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Abstract. We obtain Dini conditions that guarantee that an asymptotically

conformal quasisphere is rectifiable. In particular, we show that for any ϵ > 0
integrability of (ess sup1−t<|x|<1+t Kf (x)−1)2−ϵdt/t implies that the image of

the unit sphere under a global quasiconformal homeomorphism f is rectifiable.

We also establish estimates for the weak quasisymmetry constant of a global
K-quasiconformal map in neighborhoods with maximal dilatation close to 1.

1. Introduction

A quasisphere f(Sn−1) is the image of the unit sphere Sn−1 ⊂ Rn under a global
quasiconformal mapping f : Rn → Rn. In the plane, a quasisphere is a quasicircle.
(Look below for the definition of a quasiconformal map.) It is well known that the
Hausdorff dimension of a quasisphere can exceed n− 1. When n = 2, for example,
the von Koch snowflake is a quasicircle with dimension log 4/ log 3 > 1. In fact,
every quasicircle is bi-Lipschitz equivalent to a snowflake-like curve (see Rohde [16]).
On the other hand, the Hausdorff dimension of a quasicircle cannot be too large:
Smirnov [18] proved Astala’s conjecture that every k-quasicircle (0 ≤ k < 1) has
dimension at most 1 + k2. This result was further enhanced by Prause, Tolsa and
Uriarte-Tuero [13] who showed that k-quasicircles have finite (1 + k2)-dimensional
Hausdorff measure. The picture in higher dimensions is not as complete. A few
detailed examples of quasispheres with dimension greater than n− 1 (n ≥ 3) have
been described by David and Toro [4] and Meyer [10], [11]. Mattila and Vuorinen [9]
have also demonstrated how the maximal dilatation (see (1.1)) of a quasiconformal
map f controls the geometry and size of the quasisphere f(Sn−1). More specifically,
they showed that if f is K-quasiconformal with K near 1, then f(Sn−1) satisfies
the linear approximation property (see [9]) and this property bounds the dimension
of f(Sn−1). Mattila and Vuorinen’s proof that quasispheres are locally uniformly
approximable by hyperplanes was recently streamlined by Prause [12], using the
quasisymmetry of f . This idea from [12] will play an important role in our analysis
below.

In the current article, we seek optimal conditions on f that ensure f(Sn−1) has
finite (n−1)-dimensional Hausdorff measure Hn−1. We obtain two such conditions,
one expressed in terms of the dilatation of f (Theorem 1.1) and one expressed in
terms of the quasisymmetry of f (Theorem 1.2), and both have sharp exponent.
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This problem was previously studied in the case n = 2 by Anderson, Becker and
Lesley [2] and in all dimensions by Mattila and Vuorinen [9]. To state these results
and the main results of this paper, we require some additional notation.

Let 1 ≤ K <∞. A mapping f : Ω → Rn from a domain Ω ⊂ Rn (n ≥ 2) is said to

be K-quasiconformal (analytic definition) if f ∈W 1,n
loc (Ω), if f is a homeomorphism

onto its image, and if the maximal dilatation Kf (Ω) is bounded by K:

(1.1) Kf (Ω) = max

{
ess sup
x∈Ω

∥f ′(x)∥n

|Jf(x)|
, ess sup

x∈Ω

|Jf(x)|
ℓ(f ′(x))n

}
≤ K.

Here we let f ′ and Jf denote the Jacobian matrix and Jacobian determinant of f ,
respectively. Also ∥ · ∥ denotes the operator norm and ℓ(f ′(x)) = min∥v∥=1 |f ′(x)v|.
For background on quasiconformal maps in higher dimensions, we refer the reader
to Väisälä [20] and Heinonen [7]. For t > 0, set At = {x ∈ Rn : 1− t < |x| < 1+ t},
the annular neighborhood of Sn−1 of size t. We say that a quasisphere f(Sn−1)
is asymptotically conformal if Kf (At) → 1 as t → 0. It will be convenient to also
introduce the notation

(1.2) K̃f (Ω) = Kf (Ω)− 1.

Notice that Kf (At) → 1 as t→ 0 if and only if K̃f (At) → 0 as t→ 0.
Every asymptotically conformal quasisphere f(Sn−1) has Hausdorff dimension

n−1; see Remark 2.8. This is the best that we can do in general, because there are

snowflake-like curves Γ = f(S1) such that K̃f (At) → 0 as t → 0 but H1(Γ) = ∞.

The main obstruction to finite Hausdorff measure is that K̃f (At) could converge
to 0 very slowly as t→ 0. Conversely, one expects that a good rate of convergence
should guarantee that Hn−1(f(Sn−1)) < ∞. One would like to determine the
threshold for a “good rate”. In [2] Anderson, Becker and Lesley proved that (in
our notation) if f : R2 → R2 is quasiconformal and f |B(0,1) is conformal, then

(1.3)

∫ 1

0

(
K̃f (At)

)2 dt
t
<∞ =⇒ H1(f(S1)) <∞.

It is also known that the exponent 2 in the Dini condition (1.3) cannot be weakened
to 2 + ϵ for any ϵ > 0 (see [2]). In higher dimensions, Mattila and Vuorinen [9]
proved that (in our notation)

(1.4)

∫ 1

0

K̃f (At)
dt

t
<∞ =⇒ f |Sn−1 is Lipschitz.

Hence, by a standard property of Lipschitz maps, the Dini condition in (1.4) also
implies that the quasisphere f(Sn−1) is (n−1)-rectifiable andHn−1(f(Sn−1)) <∞.
In fact, something more is true: the Dini condition (1.4) implies that f(Sn−1) is a
C1 submanifold of Rn (see Chapter 7, §4 in Reshetnyak [15]). For conditions weaker
than (1.4) (but also with “exponent 1”) that imply f |Sn−1 is Lipschitz, see Bishop,
Gutlyanskĭı, Martio and Vuorinen [3] and Gutlyanskĭı and Golberg [6]. Notice that
the Dini condition (1.4) is stronger (harder to satisfy) than the Dini condition (1.3).
The main result of this paper is that a Dini condition with exponent 2 ensures that
Hn−1(f(Sn−1)) < ∞ in dimensions n ≥ 3, and moreover guarantees the existence
of local bi-Lipschitz parameterizations.
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Theorem 1.1. If f : Rn → Rn is quasiconformal and

(1.5)

∫ 1

0

(
K̃f (At) log

1

K̃f (At)

)2
dt

t
<∞,

then the quasisphere f(Sn−1) admits local (1 + δ)-bi-Lipschitz parameterizations,
for every δ > 0. Thus f(Sn−1) is (n− 1)-rectifiable and Hn−1(f(Sn−1)) <∞.

The main difference between Mattila and Vuorinen’s theorem and Theorem 1.1
is that the former is a statement about the regularity of f |Sn−1 , while the latter
is a statement about the regularity of f(Sn−1). The logarithmic term in (1.5) is
an artifact from the proof of Theorem 1.1, which occurs when we use the maximal
dilatation of the map f to control the weak quasisymmetry constant of f (see (1.9)).
We do not know whether this term can be removed, and leave this open for future
investigation. Nevertheless, Theorem 1.1 has the following immediate consequence.
If f : Rn → Rn is quasiconformal and

(1.6)

∫ 1

0

(
K̃f (At)

)2−ϵ dt
t
<∞ for some ϵ > 0,

then f satisfies (1.5), and in particular, the quasisphere f(Sn−1) satisfies the same
conclusions as in Theorem 1.1. The exponent 2 in Theorem 1.1 is the best possible,
i.e. 2 cannot be replaced with 2+ ϵ for any ϵ > 0. For example, the construction in
David and Toro [4] (with the parameters Z = Rn−1 and ϵj = 1/j) can be used to
produce a quasiconformal map f : Rn → Rn such that

(1.7)

∫ 1

0

(
K̃f ({x ∈ Rn : |xn| < t})

)2+ϵ dt
t
<∞ for all ϵ > 0,

but for which the associated “quasiplane” f(Rn−1) is not (n − 1)-rectifiable and
has locally infinite Hn−1 measure.

To prove Theorem 1.1 we first prove a version where the maximal dilatation in
the Dini condition is replaced with the weak quasisymmetry constant. Recall that
a topological embedding f : Ω → Rn is called quasisymmetric if there exists a
homeomorphism η : [0,∞) → [0,∞) such that

(1.8) |x− y| ≤ t|x− z| ⇒ |f(x)− f(y)| ≤ η(t)|f(x)− f(z)| for all x, y, z ∈ Ω.

Every K-quasiconformal map f : Rn → Rn is quasisymmetric for some gauge ηn,K
determined by n and K; e.g., see Heinonen [7]. Below we only use (1.8) with t = 1.
This leads to the concept of weak quasisymmetry.

Let 1 ≤ H <∞. An embedding f : Ω → Rn is weakly H-quasisymmetric if

(1.9) Hf (Ω) = sup

{
|f(x)− f(y)|
|f(x)− f(z)|

: x, y, z ∈ Ω and
|x− y|
|x− z|

≤ 1

}
≤ H.

We call Hf (Ω) the weak quasisymmetry constant of f on Ω. Also set

(1.10) H̃f (Ω) = Hf (Ω)− 1.

We will establish the following theorem in §2.

Theorem 1.2. If f : Rn → Rn is quasiconformal and

(1.11)

∫ 1

0

sup
z∈Sn−1

(
H̃f (B(z, t))

)2 dt
t
<∞,
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then the quasisphere f(Sn−1) admits local (1 + δ)-bi-Lipschitz parameterizations,
for every δ > 0. Thus f(Sn−1) is (n− 1)-rectifiable and Hn−1(f(Sn−1)) <∞.

The proof of Theorem 1.2 is based on the connection between the quasisymmetry
of f near Sn−1 and the flatness of the set f(Sn−1) (first described in Prause [12]),
and a criterion for existence of local bi-Lipschitz parameterizations from Toro [19].

The maximal dilatation and weak quasisymmetry constant are related as follows.
For any Ω ⊂ Rn and quasiconformal map f : Ω → Rn,

(1.12) Kf (Ω) ≤ ess sup
x∈Ω

∥f ′(x)∥n−1

ℓ(f ′(x))n−1
≤ Hf (Ω)

n−1.

In particular, K̃f (Ω) ≤ CH̃f (Ω) when Hf (Ω) is close to 1. Hence

(1.13) sup
z∈Sn−1

H̃f (B(z, t)) → 0 as t→ 0 =⇒ K̃f (At) → 0 as t→ 0.

The question of whether or not the implication in (1.13) can be reversed is delicate.

When n = 2 and f is a quasiconformal map of the plane, Hf (R2) ≤ exp(CK̃f (R2))
(see Theorem 10.33 in [1]). Therefore,

(1.14) H̃f (R2) ≤ CK̃f (R2) when K̃f (R2) ≪ 1.

When n ≥ 3 and f is a quasiconformal map of space (see Theorem 2.7 in [12]),

(1.15) H̃f (Rn) ≤ CK̃f (Rn) log

(
1

K̃f (Rn)

)
when K̃f (Rn) ≪ 1.

In order to derive Theorem 1.1 from Theorem 1.2, we need (1.15) with B(z, t) in
place of Rn, uniformly for all z ∈ Sn−1. Unfortunately, to the best of our knowledge
such an estimate does not appear in the literature. Thus, in §3, we show how to
localize (1.15). We establish an upper bound on the weak quasisymmetry constant
of a global quasiconformal map in neighborhoods with maximal dilatation near 1
(see Theorem 3.1). As a consequence, it follows that (see Corollary 3.2)

(1.16) K̃f (At) → 0 as t→ 0 =⇒ sup
z∈Sn−1

H̃f (B(z, t)) → 0 as t→ 0.

Thus, combining (1.13) and (1.16), we conclude that a quasisphere f(Sn−1) is

asymptotically conformal if and only if H̃f (B(z, t)) → 0 as t→ 0, uniformly across
z ∈ Sn−1.

The remainder of this paper is divided into two sections, each aimed at the proof
of a Dini condition for rectifiability of f(Sn−1). First we prove Theorem 1.2 in §2.
Then we prove Theorem 1.1 in §3.

2. Quasisymmetry and Local Flatness

The goal of this section is to prove Theorem 1.2. Following an idea of Prause
[12], we show that the weak quasisymmetry of f |At controls the local flatness of
f(Sn−1) at scales depending on t. We then invoke a theorem on the existence of
local bi-Lipschitz parameterizations from Toro [19].

Let Σ ⊂ Rn (n ≥ 2) be a closed set. The local flatness θΣ(x, r) of Σ near x ∈ Σ
at scale r > 0 is defined by

(2.1) θΣ(x, r) =
1

r
min

L∈G(n,n−1)
HD[Σ ∩B(x, r), (x+ L) ∩B(x, r)],
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where G(n, n − 1) denotes the collection of (n − 1)-dimensional subspaces of Rn
(i.e. hyperplanes through the origin) and HD[A,B] denotes the Hausdorff distance
between nonempty, bounded subsets A,B ⊂ Rn,

(2.2) HD[A,B] = max

{
sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)

}
.

Thus local flatness is a gauge of how well a set can be approximated by a hyperplane.
Notice that θΣ(x, r) measures the distance of points in the set to a plane and the
distance of points in a plane to the set. (By comparison the Jones β-numbers [8]
and Mattila and Vuorinen’s linear approximation property [9] only measure the
distance of points in the set to a plane.) Because θΣ(x, r) ≤ 1 for every closed set
Σ, every location x ∈ Σ and every scale r > 0, this quantity only carries information
when θΣ(x, r) is small.

Sets which are uniformly close to a hyperplane at all locations and scales first
appeared in Reifenberg’s solution of Plateau’s problem in arbitrary codimension
[14]. A closed set Σ ⊂ Rn is called (δ,R)-Reifenberg flat provided that θΣ(x, r) ≤ δ
for all x ∈ Σ and 0 < r ≤ R. Moreover, Σ is said to be Reifenberg flat with
vanishing constant if for every δ > 0 there exists a scale Rδ > 0 such that Σ is
(δ,Rδ)-Reifenberg flat. We now record a rectifiability criterion for locally flat sets,
which we need below for the proof of Theorem 1.2. For further information about
flat sets and parameterizations, see the recent investigation by David and Toro [5].

Theorem 2.1 (Toro [19]). Let n ≥ 2. There exists constants δ0 > 0, ϵ0 > 0 and
C > 1 depending only on n with the following property. Assume that 0 < δ ≤ δ0,
0 < ϵ ≤ ϵ0, and Σ ⊂ Rn is a (δ,R)-Reifenberg flat set. If x0 ∈ Σ, 0 < r ≤ R, and

(2.3)

∫ r

0

sup
x∈Σ∩B(x0,r)

(θΣ(x, t))
2 dt

t
< ϵ2

then there exists a bi-Lipschitz homeomorphism τ : Ω → Σ∩B(x, r/64) where Ω is a
domain in Rn−1; moreover, τ and τ−1 have Lipschitz constants at most 1+C(δ+ϵ).

Corollary 2.2. If Σ ⊂ Rn is Reifenberg flat with vanishing constant and

(2.4)

∫ t0

0

sup
x∈Σ

(θΣ(x, t))
2 dt

t
<∞ for some t0 > 0,

then Σ admits local (1 + δ)-bi-Lipschitz parameterizations, for every δ > 0.

The following lemma is based on an observation by Prause [12], who showed that
quasisymmetry bounds the Jones β-numbers of f(L), where f is quasiconformal and
L is a hyperplane. Here we obtain a slightly stronger statement, because we bound
the “two-sided” Hausdorff distance between a set and a hyperplane.

Lemma 2.3. Let U ⊂ Rn be an open set which contains the closed ball B(0, 1).
Assume that f : U → Rn is weakly H-quasisymmetric with

(2.5) H = 1 + ϵ, 0 ≤ ϵ ≤ 1/20

and

(2.6) f(±e1) = ±e1.
If L = e⊥1 denotes the hyperplane through the origin, orthogonal to the direction e1,
then f(B(0, 1)) ⊃ B(f(0), 5/6) and θf(L)(f(0), 1/2) ≤ 20ϵ.
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Proof. Assume that U ⊂ Rn is an open set containing the closed ball B1, where
B1 = B(0, 1). Moreover, assume that f : U → Rn is a weakly H-quasisymmetric
map satisfying (2.5) and (2.6). Let e1 = (1, 0, . . . , 0) and let L = e⊥1 denote the
(n− 1)-dimensional plane through the origin that is orthogonal to the direction e1.
By the polarization identity, for any y ∈ Rn,

(2.7) dist(y, L) = |⟨y, e1⟩| =
1

4

∣∣|y − e1|2 − |y + e1|2
∣∣ .

Let x ∈ L∩B1. Since |x−e1| = |x+e1| and f(±e1) = ±e1, by weak quasisymmetry,

(2.8)
1

1 + ϵ
≤ |f(x)− e1|

|f(x) + e1|
≤ 1 + ϵ.

Combining (2.7) and (2.8),

(2.9) dist(f(x), L) ≤ 1

4

(
(1 + ϵ)2 − 1

)
max{|f(x)± e1|2}.

On the other hand, since |x± e1| ≤ 2 = | ± e1 − (∓e1)| for every x ∈ B1, the weak
quasisymmetry of f yields

(2.10) |f(x)± e1| ≤ 2(1 + ϵ).

Thus, from (2.5), (2.9) and (2.10), we conclude

(2.11) dist(f(x), L) ≤
(
(1 + ϵ)2 − 1

)
(1 + ϵ)2 = ϵ(2 + ϵ)(1 + ϵ)2 ≤ 2.5ϵ.

Since the hyperplane f(0)+L = ⟨f(0), e1⟩e1+L = (± dist(f(0), L))e1+L, it follows
that

(2.12) dist(f(x), f(0) + L) ≤ 5ϵ for all x ∈ L ∩B1.

So far we have bounded the distance of points in the set f(L∩B1) to the hyperplane
f(0) + L. To estimate the local flatness of f(L) near f(0), we also need to bound
the distance of points in f(0) + L to the set f(L).

First we claim that f(B1) ⊃ B(f(0), 5/6). To verify this, suppose that z ∈ Rn,
|z| = 1. On one hand, by weak quasisymmetry, (2.5) and (2.6),

(2.13) |f(z)− f(0)| ≥ 1

1 + ϵ
|f(e1)− f(0)| ≥ 20

21
|e1 − f(0)|.

On the other hand, pick w ∈ L such that |f(0) − w| = dist(f(0), L). Then (2.5),
(2.11) and the triangle inequality yield

(2.14) |e1 − f(0)| ≥ |e1 − w| − |f(0)− w| ≥ 1− 2.5ϵ ≥ 7/8

Together (2.13) and (2.14) imply |f(z)− f(0)| ≥ 5/6. Because |f(z)− f(0)| ≥ 5/6
for all |z| = 1 and f is homeomorphism, we conclude that f(B1) ⊃ B(f(0), 5/6).
Hence, by (2.12), f(L)∩B(f(0), 5/6) is contained in a 5ϵ-neighborhood of f(0)+L.

Next we consider the sets S± = {x ∈ B(f(0), 5/6) : ⟨x − f(0),±e1⟩ > 5ϵ}.
Because the hyperplane L divides B1 into two connected components and the map
f is a homeomorphism, f(L) divides f(B1) into two connected components. Hence,
in view of (2.12), we know that S+ and S− are contained in different connected
components of B(f(0), 5/6) \ f(L). In particular, every line segment from ∂S+ to
∂S− intersects f(L). If v ∈ B(f(0), 1/2)∩ (f(0)+L), then v± 5ϵe1 ∈ B(f(0), 5/6)
(since (1/2)2 + (5ϵ)2 < 5/6). Thus the line segment ℓv with endpoints v ± 5ϵe1 in
∂S± necessarily intersects f(L). Since v is the center of ℓv, it follows that

(2.15) dist(v, f(L)) ≤ 5ϵ for all v ∈ B(f(0), 1/2)) ∩ (f(0) + L).



QUASISYMMETRY AND RECTIFIABILITY OF QUASISPHERES 7

Figure 1. The relationship between f and g

Moreover, if v ∈ B(f(0), 1/2 − 5ϵ) ∩ (f(0) + L), then ℓv ⊂ B(f(0), 1/2) and the
upper bound in (2.15) remains valid with dist(v, f(L) ∩ B(f(0), 1/2)) in place of
dist(v, f(L)). On the other hand, since f(0) + L is a hyperplane, for any

v ∈ B(f(0), 1/2) ∩ (f(0) + L) \B(f(0), 1/2− 5ϵ)

there exists v′ ∈ B(f(0), 1/2− 5ϵ) ∩ (f(0) + L) such that |v − v′| ≤ 5ϵ. Therefore,

(2.16) dist(v, f(L) ∩B(f(0), 1/2)) ≤ 10ϵ for all v ∈ B(f(0), 1/2) ∩ (f(0) + L).

To finish, we note that taking the maximum of (2.12) and (2.16) yields

(2.17) HD[f(L) ∩B(f(0), 1/2), (f(0) + L) ∩B(f(0), 1/2)] ≤ 10ϵ.

It immediately follows that θf(L)(f(0), 1/2) ≤ 20ϵ. �

Let us now illustrate how to use Lemma 2.3 with quasispheres. Fix ϵ ∈ [0, 1/20].
Suppose that f : Rn → Rn is a quasiconformal map and suppose that there exists

r > 0 such that H̃f (B(z, 2r)) ≤ ϵ for all z ∈ Sn−1. Pick z ∈ Sn−1 (the red square
point in the upper left of Figure 1), let n⃗z denote a unit normal vector to Sn−1 at z,
and assign er± = z± rn⃗z (the blue round points). Choose any affine transformation
φ : Rn → Rn, which is a composition of a translation, a rotation and a dilation and
such that φ(0) = z and φ(±e1) = er±. Then choose another affine transformation ψ :
Rn → Rn, which is a composition of a translation, a rotation and a dilation and such
that ψ((f(er+)+f(e

r
−))/2) = 0 and ψ(f(er±)) = ±e1. Finally put g = ψ◦f ◦φ. Then

g|B(0,2) is weakly Hf (B(z, 2r))-quasisymmetric and g(±e1) = ±e1. By Lemma 2.3,

θg(e⊥1 )(g(0), 1/2) ≤ 20H̃f (B(z, 2r)). Hence, letting Lz denote the tangent plane to

Sn−1 at z, this is equivalent to θψ◦f(Lz)(ψ(f(z)), 1/2) ≤ 20H̃f (B(z, 2r)). Since the

dilation factor of ψ−1 is |f(er+)− f(er−)|/2, it follows that

(2.18) θf(Lz)

(
f(z),

1

4
|f(er+)− f(er−)|

)
≤ 20H̃f (B(z, 2r)).
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Since Lemma 2.3 also implies that g(B(0, 1)) ⊃ B(g(0), 5/6), we similarly get that

(2.19) f(B(z, r)) ⊃ B

(
f(z),

5

12
|f(er+)− f(er−)|

)
.

Notice that since H̃f (B(z, 2s)) ≤ H̃f (B(z, 2r)) for all 0 < s ≤ r, a similar argument
shows that (2.18) and (2.19) hold with s in place of r for all 0 < s ≤ r.

We now apply the local Hölder continuity of the quasiconformal map f . Since
Kf (B(z, r)) ≤ Hf (B(z, r))n−1 ≤ (1 + ϵ)n−1, there is a constant C > 1 depending
only on n (because 0 ≤ ϵ ≤ 1/20, e.g. see Theorem 11.14 in [21] for a precise version
of the local Hölder continuity we use here)

(2.20) |f(x)− f(y)| ≤ CMz,r|x− y|α for all x, y ∈ B(z, r/2)

where α = (1+ϵ)(n−1)/(1−n) = (1+ϵ)−1 and whereMz,r = sup|x−z|=r |f(x)−f(z)|.
We also want to find a lower bound on |f(x)− f(y)|. First by two applications of
weak quasisymmetry

(2.21) |f(er+)− f(er−)| ≥
1

1 + ϵ
|f(er+)− f(z)| ≥

(
1

1 + ϵ

)2

Mz,r.

Combining (2.19) and (2.21), we conclude f(B(z, r)) contains B(f(z),Mz,r/3).
Thus, Kf−1(B(f(z),Mz,r/3)) ≤ Kf (B(z, r)) ≤ (1+ϵ)n−1 and analogously to (2.20)
we have that

(2.22) |f−1(ξ)− f−1(η)| ≤ Cr|ξ − η|α for all ξ, η ∈ B(f(z),Mz,r/6).

Suppose that we specified r ≤ r0 := min0≤ϵ≤1/20 2(1/6C)
1/α, which depends only

on n. Then |f(x) − f(z)| ≤ Mz,r/6 for all x ∈ B(z, r/2) by (2.20). Thus, we can
apply (2.22) with x, y ∈ B(z, r/2), ξ = f(x) and η = f(y) to get that

(2.23) |x− y| ≤ Cr0|f(x)− f(y)|α for all x, y ∈ B(z, r/2).

In particular, for all 0 < s ≤ r/2,

(2.24) t =
1

4
|f(es+)− f(es−)| ≥

1

4

(
2s

Cr0

)1/α

=: c(2s)1/α.

Thus, since 2s ≤ (t/c)α and H̃f (B(z, ρ)) is increasing in ρ, we conclude that

(2.25) θf(Lz)(f(z), t) ≤ 20H̃f (B(z, (t/c)α))

for all t > 0 such that (t/c)α ≤ r/2. We remark that by replacing c by min0≤ϵ≤1/20 c,
we may assert that c depends only on n.

We now want to transfer the estimate (2.25) for the local flatness of the image
f(Lz) of the tangent plane Lz to an estimate for the quasicircle f(Sn−1). Evidently

θf(Sn−1)(f(z), t) ≤ 20H̃f (B(z, (t/c)α))

+
1

t
HD[f(Sn−1) ∩B(f(z), t), f(Lz) ∩B(f(z), t)].

(2.26)

Thus our next task is to estimate HD[f(Sn−1)∩B(f(z), t), f(Lz)∩B(f(z), t)]. First
we note that by elementary geometry there is an absolute constant C0 so that

(2.27) HD[Sn−1 ∩B(z, ρ), Lz ∩B(z, ρ)] ≤ C0ρ
2 for all 0 < ρ ≤ 1/2.
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Thus, by the local Hölder continuity (2.20) and (2.23) and the constraint 0 ≤ ϵ ≤
1/20, there exist constants c1 > 0 and C1 > 1 that depend only on n and Mz,r so
that

(2.28) HD[f(Sn−1) ∩B(f(z), c1ρ
1/α), f(Lz) ∩B(f(z), c1ρ

1/α)] ≤ C1ρ
2α

for all ρ > 0 such that c1ρ
1/α ≤ r/2. With t = c1ρ

1/α, the estimate (2.28) becomes

(2.29) HD[f(Sn−1) ∩B(f(z), t), f(Lz) ∩B(f(z), t)] ≤ C2t
2α2

where C2 > 1 depends on n and Mz,r. Substituting (2.29) into (2.26), we get that,
for all t > 0 sufficiently small,

(2.30) θf(Sn−1)(f(z), t) ≤ 20H̃f (B(z, (t/c)α)) + C2t
2α2−1.

Observe that β := 2α2 − 1 ∈ (0, α] since 0 ≤ ϵ ≤ 1/20. Therefore, for all t > 0

sufficiently small, H̃f (B(z, (t/c)α)) ≤ H̃f (B(z, (t/c)β)) and

(2.31) θf(Sn−1)(f(z), t) ≤ 20H̃f (B(z, (t/c)β)) + C2t
β .

We have outlined the proof of the following theorem.

Theorem 2.4. Let f : Rn → Rn be a quasiconformal map. If there exists r > 0

such that H̃f (B(z, 2r)) ≤ ϵ ≤ 1/20 for all z ∈ Sn−1, then there exist constants
c > 0 and C > 1 depending only on n and Mr = supz∈Sn−1 sup|x−z|=r |f(x)− f(z)|
and a constant t0 > 0 depending only on n, Mr and r such that

(2.32) sup
z∈Sn−1

θf(Sn−1)(f(z), t) ≤ 20 sup
z∈Sn−1

H̃f (B(z, (t/c)β)) + Ctβ

for all 0 < t ≤ t0, where β = 2α2 − 1, α = (1 + ϵ)−1.

Note that β ↑ 1 as ϵ ↓ 0. Theorem 2.4 has several immediate consequences.

Corollary 2.5. If f : Rn → Rn is quasiconformal and supz∈Sn−1 H̃f (B(z, r)) → 0
as r → 0, then for all 0 < β < 1 there exist constants c, t0 > 0 and C > 1 depending
on f and β such that (2.32) holds for all 0 < t ≤ t0.

Corollary 2.6. Let 0 < δ < 1. If f : Rn → Rn is a quasiconformal map and

supz∈Sn−1 H̃f (z, r) ≤ δ/40 for some r > 0, then f(Sn−1) is (δ,R)-Reifenberg flat
for some R > 0.

Corollary 2.7. If f : Rn → Rn is quasiconformal and supz∈Sn−1 H̃f (B(z, r)) → 0
as r → 0 , then f(Sn−1) is Reifenberg flat with vanishing constant.

Remark 2.8. Mattila and Vuorinen [9] demonstrated that sets with the (δ,R)-linear
approximation property (see [9] for the definition) have Hausdorff dimension at most
n − 1 + Cδ2, C = C(n) > 1. Since (δ,R)-Reifenberg flat sets also have the (δ,R)-
linear approximation property, Mattila and Vuorinen’s theorem and Corollary 2.6
imply the following bound. If f : Rn → Rn is quasiconformal, then

(2.33) dimH f(S
n−1) ≤ n− 1 + C inf

r>0
sup

z∈Sn−1

(
H̃f (B(z, r))

)2
.

On the other hand, every quasisphere has Hausdorff dimension at least n − 1.
Therefore, (1.16) and (2.33) imply that every asymptotically conformal quasisphere
f(Sn−1) has Hausdorff dimension n− 1.

We can now use Corollaries 2.2, 2.5 and 2.7 to prove Theorem 1.2.
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Proof of Theorem 1.2. Assume that f : Rn → Rn is a quasiconformal mapping such

that (1.11) holds. Since the function supz∈Sn−1 H̃f (B(z, ·)) is decreasing, (1.11)

implies that supz∈Sn−1 H̃f (B(z, t)) → 0 as t→ 0. Hence f(Sn−1) is Reifenberg flat
with vanishing constant by Corollary 2.7. Pick any β ∈ [1/2, 1) and let t0, c, C > 0
be the constants from Corollary 2.5 such that (2.32) holds. Since (a+b)2 ≤ 2a2+2b2,∫ t0

0

sup
z∈Sn−1

(
θf(Sn−1)(f(z), t)

)2 dt
t

≤ 800

∫ t0

0

sup
z∈Sn−1

(
H̃f (B(z, (t/c)β))

)2 dt
t
+ 2C2

∫ t0

0

t2β
dt

t
.

(2.34)

On one hand, using the change of variables s = (t/c)β , ds/s = (β/c)(dt/t),∫ t0

0

sup
z∈Sn−1

(
H̃f (B(z, (t/c)β))

)2 dt
t

=
c

β

∫ (t0/c)
β

0

sup
z∈Sn−1

(
H̃f (B(z, s))

)2 ds
s
<∞

(2.35)

by (1.11). On the other hand, since β ≥ 1/2,
∫ t0
0
t2β−1dt <∞. Therefore,

(2.36)

∫ t0

0

sup
z∈Sn−1

(
θf(Sn−1)(f(z), t)

)2 dt
t
<∞,

and the quasisphere f(Sn−1) admits local (1 + δ)-bi-Lipschitz parameterizations
for every δ > 0 by Corollary 2.2. It follows that f(Sn−1) is (n − 1)-rectifiable.
Moreover, since f(Sn−1) is compact, we conclude Hn−1(f(Sn−1)) <∞. �

3. Local Bounds on Quasisymmetry

In this section, our goal is to derive Theorem 1.1 from Theorem 1.2. However,
we face a technical challenge. We need to use the maximal dilatation of f near
Sn−1 to bound the weak quasisymmetry constant of f near Sn−1. Our solution to
this puzzle is Theorem 3.1.

Theorem 3.1. Given n ≥ 2 and 1 < K ≤ min{4/3,K ′}, set

(3.1) R =

(
c

K − 1

)c/(K−1)

where c > 1 is a constant that only depends on n and K ′. Assume that f : Rn → Rn
is K ′-quasiconformal. If, in addition, Kf (B(w,Rs)) ≤ K, then

(3.2) H̃f (B(w, s)) ≤ C(K − 1) log

(
1

K − 1

)
where C > 1 is an absolute constant.

Corollary 3.2. If f : Rn → Rn is quasiconformal and K̃f (At) → 0 as t→ 0, then

supz∈Sn−1 H̃f (B(z, t)) → 0 as t→ 0.

Before we prove Theorem 3.1, let’s use it to establish Theorem 1.1.
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Proof of Theorem 1.1. Suppose that f : Rn → Rn is a K ′-quasiconformal map
satisfying (1.5). We need to verify that f also satisfies the Dini condition (1.11).
Fix z ∈ Sn−1. In order to apply Theorem 3.1 and perform a change of variables at

a certain step below, we choose a majorant M(t) of K̃f (At) on (0, r0), as follows.

If K̃f (Ar) = 0 for some r > 0, then set r0 = r and let M(t) = t for all 0 < t < r0.
Otherwise, let r0 = 1 and let M(t) any smooth increasing function such that

(3.3) K̃f (At) ≤M(t) ≤ bK̃f (At) for all 0 < t < 1

for some constant b > 1. (We note that M(t) and b exist by standard techniques.

Also the constant b depends only on K̃f (A1) and hence is fully determined by K ′.)
In both cases, M(t) is a smooth increasing function such that limt→0+M(t) = 0,

such that supz∈Sn−1 K̃f (B(z, t)) ≤ K̃f (At) ≤M(t) for all 0 < t < r0 and such that

(3.4)

∫ r0

0

(
M(t) log

1

M(t)

)2
dt

t
<∞.

By Theorem 3.1, there exist constants c, C > 1 which depend only on n and K ′

such that for all t > 0 satisfying M(t) ≤ min{1/3,K ′ − 1},

(3.5) sup
z∈Sn−1

H̃f (B(z, ϕ(t))) ≤ CM(t) log

(
1

M(t)

)
where

(3.6) ϕ(t) = t

(
M(t)

c

)c/M(t)

.

SinceM(t) → 0 as t→ 0, there is t0 ∈ (0, r0) such that (3.5) holds for all 0 < t ≤ t0.

Write ψ(t) =M(t)/c, so that ϕ(t) = t exp
(

1
ψ(t) logψ(t)

)
. Then

(3.7) ϕ′(t) = exp

(
1

ψ(t)
logψ(t)

)[
1 + t

ψ′(t)

ψ(t)2

(
1 + log

1

ψ(t)

)]
and

(3.8)
ϕ′(t)

ϕ(t)
=

1

t
+
ψ′(t)

ψ(t)2

(
1 + log

1

ψ(t)

)
.

Notice that since M(t) is increasing and M(t) → 0 as t → 0, we have ϕ′(t) > 0
for all t sufficiently small. Thus, we can apply a change of variables s = ϕ(t),
ds/s = (ϕ′(t)/ϕ(t))dt to obtain∫ ϕ(t0)

0

sup
z∈Sn−1

(
H̃f (B(z, s))

)2 ds
s

=

∫ t0

0

sup
z∈Sn−1

(
H̃f (B(z, ϕ(t)))

)2 ϕ′(t)
ϕ(t)

dt

≤ C2

∫ t0

0

(
M(t) log

1

M(t)

)2
ϕ′(t)

ϕ(t)
dt.

(3.9)

To establish (1.11), it remains to show that the integral on the right hand side of
(3.9) is finite. Using (3.8) the integral on the right hand side of (3.9) is equal to

(3.10)

∫ t0

0

(
M(t) log

1

M(t)

)2
dt

t
+ c2

∫ t0

0

(
log

1

cψ(t)

)2(
1 + log

1

ψ(t)

)
ψ′(t)dt.



12 MATTHEW BADGER, JAMES T. GILL, STEFFEN ROHDE, AND TATIANA TORO

The first term on the right hand side of (3.10) is finite by (3.4). And, after changing
variables again, the second term on the right hand side of (3.10) becomes

(3.11) c2
∫ ψ(t0)

0

(
log

1

ct

)2(
1 + log

1

t

)
dt,

which is finite too. This verifies (1.11). Therefore, by Theorem 1.2, the quasisphere
f(Sn−1) admits local (1 + δ)-bi-Lipschitz parameterizations for every δ > 0. �

It remains to prove Theorem 3.1. Rather than estimate the weak quasisymmetry
constant Hf (B(w, s)) directly, we shall instead estimate a related extremal problem
for standardized quasiconformal maps.

Definition 3.3.

(i) We say that a quasiconformal map g : Rn → Rn is standardized if g(0) = 0,
g(e1) = e1, and g(B(0, 1)) ⊂ B(0, 1).

(ii) Let f : Rn → Rn be any quasiconformal map, let x ∈ Rn and let r > 0.
A quasiconformal map g : Rn → Rn is a standardization of f with respect
to B(x, r) if there exist affine transformations ϕ and ψ of Rn such that
ϕ(B(0, 1)) = B(x, r) and g = ψ ◦ f ◦ ϕ is standardized.

Remark 3.4 (How to EstimateHf (B(w, s)). Let f : Rn → Rn beK ′-quasiconformal,
let R > 1 and assume that Kf (B(w,Rs)) ≤ K. Suppose that we want to estimate
|f(x̃)− f(z̃)|/|f(ỹ)− f(z̃)| for some x̃, ỹ, z̃ ∈ B(w, s) with |x̃− z̃| ≤ |ỹ − z̃|. Then,
writing r := |ỹ − z̃|, B(z̃, r) ⊂ B(w, 3s), Kf (B(z̃, R3 r)) ≤ K and

|f(x̃)− f(z̃)|
|f(ỹ)− f(z̃)|

≤ max

{
|f(x)− f(z̃)|
|f(y)− f(z̃)|

: |x− z̃| ≤ |y − z̃| = r

}
= max

{
|f(x)− f(z̃)|
|f(y)− f(z̃)|

: |x− z̃| = |y − z̃| = r

}
.

(3.12)

Suppose that the maximum in (3.12) is obtained at x = x⋆ and y = y⋆. This implies
that |f(x⋆)−f(z̃)| ≥ |f(y)−f(z̃)| for all y such that |y− z̃| = r. Let ϕ be any affine
transformation of Rn sending B(0, 1) to B(z̃, r) with ϕ(0) = z̃ and ϕ(e1) = x⋆, and
let ψ be any affine transformation of Rn sending B(f(z̃), |f(x⋆)− f(z̃)|) to B(0, 1)
with ψ(f(z̃)) = 0 and ψ(f(x⋆)) = e1. Then F = ψ ◦ f ◦ ϕ is a standardization of f
with respect to B(z̃, r), f is K ′-quasiconformal, KF (B(0, R/3)) ≤ K and

(3.13)
|f(x̃)− f(z̃)|
|f(ỹ)− f(z̃)|

≤ |F (e1)− F (0)|
|F (ϕ−1(y⋆))− F (0)|

=
|F (e1)|

|F (ϕ−1(y⋆))|

where |ϕ−1(y⋆)| = 1. Let G(K ′,K,R/3) denote the collection of all standardized
K ′-quasiconformal maps g such that Kg(B(0, R/3)) ≤ K. Then

(3.14)
|f(x̃)− f(z̃)|
|f(ỹ)− f(z̃)|

≤ max

{
|g(x)|
|g(y)|

: g ∈ G(K ′,K,R/3), |x| = |y| = 1

}
.

Therefore, since the right hand side of (3.14) is independent of x̃, ỹ and z̃,

(3.15) Hf (B(w, s)) ≤ max

{
|g(x)|
|g(y)|

: g ∈ G(K ′,K,R/3), |x| = |y| = 1

}
for every K ′-quasiconformal map f of Rn such that Kf (B(w,Rs)) ≤ K.
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The extremal problem described in Remark 3.4 (3.15) has been studied in the
special case K = K ′ by several authors; see Vuorinen [22], Seittenranta [17], and
most recently, Prause [12]. Our idea to prove Theorem 3.1 is to modify the method
from [22] to incorporate two estimates on the maximal dilatation (Kg(Rn) ≤ K ′

and Kg(B(0, R/3)) ≤ K). To do this we need to work with the geometric definition
of quasiconformal maps. Recall that according to the geometric definition a map
f : Ω → Ω′ between domains Ω,Ω′ ⊂ Rn is K-quasiconformal (1 ≤ K < ∞)
provided that f is a homeomorphism and the inequalities

(3.16) K−1modn(Γ) ≤ modn(fΓ) ≤ Kmodn(Γ)

hold for every curve family Γ in Ω. Here modn(Γ) refers to the n-modulus of Γ; e.g.,
see Heinonen [7]. We also define the maximal dilatation Kf (Ω) to be the smallest
K such that the inequalities (3.16) hold for all Γ. It is well known that the analytic
and geometric definitions of quasiconformal maps coincide; e.g., see Chapter 4, §36
of Väisälä [20].

As a preliminary step towards the proof of Theorem 3.1, we record some facts
about the modulus of the Teichmüller ring [−e1, 0]∪ [se1,∞] in Rn with s > 0 and

the Grötzsch ring B(0, 1)∪ [te1,∞) in Rn with t > 1. For every pair of disjoint sets
E,F ⊂ Rn, (E,F ) is the family of curves connecting E and F in Rn.

Lemma 3.5. With n ≥ 2 fixed, assign τn(s) = modn([−e1, 0], [se1,∞)) for all
s > 0, and assign γn(t) = modn(B(0, 1), [te1,∞)) for all t > 1. The functions τn
and γn are decreasing homeomorphisms onto (0,∞). Moreover,

(3.17) γn(t) = 2n−1τn(t
2 − 1) for all t > 1

and

(3.18)
σn−1

(log λnt)
n−1 ≤ γn(t) ≤

σn−1

(log t)
n−1 for all t > 1

where σn−1 = Hn−1(Sn−1) is the surface area of the unit sphere and λn ∈ [4, 2en−1)
is the Grötzsch constant. For all A > 0, define the distortion function

(3.19) φA,n(r) =
1

γ−1
n (Aγn(1/r))

for all 0 < r < 1.

Then φn,A is an increasing homeomorphism from (0, 1) to (0, 1).

Proof. We refer the reader to §7 of Vuorinen [21]. �

In the special case K = K ′, the following calculation appears in slightly different
form in Seittenranta [17] (c.f. Theorem 1.5 and Lemma 3.1 in [17]) and Prause [12]
(c.f. Theorem 2.7 and Theorem 3.1 in [12]).

Lemma 3.6. Let GR = G(K ′,K,R) be the family of standardizedK ′-quasiconformal
maps g : Rn → Rn such that Kg(B(0, R)) ≤ K. For all 1 < A ≤ 16/9 there exists
t0 ∈ (0, 1) (see (3.28)) depending only on n and A such that if the inequalities

(3.20) γn

(√
1 +

1

|g(x)|

)
≤ Aγn

(√
1

|x|

)
and

(3.21) γn

(√
1 +

1

|x|

)
≤ Aγn

(√
1

|g(x)|

)
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hold for all g ∈ GR and |x| = t0, then

(3.22) max

{
|h(x)|
|h(y)|

: h ∈ GR/t0 , |x| = |y| = 1

}
≤ 1 + C(A− 1) log

(
1

A− 1

)
.

for some absolute constant C > 1.

Proof. Let n, K ′, K, R and A be given and fix t0 ∈ (0, 1) to be specified later.
Suppose that (3.20) and (3.21) hold for all g ∈ GR when |x| = t0. We remark that
(3.20) and (3.21) make sense, since 0 < |g(x)| < 1 when 0 < |x| < 1 because g
is standardized. Since γn is strictly decreasing, one can apply γ−1

n to both sides
of (3.20), invoke the definition of the distortion function (3.19), and perform basic
manipulations to get

(3.23) |g(x)| ≤
φ2
A,n(

√
t0)

1− φ2
A,n(

√
t0)

=: A(t0) for all g ∈ GR.

Similarly, after first dividing (3.21) through by A, one can apply γ−1
n , use (3.19),

and perform basic manipulations to get

(3.24) |g(x)| ≥ φ2
1/A,n

(√
t0

1 + t0

)
=: B(t0) for all g ∈ GR.

Combining (3.23) and (3.24), we get that

(3.25)
|g(x)|
|g(y)|

≤ A(t0)

B(t0)
for all g ∈ GR and |x| = |y| = t0.

Since

(3.26)

{
|h(x)|
|h(y)|

: h ∈ GR/t0 , |x| = |y| = 1

}
=

{
|g(x)|
|g(y)|

: g ∈ GR, |x| = |y| = t0

}
,

we conclude that

(3.27) max

{
|h(x)|
|h(y)|

: h ∈ GR/t0 , |x| = |y| = 1

}
≤ A(t0)

B(t0)
.

Ideally one would like to choose t0 which minimizes the right hand side of (3.27).
Unfortunately, this critical value of t0 cannot be solved for algebraically. Instead,
following Vuorinen [22], Seittenranta [17] and Prause [12] we take

(3.28) t0 =

(
λ2(α−1)
n

A− 1

A

)β
where α = A1/(1−n), β = A1/(n−1).

By Lemma 3.1 in [17], if 1 < A ≤ 2, then

(3.29)
A(t0)

B(t0)
≤ exp

((
4
√
2 + log

1

A− 1

)
(A2 − 1)

)
.

If 1 < A ≤ 16/9, then 4
√
2 ≤ 23 log(1/(A− 1)) and (A2 − 1) ≤ 3(A− 1). Thus,

(3.30)
A(t0)

B(t0)
≤ exp

(
72(A− 1) log

1

A− 1

)
Finally note 72(A−1) log(1/(A−1)) is bounded for 1 < A ≤ 16/9 and ex ≤ 1+ebx
when x ≤ b. Therefore, from (3.27) and (3.30), it readily follows that

(3.31) max

{
|h(x)|
|h(y)|

: h ∈ GR/t0 , |x| = |y| = 1

}
≤ 1 + C(A− 1) log

(
1

A− 1

)
for some absolute constant C > 1, whenever 1 < A ≤ 16/9. �
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Figure 2. Families of curves

As a model for Theorem 3.1, let us now verify (1.15). Suppose that f : Rn → Rn
is a K ′-quasiconformal map (with K ′ near 1) and assume f is standardized so that
f(0) = 0 and f(e1) = e1, and 0 < |f(x)| < 1 whenever 0 < |x| < 1. Following
Vuorinen [22], we fix a point x with |x| ∈ (0, 1) and consider the following four
curve families in Rn (see Figure 2):

• ∆ = ([0, x], [e1,∞)),
• ∆∗ = ([0, |x|e1], [e1,∞)),
• f(∆) = (f [0, x], f [e1,∞)),
• f(∆)∗ = ([−|f(x)|e1, 0], [e1,∞)).

The modulus of these curve families are related by

(3.32) modn(f(∆)∗) ≤ modn(f(∆)) ≤ K ′modn(∆) ≤ K ′modn(∆
∗),

where the first inequality holds by spherical symmetrization (e.g. see §7 in [21]),
the second inequality holds since f is K ′-quasiconformal, and the third inequality
is a lemma of Gehring (see Lemma 5.27 in [21]). The rings [−|f(x)|e1, 0] ∪ [e1,∞)
and [0, |x|e1] ∪ [e1,∞) used to define f(∆)∗ and ∆∗, respectively, are conformally
equivalent to Teichmüller rings by translation and dilation. Thus using the modulus
of Teichmüller rings we can rewrite (3.32) as

(3.33) τn

(
1

|f(x)|

)
≤ K ′τn

(
1

|x|
− 1

)
.

Thus, using (3.17),

(3.34) γn

(√
1 +

1

|f(x)|

)
≤ K ′γn

(√
1

|x|

)
.

Applying a similar argument with f−1 instead of f and y = f(x) instead of x yields

(3.35) γn

(√
1 +

1

|x|

)
≤ K ′γn

(√
1

|f(x)|

)
.

Notice that G = G(K ′,K ′, R) is independent of R > 0. Since (3.34) and (3.35) hold
for all f ∈ G and for all x such that |x| ∈ (0, 1), Lemma 3.6 yields

(3.36) max

{
|g(x)|
|g(y)|

: g ∈ G, |x| = |y| = 1

}
≤ 1 + C(K ′ − 1) log

(
1

K ′ − 1

)
.
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Figure 3. Curves in Γ1 and Γ2

Thus, by Remark 3.4, if f : Rn → Rn is K ′-quasiconformal (with K ′ near 1), then

(3.37) H̃f (B(w, s)) ≤ C(K ′ − 1) log

(
1

K ′ − 1

)
for all w ∈ Rn and s > 0.

Since the right hand side is independent of w and s, (3.37) implies (1.15).
We will now rerun this argument, with modifications designed to utilize two

estimates on the maximal dilatation of f .

Proof of Theorem 3.1. Let constants K and K ′ satisfying 1 < K ≤ min{4/3,K ′}
be given. Fix R > 1 to be specified later (see (3.53)) and choose f ∈ G(K ′,K,R).
Then f : Rn → Rn is a standardizedK ′-quasiconformal map andKf (B(0, R)) ≤ K.
Fix x ∈ B(0, 1)\{0} and let ∆, ∆∗, f(∆) and f(∆)∗ be the curve families associated
to x defined above. Furthermore, decompose ∆ as the union of two curve families,

(3.38) ∆ = Γ1 ∪ Γ2,

where Γ1 consists of all curves in ∆ which remain inside B(0, R) and Γ2 = ∆ \ Γ1

(see Figure 3). Continuing as above, and using the subadditivity of modulus,

(3.39) modn(f(∆)∗) ≤ modn(f(∆)) ≤ modn(f(Γ1)) + modn(f(Γ2)).

On one hand, since curves in Γ1 lie inside B(0, R), the estimate Kf (B(0, R)) ≤ K
on the maximal dilatation yields

(3.40) modn(f(Γ1)) ≤ Kmodn(Γ1) ≤ Kmodn(∆) ≤ Kmodn(∆
∗).

On the other hand, let Γ(r,R) be the family of all curves connecting ∂B(0, r) to
∂B(0, R) inB(0, R)\B(0, r). This is one of the few curve families where the modulus
is explicitly known (e.g. see [21]): ρn(r,R) := modn(Γ(r,R)) = σn−1(logR/r)

1−n.
Because every curve in Γ2 has a subcurve which belongs to Γ(1, R),

(3.41) modn(f(Γ2)) ≤ K ′modn(Γ2) ≤ K ′modn(Γ(1, R)) = K ′ρn(1, R).

Combining (3.39), (3.40) and (3.41) gives

(3.42) modn(f(∆)∗) ≤ Kmodn(∆
∗) +K ′ρn(1, R).

Rewriting (3.42) using the modulus of Grötzsch rings, we get

(3.43) γn

(√
1 +

1

|f(x)|

)
≤ Kγn

(√
1

|x|

)
+K ′ρn(1, R).

One may view (3.43) as an analogue of (3.34). We want to find a similar analogue
for (3.35). We now use the global Hölder continuity of the quasiconformal map f .
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Since f : Rn → Rn is K ′-quasiconformal, f(0) = 0 and f(e1) = e1, there exists a
constant M > 1 depending only on n and K ′ such that

(3.44) M−1 min{|z|α
′
, |z|β

′
} ≤ |f(z)| ≤M max{|z|α

′
, |z|β

′
} for all z ∈ Rn

where α′ = (K ′)1/(1−n) and β′ = (K ′)1/(n−1); for this version of Hölder continuity
for normalized quasiconformal maps, see Theorem 1.8(3) in [22]. In particular,

(3.44) implies that f(B(0, R)) ⊃ B(0, Rα
′
/M). Hence Kf−1(B(0, Rα

′
/M)) ≤ K.

Thus, if R > 1 is sufficiently large to ensure Rα
′
/M > 1, then by arguing as above

with f−1 instead of f and y = f(x) instead of x we get

(3.45) γn

(√
1 +

1

|x|

)
≤ Kγn

(√
1

|f(x)|

)
+K ′ρn(1, R

α′
/M)

for all x ∈ B(0, 1) \ {0}.
Our next task is to choose R > 1 so large that we can absorb the ρn-terms in

(3.43) and (3.45) into the γn-terms. Let

(3.46) t0 =

(
λ2(α

2−1)
n

K2 − 1

K2

)β2

be the constant from Lemma 3.6 associated to A = K2, where α = K1/(1−n) and
β = K1/(n−1). Suppose that we can pick R > 1 large enough to guarantee

(3.47) K ′ρn(1, R) ≤ K(K − 1)γn

(√
1

|x|

)
and

(3.48) K ′ρn(1, R
α′
/M) ≤ K(K − 1)γn

(√
1

|f(x)|

)
for all x such that |x| = t0. Then, combining (3.43), (3.45), (3.47) and (3.48), we
see that (3.20) and (3.21) hold with A = K2 for all f ∈ G(K ′,K,R) and for all x
such that |x| = t0. Therefore, since 1 < K2 ≤ 16/9, Lemma 3.6 will imply that

max

{
|h(x)|
|h(y)|

: h ∈ GR/t0 , |x| = |y| = 1

}
≤ 1 + C(K2 − 1) log

(
1

K2 − 1

)
≤ 1 + 3C(K − 1) log

(
1

K − 1

)(3.49)

for some absolute constant C > 1.
Let us now find how large R > 1 must be to ensure that (3.47) and (3.48) hold.

First observe that if |x| = t0 then
√

1/|f(x)| ≤ (M/tβ
′

0 )1/2 by (3.44). Hence, since
γn is decreasing, (3.48) will hold provided that

(3.50) K ′ρn(1, R
α′
/M) ≤ K(K − 1)γn

(
(M/tβ

′

0 )1/2
)
.

Using the formula for ρn(1, R
α′
/M) from above and the first inequality in (3.18),

we see that (3.47) and (3.50) will hold if

(3.51) K ′σn−1 (logR)
1−n ≤ K(K − 1)σn−1

(
log λn(1/t0)

1/2
)1−n
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and

(3.52) K ′σn−1

(
logRα

′
/M
)1−n

≤ K(K − 1)σn−1

(
log λn(M/tβ

′

0 )1/2
)1−n

,

respectively. From here an undaunted reader can verify using elementary operations
that there is a constant c > 1 depending only on n and K ′ so that the inequalities
(3.51) and (3.52) hold whenever

(3.53) R ≥
(

c

K − 1

)c/(K−1)

.

For definiteness, let c > 1 be the smallest constant such that (3.53) implies (3.52)
for all 1 < K ≤ 4/3 and set R = (c/(K−1))c/(K−1). From our previous discussion,
it follows that (3.49) holds with this choice of R. By Remark 3.4, we conclude that

H̃f (B(w, s)) ≤ 3C(K − 1) log
(

1
K−1

)
for every quasiconformal map f : Rn → Rn

such that Kf (B(w, 3(R/t0)s)) ≤ K. Finally observe that

(3.54)
3R

t0
≤
(

c̃

K − 1

)c̃/(K−1)

=: R̃

for some constant c̃ ≥ c depending only on n and K ′. This completes the proof. �
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