose that T ⊆ (S; ε)β0,∞ and that T is translation invariant. Let
T ∈ T , and let x ∈ T . Then

βS
T (x, r) = βS

T−x(0, r) 6 ε for all r > 0,

because T − x ∈ T ⊆ (S; ε)β0,∞. Hence T ∈ (S; ε)βRn ,∞ for all T ∈ T . Thus T ⊆
(S; ε)βRn ,∞ for all translation-invariant T ⊆ (S; ε)β0,∞. Therefore, (S; ε)βRn ,∞ is the
maximal translation-invariant local approximation class contained in (S; ε)β0,∞.
Finally, since (S; ε)βRn ,∞ is translation invariant, its closure (S; ε)βRn ,∞ is also
translation invariant (see the proof of Lemma 4.10). By maximality of (S; ε)βRn ,∞,
it follows that (S; ε)βRn ,∞ is closed.

LEMMA 7.7. (S; 0)β0,∞ = {A ∈ C(0) : A ⊆ S for some S ∈ S}.

Proof. If A ⊆ S for some S ∈ S , then βS
A (0, r) 6 βS

S (0, r) 6 ΘS
S (0, r) = 0

for all r > 0 by Lemmas 7.2 and 4.10. Thus, {A ∈ C(0) : A ⊆ S for some
S ∈ S} ⊆ (S; 0)β0,∞.

For the reverse inclusion, suppose that A ∈ (S; 0)β0,∞. Then, for all i > 1, we
can find Si ∈ S such that d̃ 0,i(A, Si) 6 1/ i2. Passing to a subsequence of (Si)

∞
i=1,

we may assume that Si → S for some S ∈ S . Passing to a further subsequence,
we may also assume that D̃0,2i [Si , S] 6 1/ i2 for all i > 1. It follows that, for all
r > 0 and integers i > r ,

d̃ 0,r (A, S) 6 d̃ 0,r (A, Si)+ 2 d̃ 0,2r (Si , S)

6
i
r

d̃ 0,i(A, Si)+ 2i
r

d̃ 0,2i(Si , S) 6
3
ri
,

where the first inequality holds by the weak quasitriangle inequality for relative
excess and the second inequality holds by monotonicity for relative excess.
Letting i → ∞, we conclude that d̃ 0,r (A, S) = 0 for all r > 0. Hence, by the
containment property of the relative excess, A ⊆ S. Therefore, (S; 0)β0,∞ ⊆ {A ∈
C(0) : A ⊆ S for some S ∈ S}.
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The following theorem and its corollary are unilateral variants of Theorem 4.11
and Corollary 4.13.

THEOREM 7.8. Let S be a local approximation class, let A ⊆ Rn , and let x ∈ A.
Then lim supr↓0 β

S
A (x, r) 6 ε if and only if Tan(A, x) ⊆ (S; ε)β0,∞.

Proof. Assume that x ∈ A ⊆ Rn , and let ε > 0. Suppose that Tan(A, x) ⊆
(S; ε)β0,∞. Choose a sequence ri > 0 such that ri → 0 and

lim
i→∞

βS
A (x, ri) = lim sup

r↓0
βS

A (x, r).

Since C(0) is sequentially compact, there exists a subsequence (ri j )
∞
j=1 of (ri)

∞
i=1

such that (A − x)/ri j → T for some T ∈ Tan(A, 0). Then, by Lemma 7.2,

lim
j→∞

βS
A (x, ri j ) 6 lim sup

j→∞
βS

A (x, ri j ) = lim sup
j→∞

βS
(A−x)/ri j

(0, 1)

6 (1+ δ)βS
T (0, 1+ δ) 6 (1+ δ)ε

for all δ > 0, where the last inequality holds because T ∈ (S; ε)β0,∞. Therefore,
letting δ→ 0, we see that lim supr↓0 β

S
A (x, r) = lim j→∞ βS

A (x, ri j ) 6 ε.
Conversely, suppose that lim supr↓0 β

S
A (x, r) 6 ε. Let T ∈ Tan(A, x), say (A−

x)/ri → T for some sequence ri → 0. Let s > 0. Then, by Lemma 7.2,

βS
T (0, s) 6 (1+ δ) lim inf

i→∞
βS
(A−x)/ri

(0, (1+ δ)s)
= (1+ δ) lim inf

i→∞
βS

A (x, (1+ δ)sri)

6 (1+ δ)2 lim inf
i→∞

βS
A (x, (1+ δ)2sri) 6 (1+ δ)2 lim sup

r↓0
βS

A (x, r)

6 (1+ δ)2ε

for all δ > 0. Thus, βS
T (0, r) 6 ε for all r > 0, for all T ∈ Tan(A, x). Therefore,

Tan(A, x) ⊆ (S; ε)β0,∞.

COROLLARY 7.9. Let S be a local approximation class, let x ∈ A ⊆ Rn , and let
ε > 0.

• If Tan(A, x) ∩ (S; ε)β0,∞ 6= ∅, then lim infr↓0 β
S
A (x, r) 6 ε.

• If lim infr↓0 β
S
A (x, r) = 0, then Tan(A, x) ∩ (S; 0)β0,∞ 6= ∅.
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Proof. Assume that x ∈ A ⊆ Rn , and let ε > 0. Suppose that Tan(A, x) ∩
(S; ε)β0,∞ 6= ∅. Choose T ∈ Tan(A, x) ∩ (S; ε)β0,∞, say T = limi→∞(A − x)/ri

for some sequence ri → 0. Then, by Lemma 7.2,

lim inf
r↓0

βS
A (x, r) 6 lim sup

i→∞
βS

A (x, ri) 6 lim sup
i→∞

βS
A (x, ri) = lim sup

i→∞
βS
(A−x)/ri

(0, 1)

6 (1+ δ)βS
T (0, 1+ δ) 6 (1+ δ)ε

for all δ > 0, where the last inequality holds because T ∈ (S; ε)β0,∞. Therefore,
letting δ→ 0, we see that lim infr↓0 β

S
A (x, r) 6 ε.

Conversely, suppose that lim infr→0 β
S
A (x, r) = 0. Then we can pick ri → 0

such that limi→∞ βS
A (x, ri) = 0. Passing to a subsequence, we may assume that

(A − x)/ri → B for some B ∈ Tan(A, x). Then, for all 0 < r 6 1/4,

βS
B (0, r) 6 2 lim inf

i→∞
βS
(A−x)/ri

(0, 2r) = 2 lim inf
i→∞

βS
A (x, 2rri)

6 4 lim inf
i→∞

βS
A (x, 4rri) 6

1
r

lim inf
i→∞

βS
A (x, ri) = 0

by Lemma 7.2. Hence, by Theorem 7.8, Tan(B, 0) ⊆ (S; 0)β0,∞. Pick any
C ∈ Tan(B, 0). Then C ∈ Tan(A, x) by Lemma 3.6. Therefore, C ∈ Tan(A,
x) ∩ (S; 0)β0,∞. In particular, Tan(A, x) ∩ (S; 0)β0,∞ 6= ∅.

The next result is a unilateral variant of Theorem 4.14.

THEOREM 7.10. Let S be a local approximation class, and let A ⊆ Rn be a
nonempty set. Then the following are equivalent.

(i) A is locally unilaterally ε′-approximable by S for all ε′ > ε.

(ii) Ψ -Tan(A, x) ⊆ (S; ε)β0,∞ for all x ∈ A.

(iii) Ψ -Tan(A, x) ⊆ (S; ε)βRn ,∞ for all x ∈ A.

Proof. Let A ⊆ Rn be nonempty, and fix ε > 0. Statements (ii) and (iii) are
equivalent by Lemma 7.6, because Ψ -Tan(A, x) is a translation-invariant local
approximation class. To complete the proof, we will show that (i) is equivalent
to (ii).

Suppose that A is locally unilaterally ε′-approximable by S for all ε′ > ε. Then

lim sup
r↓0

sup
x∈K

βS
A (x, r) 6 ε (7.3)

for every compact subset K ⊆ A. Let T ∈ Ψ -Tan(A, x) for some x ∈ A, say that
T = limi→∞(A − yi)/ri for some sequences yi ∈ A and ri > 0 such that yi → x
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and ri → 0. For each i > 1, choose xi ∈ A such that |xi − yi | 6 ri/ i . Then, since,
for all s > 0,

D̃0,s

[
A − xi

ri
, T

]
6

1
s

∣∣∣∣ xi − yi

ri

∣∣∣∣+ 2 D̃0,2s

[
A − yi

ri
, T

]
,

we have that (A − xi)/ri → T as well. Fix a scale r > 0 and an error δ > 0. By
Lemma 7.2 and (7.3) applied with the compact set K = {x} ∪ {xi : i > 1} ⊆ A,

βS
T (0, r) 6 (1+ δ) lim inf

i→∞
βS
(A−xi )/ri

(0, (1+ δ)r)
= (1+ δ) lim inf

i→∞
βS

A (xi , (1+ δ)rri)

6 (1+ δ)2 lim inf
i→∞

βS
A (xi , (1+ δ)2rri) 6 (1+ δ)2ε.

Letting δ → 0 yields βS
T (0, r) 6 ε for all r > 0. This shows that T ∈ (S; ε)β0,∞

and Ψ -Tan(A, x) ⊆ (S; ε)β0,∞ for all x ∈ A. Therefore, (i)⇒ (ii).
Conversely, suppose that Ψ -Tan(A, x) ⊆ (S; ε)β0,∞ for all x ∈ A. Fix a compact

set K ⊆ A. Let xi ∈ K and ri → 0 be sequences such that

lim
i→∞

βS
A (xi , ri) = lim sup

r↓0
sup
x∈K

βS
A (x, r).

Passing to a subsequence of (xi , ri)
∞
i=1, we may assume (since K and C(0) are

sequentially compact) that xi → x for some x ∈ K and (A − xi)/ri → T for
some T ∈ Ψ -Tan(A, x). By Lemma 7.2,

lim
i→∞

βS
A (xi , ri) 6 lim sup

i→∞
βS

A (xi , ri)

= lim sup
i→∞

βS
(A−xi )/ri

(0, 1) 6 (1+ δ)βS
T (0, 1+ δ) 6 (1+ δ)ε

for all δ > 0, where the last inequality holds since T ∈ (S; ε)β0,∞. Letting δ → 0
implies that lim supr→0 supx∈K β

S
A (x, r) = limi→∞ βS

A (xi , ri) 6 ε. That is, A is
locally unilaterally ε′-approximable by S for all ε′ > ε. Therefore, (ii)⇒ (i).

REMARK 7.11. By substituting beta numbers for theta numbers in relevant
definitions and proofs, one can obtain unilateral variants of the results in
Sections 5–6. For example, we obtain unilateral connectedness of the cone of
tangents sets. Suppose that there exists φ > 0 such that lim supr→∞ β

T
S (0, r) > φ

for all S ∈ S\(T ; 0)β0,∞. If A ∈ C(x) and Tan(A, x) ⊆ S , then

Tan(A, x) ⊆ (T ; 0)β0,∞ or Tan(A, x) ⊆ {S ∈ S : lim inf
r↓0

βT
S (0, r) > 0}.
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Figure 2. The class M consists of planes, Y -type sets, and T -type sets.

The underlying reason that results about bilateral approximation can be
transferred to results about unilateral approximation is that theta and beta numbers
satisfy the same essential properties such as scale invariance, monotonicity, etc.
We leave the details to the interested reader.

7.1. Unilateral approximation of the singular parts of Reifenberg type sets.
For the remainder of this section, we shall assume that S and T are local
approximation classes such that

S is translation invariant, and T points are (φ,Φ) detectable in S . (7.4)

Since S is translation invariant, every X ∈ S is (globally) bilaterally well
approximated by S by Lemma 4.10. Thus, since T points are (φ,Φ) detectable
in S , Theorem 6.2 implies that every X ∈ S can be decomposed X = XT ∪ XT ⊥ ,
where

XT = {x ∈ X : Ψ -Tan(X, x) ⊆ S ∩ T }
is a relatively open set in X and

XT ⊥ = {x ∈ X : Tan(X, x) ⊆ S ∩ T ⊥}
is a closed set in Rn (because X is closed in Rn).

DEFINITION 7.12. Assume that (7.4) holds. We define the class of T singular
parts of sets in S by singT S = {XT ⊥ : X ∈ S and 0 ∈ XT ⊥}.

EXAMPLE 7.13. Let M denote the collection of all translates of two-dimensional
Almgren minimal cones in R3. This class has three types of set (planes, Y -type
sets, and T -type sets), as described in Section 1 and redisplayed in Figure 2.

Let G = G(3, 2) denote the collection of planes in M, and let Y denote the
collection of (translates of) Y -type sets in M. The reader may verify that G points
are detectable in G ∪ Y and in M, and that G ∪ Y points are detectable in M.
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Figure 3. The class singG M consists of lines and spines of T -type sets.

The local approximation class singG(G ∪ Y) = G(3, 1) consists of lines through
the origin. The class singG M consists of lines through the origin and spines of
T -type sets (see Figure 3). Meanwhile, the class singG∪Y M = {{0}} consists
solely of a singleton at the origin.

THEOREM 7.14. Assume that (7.4) holds. If A ⊆ Rn is locally bilaterally
well approximated by S , then AT ⊥ is locally unilaterally well approximated by

singT S .

Proof. We will show that Ψ -Tan(AT ⊥, x) ⊆ (singT S; 0)β0,∞ for all x ∈ AT ⊥ , so
that AT ⊥ is locally unilaterally well approximated by singT S by Theorem 7.10.
Let x ∈ AT ⊥ , and let Σ ∈ Ψ -Tan(AT ⊥, x), say Σ = limi→∞(AT ⊥ − xi)/ri for
some sequences xi ∈ AT ⊥ and ri > 0 such that xi → x and ri → 0. Passing
to a subsequence of (xi , ri)

∞
i=1, we assume that (A − xi)/ri → X for some X ∈

Ψ -Tan(A, x) ⊆ S . To proceed, we will show that Σ ⊆ XT ⊥ .
Let y ∈ Σ . Because (AT ⊥ − xi)/ri → Σ , there exists a sequence yi = (zi −

xi)/ri with zi ∈ AT ⊥ such that yi → y. Replacing each zi by some z′i ∈ AT ⊥ such
that |z′i − zi | 6 ri/ i , we may assume that zi ∈ AT ⊥ for all i > 1. Note that zi → x
and

A − zi

ri
= A − xi

ri
+ xi − zi

ri
→ X − y in C(Rn),

because (A − xi)/ri → X in C(Rn) and (zi − xi)/ri → y (see, for example, the
proof of Lemma 3.5). Let S ′ := S ∩T ⊥ = {S ∈ S : ΘT

S (0, r) > φ for all r > 0}.
By Corollary 6.6, the set A is locally bilaterally well approximated along AT ⊥

by S ′. Thus, since K = {x} ∪ {zi : i > 1} is a compact subset of AT ⊥ (because
zi → x), for all s > 0 we obtain

lim sup
i→∞

ΘS ′
A (zi , sri) 6 2 lim sup

i→∞
ΘS ′

A (zi , 2sri) 6 2 lim sup
r↓0

sup
z∈K

ΘS ′
A (z, r) = 0.
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By Lemma 7.2, it follows that ΘS ′
X−y(0, s) = 0 for all s > 0, whence X − y ∈

S ′ = S ′ and ΘT
X (y, r) = ΘT

X−y(0, r) > φ for all r > 0. Hence y ∈ XT ⊥ for all
y ∈ Σ . Thus,Σ ⊆ XT ⊥ . In particular, note that 0 ∈ XT ⊥ , since 0 ∈ Σ . Therefore,
Σ ⊆ XT ⊥ ∈ singT S .

We have shown that, for all x ∈ AT ⊥ and for all pseudotangent sets Σ ∈
Ψ -Tan(AT ⊥, x), there exists XT ⊥ ∈ singT S such that Σ ⊆ XT ⊥ . Thus,

Ψ -Tan(AT ⊥, x) ⊆ (singT S; 0)β0,∞ for all x ∈ AT ⊥

by Lemma 7.7. Therefore, AT ⊥ is locally unilaterally well approximated by
singT S by Theorem 7.10.

8. Dimension bounds for Mattila–Vuorinen type sets

The defining property of Mattila–Vuorinen type sets interacts naturally with
the concept of Minkowski dimension. There are several equivalent definitions of
Minkowski dimension; for general background, we refer the reader to [26].

DEFINITION 8.1 (Covering numbers). Let A ⊆ Rn , let x ∈ Rn , and let r, s > 0.
Define the (intrinsic) s-covering number of A by

N(A, s) = min

{
k > 0 : A ⊆

k⋃
i=1

B(ai , s) for some ai ∈ A

}
,

and define the s-covering number of A in B(x, r) by Nx,r (A, s) = N(A∩
B(x, r), s).

DEFINITION 8.2 (Minkowski dimension via covering numbers). For bounded
sets A ⊆ Rn , the upper Minkowski dimension of A is given by

dimM(A) = lim sup
s↓0

log(N(A, s))
log(1/s)

.

For unbounded sets A ⊆ Rn , the upper Minkowski dimension of A is given by

dimM(A) = lim
t↑∞
(dimM A ∩ B(0, t)).

REMARK 8.3. To compute the upper Minkowski dimension of a bounded set, it
suffices to examine covering numbers along a geometric sequence of scales:

dimM(A) = lim sup
k→∞

log(N(A, λkr0))

log(1/(λkr0))
for all 0 < λ < 1 and r0 > 0.
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In order to control Minkowski dimension using unilateral approximability, we
will need to assume uniform control on local covering numbers.

DEFINITION 8.4 (Covering profiles). Let S be a local approximation class. For
all α > 0, C > 0, and s0 ∈ (0, 1], we say that S has an (α,C, s0) covering profile
if N0,r (S, sr) 6 Cs−α for all S ∈ S , r > 0, and s ∈ (0, s0].

The following lemma underpins the dimension estimates that we prove below.

LEMMA 8.5. Let S be a local approximation class with an (α,C, s0) covering
profile. Given δ > 0 such that C1/αδ 6 s0, let

λ = δ(2+ 2C1/α(1+ δ)). (8.1)

If x ∈ A ⊆ Rn and βS
A (x, r) < δ for some r > 0, then Nx,r (A, λr) 6 1/δα.

Proof. Suppose that S is a local approximation class with an (α,C, s0) covering
profile. Without loss of generality, suppose that x = 0 and r = 1, 0 ∈ A ⊆ Rn , and
βS

A (0, 1) < δ for some δ ∈ (0, s0/C1/α]. Because βS
A (0, 1) < δ, there exists S ∈ S

such that d̃ 0,1(A, S) < δ. To continue, let B = {B1, . . . , Bk} be a minimal cover
of S ∩ B(0, 1+ δ) by balls of radius C1/αδ(1+ δ) with centers in S ∩ B(0, 1+ δ).
Because S has an (α,C, s0) covering profile and C1/αδ 6 s0, it follows that

k = N0,1+δ(S,C1/αδ(1+ δ)) 6 C(C1/αδ)−α = 1/δα.

For each 1 6 i 6 k, let zi denote the center of Bi . We claim that {B(zi , λ/2) :
1 6 i 6 k} covers A ∩ B(0, 1). To check this, pick any y ∈ A ∩ B(0, 1). Then,
since d̃ 0,1(A, S) < δ, there exists x ∈ S ∩ B(0, 1+ δ) such that |x − y| 6 δ. But
S ∩ B(0, 1+ δ) ⊆⋃B, so there exists 1 6 i 6 k such that |x−zi |6 C1/αδ(1+δ).
By the triangle inequality, |y − xi | 6 δ + C1/αδ(1 + δ) = λ/2. Thus, for all
y ∈ A ∩ B(0, 1) there exists 1 6 i 6 k such that y ∈ B(zi , λ/2). Finally, for
each 1 6 i 6 k such that B(zi , λ/2) intersects A ∩ B(0, 1), pick ai ∈ B(zi ,

λ/2)∩ (A ∩ B(0, 1)). Then A∩ B(0, 1) ⊆⋃i B(ai , λ) by the triangle inequality.
Therefore, N 0,1(A, λ) 6 k 6 1/δα.

We now give a dimension bound, which is the main result of this section.

THEOREM 8.6. For all covering profiles (α,C, s0), there exist ε0 > 0 and C ′ > 0
such that, if S is a local approximation class with an (α,C, s0) covering profile
and A ⊆ Rn is unilaterally (ε, r0)-approximable by S for some 0 < ε 6 ε0, then

dimM(A) 6 α + C ′

log(1/ε)
. (8.2)
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COROLLARY 8.7. If S is a local approximation class with an (α,C, s0) covering
profile and A ⊆ Rn is unilaterally (ε, rε)-approximableby S for all ε > 0, then
dimM A 6 α.

Proof of Theorem 8.6. Let α > 0, C > 0, and s0 ∈ (0, 1] be given, and fix a
parameter ε0 > 0 to be specified later. Let S be any local approximation class with
an (α,C, s0) covering profile, and let A ⊆ Rn be unilaterally (ε, r0)-approximable
by S for some 0 < ε 6 ε0 and r0 > 0.

Choose t > 0 large enough so that At = A ∩ B(0, t) 6= ∅. Since B(0, t) is
compact, its subset At is totally bounded. Thus, we can cover At by finitely many
balls B = {B1, . . . , Bl} of radius r0 with centers {a1, . . . , al} in At . Let δ ∈ (ε,
2ε0] be arbitrary, but eventually close to ε, and define λ by (8.1). We now specify
that ε0 > 0 be chosen sufficiently small so that

λ 6 δ(2+ 2C1/α(1+ 2ε0)) 6 2ε0(2+ 2C1/α(1+ 2ε0)) 6 1/2 (8.3)

and
C1/αδ 6 C1/α(2ε0) 6 s0. (8.4)

Fix 1 6 i 6 l. Because S has an (α,C, s0) covering profile, A is unilaterally (ε,
r0)-approximable by S , ε < δ, and (8.4) holds, induction on Lemma 8.5 yields

Nai ,r0(At , λkr0) 6 1/δkα for all k = 1, 2, . . . .

Hence, for all 1 6 i 6 l, we have

dimM(At ∩ Bi) = lim sup
k→∞

log(N(At ∩ Bi , λ
kr0))

log(1/(λkr0))

6 lim sup
k→∞

log(1/δkα)

log(1/(λkr0))
= α

(
log(1/δ)
log(1/λ)

)
.

Thus, dimM(At) 6 α log(1/δ)/log(1/λ), because the Minkowski dimension is
stable under finite unions. Observe that log λ 6 log δ + log(2+ 2C1/α(1+ 2ε0))

by (8.3). Writing
log(µ0) = log(2+ 2C1/α(1+ 2ε0)),

it follows that

dimM(At) 6 α

(
log(1/δ)

log(1/δ)− log(µ0)

)
= α

/(
1− log(µ0)

log(1/δ)

)
.

We now declare that, in addition to (8.3) and (8.4), the parameter ε0 be chosen
sufficiently small so that

log(µ0)

log(1/δ)
6

log(µ0)

log(1/(2ε0))
6 1/2. (8.5)
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Therefore, since 1/(1− x) 6 1+ 2x for all 0 6 x 6 1/2,

dimM(At) 6 α + 2α logµ0

log(1/δ)
for all δ ∈ (ε, 2ε0] and t � 1.

Letting δ ↓ ε and t ↑ ∞, we conclude that dimM(A) 6 α + C ′/log(1/ε), where
C ′ = 2α log(µ0) = 2α log(2+ 2C1/α(1+ 2ε0)) ultimately depends only on α, C ,
and s0.

COROLLARY 8.8. If S is a local approximation class with an (α,C, s0) covering
profile and A ⊆ Rn is closed and locally unilaterally ε-approximable by S for
some 0 < ε 6 ε0, then (8.2) holds.

COROLLARY 8.9. If S is a local approximation class with an (α,C, s0) covering
profile and A ⊆ Rn is closed and locally unilaterally well approximated by S ,
then dimM(A) 6 α.

Proof of Corollary 8.8. Assume that S has an (α,C, s0) covering profile, A ⊆
Rn is closed, and A is locally ε-approximable by S for some 0 < ε 6 ε0. Fix
t > 0. The truncation At = A ∩ B(0, t) is a compact subset of A, because A
is closed. Hence At is unilaterally (ε, rt)-approximable by S for some rt > 0,
since A is locally unilaterally ε-approximable by S . Thus, we have dim(At) 6
α + C ′/log(1/ε) by Theorem 8.6. Letting t →∞ yields (8.2).

REMARK 8.10. Recall that, when S = G(n,m), which admits an (m,C, s0)

covering profile, Mattila and Vuorinen [25] proved that, if A is unilaterally (ε, r0)-
approximable by S for some ε > 0 sufficiently small, then dimM(A) 6 m+C ′′ε2.
By contrast, Theorem 8.6 only guarantees the weaker bound dimM(A) 6 m +
C ′/log(1/ε). The reason for this disparity is that the proof the Mattila–Vuorinen
bound relies on the Hilbert space geometry of Rn , while the proof of Theorem 8.6
holds more generally in proper metric spaces that are translation and dilation
invariant in the sense described in Remark 1.8.

For all A ⊆ Rn , let dimH (A) denote the Hausdorff dimension of A (see, for
example, [26]). It is well known that the Hausdorff dimension is dominated by
the Minkowski dimension,

dimH (A) 6 dimM(A),

and that the Hausdorff dimension is stable under countable unions,

dimH

( ∞⋃
i=1

Ai

)
= sup{dimH (Ai) : i = 1, 2, . . .}.
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These properties allow one to transfer the Minkowski dimension bound in
Theorem 8.6 to a Hausdorff dimension bound on a large class of locally
unilaterally approximable sets that satisfy a certain topological size condition.
In particular, the following dimension bounds may be applied to the set AQ in
Theorem 6.7 and the set AT in Theorem 6.2, whenever A is closed.

COROLLARY 8.11. Let S be a local approximation class with an (α,C, s0)

covering profile, and let A ⊆ Rn . If A is locally unilaterally ε-approximable by S
for some 0 < ε 6 ε0 and the subspace topology on A is σ -compact, then

dimH (A) 6 α + C ′

log 1/ε
.

COROLLARY 8.12. Let S be a local approximation class with an (α,C, s0)

covering profile, and let A ⊆ Rn . If A is locally unilaterally well approximated
by S and the subspace topology on A is σ -compact, then dimH (A) 6 α.

9. Applications and future directions

In the body of the paper above, we gathered and unified several concepts
(Reifenberg type sets, Mattila–Vuorinen type sets, approximation numbers, and
tangent sets) into a cohesive framework for describing local approximation of a
set A ⊆ Rn by a class S of closed model sets. We also analyzed the structure
(see Sections 6 and 7.1) and size (see Section 8) of Reifenberg and Mattila–
Vuorinen type sets under mild conditions on the model sets (see Definitions 5.7
and 8.4). To conclude, we illustrate the use of the results developed above in a
few specific instances under weak regularity assumptions. We then discuss some
open problems and directions for future research.

9.1. Asymptotically optimally doubling measures. Our first application is a
new decomposition theorem for the support of an (n−1)-asymptotically optimally
doubling measure in Rn (defined above in Example 1.6). Note that, in contrast
with previous work [7, 21, 29], we do not impose any restriction on the rate of
convergence of R(µ, K , r)→ 0 as r → 0. Even more, we obtain a qualitatively
better dimension bound on the singular set (see Remark 9.2).

Let CK P denote the collection of all rotations of the light cone {x ∈ Rn : x2
1 +

x2
2 + x2

3 = x2
4}.

THEOREM 9.1. Suppose that n > 4. If µ is an (n − 1)-asymptotically optimally
doubling measure in Rn , then sptµ= G∪S, whereΨ -Tan(sptµ, x)⊆ G(n, n−1)
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for all x ∈ G and Tan(sptµ, x) ⊆ CK P for all x ∈ S. Moreover, S is closed and
locally unilaterally well approximated by G(n, n − 4), and hence S has upper
Minkowski dimension at most n − 4.

Proof. Suppose that n > 4. Let U(n, n − 1) denote the collection of supports
of (n − 1)-uniform measures in Rn that contain the origin. Then U(n, n − 1) is
a closed translation-invariant local approximation class. Recall that U(n, n − 1)
consists of hyperplanes and translates of cones in CK P by the classification of
Kowalski and Preiss [17]. Since the light cone {x ∈ Rn : x2

1 + x2
2 + x2

3 = x2
4} is

smooth away from {0}4 × Rn−4, it follows that

singG(n,n−1) U(n, n − 1) = G(n, n − 4).

Now assume that µ is an (n − 1)-asymptotically optimally doubling measure
in Rn . Then sptµ is locally bilaterally well approximated by U(n, n − 1) by
[21, Theorem 3.8]. But G(n, n − 1) points are detectable in U(n, n − 1) by
[21, Lemma 2.5]. By Theorems 6.2 and 7.14, it follows that sptµ = (sptµ)G ∪
(sptµ)G⊥ , where

• Ψ -Tan(sptµ, x) ⊆ G(n, n − 1) for all x ∈ (sptµ)G ,

• Tan(sptµ, x) ⊆ U(n, n − 1) ∩ G(n, n − 1)⊥ = CKP for all x ∈ (sptµ)G⊥ , and

• (sptµ)G⊥ is closed and locally unilaterally well approximated by G(n, n − 4).

Therefore, (sptµ)G⊥ has upper Minkowski dimension at most n − 4 by
Corollary 8.9.

REMARK 9.2. By Theorem 9.1 and Corollary 4.15, the set G is relatively
open and locally bilaterally well approximated by G(n, n − 1); that is, G is
locally Reifenberg vanishing. Thus, by Reifenberg’s topological disc theorem,
G admits local C0,α parameterizations by open subsets of Rn−1 for all 0 < α < 1
(see, for example, [10]). The authors do not expect G to possess additional
regularity without additional assumptions on the rate of vanishing of the doubling
characteristic.

For example, Preiss et al. [29] previously showed that, if µ is an (n − 1)
asymptotically optimally doubling measure in Rn with Hölder vanishing doubling
characteristic (that is, R(µ, K , r) 6 CK rα for all 0 < r 6 rK , for every compact
subset K of the support of µ), then sptµ = G ∪ S, where G is an (n − 1)-
dimensional C1,β submanifold of Rn and S is a closed set of Hausdorff dimension
at most n − 4. We remark that Theorem 9.1 upgrades the Hausdorff dimension
bound on the closed set S from [29] to an upper Minkowski dimension bound. In
general, the Minkowski dimension of a set may exceed its Hausdorff dimension.
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9.2. Free boundary regularity for harmonic measure from two sides below
the continuous threshold. For all n > 2 and d > 1, let H∗(n, d) denote the
collection of zero sets of nonconstant harmonic polynomials p : Rn → R of
degree at most d such that p(0) = 0 and such that the positive set {p > 0}
and the negative set {p < 0} are connected. For all n > 2 and 1 6 k 6 d,
let F ∗(n, k) ⊂ H∗(n, d) denote the subcollection of zero sets of homogeneous
harmonic polynomials of degree k. For general background and an explanation of
the terminology in the following theorem, see [2, Section 6].

THEOREM 9.3 [2, Theorem 6.8]. Assume that Ω ⊂ Rn is a two-sided NTA (non-
tangentially accessible) domain with interior harmonic measure ω+ on Ω+ = Ω
and exterior harmonic measure ω− on Ω− = Rn\Ω . If ω+ � ω− � ω+ and
log(dω−/dω+) ∈ VMO(dω+), then there is d0 > 0 such that ∂Ω is locally
bilaterally well approximated by H∗(n, d0). Moreover, ∂Ω can be partitioned into
sets Γd (1 6 d 6 d0),

∂Ω = Γ1 ∪ · · · ∪ Γd0, i 6= j H⇒ Γi ∩ Γ j = ∅,
with the following properties.

(i) Tan(∂Ω, x) ⊆ F ∗(n, d) for all x ∈ Γd .

(ii) Γ1 is relatively open and dense in ∂Ω , Γ1 is locally bilaterally well
approximated by F(n, 1) = G(n, n − 1), and hence Γ1 has Hausdorff
dimension at most n − 1.

(iii) The set of ‘singularities’ ∂Ω\Γ1 = Γ2∪· · ·∪Γd0 is closed and has harmonic
measure zero.

Combining results from Sections 7.1–8 above with estimates on the Minkowski
content of zero sets of harmonic functions from Naber and Valtorta [27] yields
new bounds on the dimension of the free boundary ∂Ω and the singular set ∂Ω\Γ1

in Theorem 9.3.

THEOREM 9.4. Under the setup of Theorem 9.3, ∂Ω has upper Minkowski
dimension at most n − 1, and the singular set ∂Ω\Γ1 has upper Minkowski
dimension at most n − 2.

Proof. Let H(n, d) denote the zero setsΣp of nonconstant harmonic polynomials
p in Rn of degree at most d , and let SH(n, d) = {Sp = Σp ∩ |Dp|−1(0) : Σp ∈
H(n, d), 0 ∈ Sp} denote the singular sets of nonconstant harmonic polynomials
in Rn of degree at most d . Applied to harmonic polynomials, [27, Theorem 3.37]
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says that

Vol({x ∈ B(0, 1/2) : dist(x, Sp) 6 r}) 6 C(n)d
2
r 2 for all Sp ∈ SH(n, d).

(9.1)
In addition, [27, Theorem A.3] gives

Vol({x ∈ B(0, 1/2) : dist(x,Σp) 6 r}) 6 (C(n)d)dr for all Σp ∈ H(n, d).
(9.2)

It easily follows that SH(n, d) admits an (n − 2,Cn,d, 1) covering profile and
that H(n, d) admits an (n − 1, C̃n,d, 1) covering profile for some constants Cn,d,

C̃n,d > 1 depending only on n and d (see, for example, [26, (5.4) and (5.6)]).
Suppose that Ω ⊆ Rn satisfies the hypothesis of Theorem 9.3. Then ∂Ω is

closed and locally bilaterally well approximated by H(n, d) by Theorem 9.3.
Hence dimM(∂Ω) 6 n−1 by Corollary 8.9, since H(n, d) has an (n−1, C̃n,d, 1)
covering profile. Next note that the singular set ∂Ω\Γ1 = ∂ΩG⊥ is closed and
locally unilaterally well approximated by

singG(n,n−1)H(n, d) = SH(n, d)

by Theorems 6.2 and 7.14, because G(n, n − 1) = F(n, 1) points (‘flat points’)
are detectable in H(n, d) by [2, Theorem 1.4]. Therefore, dimM(∂Ω\Γ1) 6 n−2
by Corollary 8.9, since SH(n, d) has an (n − 2,Cn,d, 1) covering profile.

REMARK 9.5. We do not currently know if the dimension bound for the singular
set ∂Ω\Γ1 in Theorem 9.4 is sharp, and, in fact, the first author conjectured in [2,
Remark 6.17] that ∂Ω\Γ1 has dimension at most n− 3. The reasoning behind the
conjecture is that ∂Ω is actually locally bilaterally well approximated by H∗(n, d)
rather than just by H(n, d). Examples (see [2]) suggest that the extra topological
condition imposed on zero sets in H∗(n, d) (that is, that Rn\Σ has exactly two
connected components when Σ ∈ H∗(n, d)) should force the smaller dimension
bound. Thus, it would be interesting to know whether

Vol({x ∈ B(0, 1/2) : dist(x, Sp) 6 r}) .n,d r 3 for all Sp ∈ SH∗(n, d), (9.3)

where SH∗(n, d) = {Sp : Σp ∈ H∗(n, d), 0 ∈ Sp} denotes the singular sets of
harmonic polynomials in Rn of degree at most d whose zero set separates Rn into
two components.

9.3. Additional applications. We expect the results of Sections 6–8 will be
applicable in a variety of additional situations where complete or at least partial
information about minimizers can be established. For example, even without
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obtaining a full description, David [5] proves that, if A ⊆ Rn is a two-dimensional
Almgren minimal cone, then A∩∂B(0, 1) is composed of a finite number of great
circles and arcs of great circles C j satisfying the following constraints.

(i) If e is the endpoint of some arc C j , then there are exactly three arcs which
meet at mutual 120◦ angles at e.

(ii) The length of each C j is bounded below by some minimal length `0(n) > 0.

(iii) If x ∈ C j and y ∈ Ck satisfy |x − y| 6 η0(n), then C j and Ck are arcs of
great circles sharing a common endpoint in B(x, |x − y|).

From the existence of `0 and η0, one can show (just as in the case n = 3)
that G = G(n, 2) points and G ∪ Y points are detectable in the class M(n, 2)
of translates of two-dimensional Almgren minimal cones in Rn (compare to
Example 7.13). Thus, the structure theorems of Section 6 also apply to two-
dimensional Almgren minimizers in Rn . Research on the classification of m-
dimensional Almgren minimal cones in Rn is still ongoing, but see Liang [22, 23]
and Luu [24] for recent progress on two-dimensional and three-dimensional
minimal cones in R4.

9.4. Directions for future research. Starting from the framework built above,
there are many avenues for continued research. Here we restrict our discussion
to just a few problems. One important open line of inquiry is to decide when
parameterization theorems hold for sets that are locally approximable by a
class S . Ideally one would like to construct parameterizations at various grades
of regularity.

PROBLEM 9.6. Classify local approximation classes S with the property that
closed sets A that are locally bilaterally ε-approximable by S (0 < ε 6 εS) admit
local Reifenberg type (tame, C0,α) parameterizations by open subsets of sets in S;
see [6, 31].

PROBLEM 9.7. Develop higher regularity (for example, C0,1, C1,α, or C∞) local
parameterization theorems for sets that are locally well approximated by classes
S from Problem 9.6; see [10, 35] (C0,1 regularity) and [7, 21, 29] (C1,α regularity).

A second frontier for future research is to study local set approximation in
additional geometric settings. As noted in Remark 1.8, we expect that the main
results of this paper remain valid in the Heisenberg group and other selfsimilar
geometries. However, in principle one may also examine Reifenberg type sets
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in a sphere Sn or in a Riemannian (or sub-Riemannian) manifold whose metric
tangents are Euclidean (Carnot).

PROBLEM 9.8. Develop a parallel theory of local set approximation (tangents,
approximability, and so on) in Riemannian manifolds, sub-Riemannian
manifolds, or other geometric settings.
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