
TWO SUFFICIENT CONDITIONS FOR RECTIFIABLE MEASURES

MATTHEW BADGER AND RAANAN SCHUL

Abstract. We identify two sufficient conditions for locally finite Borel measures on Rn

to give full mass to a countable family of Lipschitz images of Rm. The first condition,
extending a prior result of Pajot, is a sufficient test in terms of Lp affine approximability
for a locally finite Borel measure µ on Rn satisfying the global regularity hypothesis

lim sup
r↓0

µ(B(x, r))/rm <∞ at µ-a.e. x ∈ Rn

to be m-rectifiable in the sense above. The second condition is an assumption on the
growth rate of the 1-density that ensures a locally finite Borel measure µ on Rn with

lim
r↓0

µ(B(x, r))/r =∞ at µ-a.e. x ∈ Rn

is 1-rectifiable.

1. Introduction

In the treatise [Fed69] on geometric measure theory, Federer supplies the following
general notion of rectifiability with respect to a measure. Let 1 ≤ m ≤ n− 1 be integers.
Let µ be a Borel measure on Rn, i.e. a Borel regular outer measure on Rn. Then Rn is
countably (µ,m) rectifiable if there exist countably many Lipschitz maps fi : [0, 1]m → Rn

such that µ assigns full measure to the images sets fi([0, 1]m), i.e.

µ

(
Rn \

∞⋃
i=1

fi([0, 1]m)

)
= 0.

When m = 1, each set Γi = fi([0, 1]) is a rectifiable curve. Below we shorten Federer’s
terminology, saying that µ is m-rectifiable if Rn is countably (µ,m) rectifiable.

Two well studied subclasses of rectifiable measures are Hausdorff measures on rectifiable
sets and absolutely continuous rectifiable measures. Given any Borel measure µ on Rn

and Borel set E ⊆ Rn, define the measure µ E (“µ restricted to E”) by the rule
µ E(F ) = µ(E ∩ F ) for all Borel sets F ⊆ Rn. We call a Borel set E ⊆ Rn an m-
rectifiable set ifHm E is an m-rectifiable measure, whereHm denotes the m-dimensional
Hausdorff measure on Rn. One may think of an m-rectifiable set E as an m-rectifiable
measure by identifying E with the measure Hm E. More generally, we say that an m-
rectifiable measure µ on Rn is absolutely continuous if µ � Hm, i.e. µ(E) = 0 whenever
E ⊂ Rn and Hm(E) = 0.
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It is a remarkable fact that rectifiable sets and absolutely continuous rectifiable measures
can be identified by the asymptotic behavior of the measures on small balls.

Definition 1.1 (Hausdorff density). Let B(x, r) denote the closed ball in Rn with center
x ∈ Rn and radius r > 0. For each positive integer m ≥ 1, let ωm = Hm(Bm(0, 1)) denote
the volume of the unit ball in Rm. For all locally finite Borel measures µ on Rn, we define
the lower Hausdorff m-density Dm(µ, ·) and upper Hausdorff m-density D

m
(µ, ·) by

Dm(µ, x) := lim inf
r→0

µ(B(x, r))

ωmrm
∈ [0,∞]

and

D
m

(µ, x) := lim sup
r→0

µ(B(x, r))

ωmrm
∈ [0,∞]

for all x ∈ Rn. If Dm(µ, x) = D
m

(µ, x) for some x ∈ Rn, then we write Dm(µ, x) for the
common value and call Dm(µ, x) the Hausdorff m-density of µ at x.

Theorem 1.2 ([Mat75]). Let 1 ≤ m ≤ n−1. Suppose E ⊂ Rn is Borel and µ = Hm E
is locally finite. Then µ is m-rectifiable if and only if the Hausdorff m-density of µ exists
and Dm(µ, x) = 1 at µ-a.e. x ∈ Rn.

Theorem 1.3 ([Pre87]). Let 1 ≤ m ≤ n− 1. If µ is a locally finite Borel measure on Rn,
then µ is m-rectifiable and µ� Hm if and only if the Hausdorff m-density of µ exists and
0 < Dm(µ, x) <∞ at µ-a.e. x ∈ Rn.

Remark 1.4. For any locally finite Borel measure µ on Rn:

µ� Hm ⇐⇒ D
m

(µ, x) <∞ at µ-a.e. x ∈ Rn; and,

µ is m-rectifiable =⇒ Dm(µ, x) > 0 at µ-a.e. x ∈ Rn.(1.1)

See [Mat95, Chapter 6] and [BS15, Lemma 2.7].

There are several other characterizations of rectifiable sets and absolutely continuous
rectifiable measures (e.g. in terms of projections or tangent measures); see Mattila [Mat95]
for a full survey of results through 1993. Further investigations on rectifiable sets and
absolutely continuous rectifiable measures include [Paj96, Paj97, Lég99, Ler03, Tol12,
CGLT14, TT14, Tol14, ADT15, BL14, Bue14, ADT14, AT15, Tol15].

The first result of this note is an extension of Pajot’s theorem on rectifiable sets [Paj97]
to absolutely continuous rectifiable measures. To state these results, we must recall the
notion of an Lp beta number from the theory of quantitative rectifiability.

Definition 1.5 (Lp beta numbers). Let 1 ≤ m ≤ n − 1 and let 1 ≤ p < ∞. For every

locally finite Borel measure µ on Rn and bounded Borel set Q ⊂ Rn, define β
(m)
p (µ,Q) by

(1.2) β(m)
p (µ,Q)p := inf

`

∫
Q

(
dist(x, `)

diamQ

)p
dµ(x)

µ(Q)
∈ [0, 1],

where ` in the infimum ranges over all m-dimensional affine planes in Rn. If µ(Q) = 0,

then we interpret (1.2) as β
(m)
p (µ,Q) = 0.
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Remark 1.6. Beta numbers (of sets) were introduced by Jones [Jon90] to characterize
subsets of rectifiable curves in the plane and are now often called Jones beta numbers.
The Lp variant in Definition 1.5 originated in the fundamental work of David and Semmes
on uniformly rectifiable sets [DS91, DS93] with the normalization appearing in (1.3). The

normalization of β
(m)
p (µ,Q) presented in Definition 1.5 is not new; see e.g. [Ler03].

When Q = B(x, r), some sources (e.g. [DS91, DS93, Paj97]) define Lp beta numbers
using the alternate normalization

(1.3) β̃(m)
p (µ,B(x, r))p := inf

`

∫
B(x,r)

(
dist(x, `)

r

)p
dµ(x)

rm
∈ [0,∞),

where ` in the infimum again ranges over all m-dimensional affine planes in Rn. However,

β
(m)
p (µ,B(x, r)) and β̃

(m)
p (µ,B(x, r)) are quantitatively equivalent at locations and scales

where µ(B(x, r)) ∼ rm. We have freely translated beta numbers in theorem statements
quoted from other sources to the convention of Definition 1.5, which is better suited for
generic locally finite Borel measures.

Theorem 1.7 ([Paj97]). Let 1 ≤ m ≤ n− 1 and let

(1.4)

{
1 ≤ p <∞ if m = 1 or m = 2,
1 ≤ p < 2m/(m− 2) if m ≥ 3.

Assume that K ⊂ Rn is compact and µ = Hm K is a finite measure. If Dm(µ, x) > 0
at µ-a.e. x ∈ Rn and

(1.5)

∫ 1

0

β(m)
p (µ,B(x, r))2 dr

r
<∞ at µ-a.e. x ∈ Rn,

then µ is m-rectifiable.

In §2, we note the following extension of Pajot’s theorem. Also, see Theorem 2.1.

Theorem A. Let 1 ≤ m ≤ n − 1 and let 1 ≤ p < ∞ satisfy (1.4). Assume that µ is a
locally finite Borel measure on Rn such that µ � Hm. If Dm(µ, x) > 0 at µ-a.e. x ∈ Rn

and (1.5) holds, then µ is m-rectifiable.

In a forthcoming paper, Tolsa [Tol15] proves that (1.5) is a necessary condition for an
absolutely continuous measure to be rectifiable. Together with Theorem A and (1.1),
this result provides a full characterization of absolutely continuous rectifiable measures in
terms of the beta numbers and lower Hausdorff density of a measure.

Theorem 1.8 ([Tol15]). Let 1 ≤ m ≤ n− 1 and let 1 ≤ p ≤ 2. If µ is m-rectifiable and
µ� Hm, then (1.5) holds.

Corollary 1.9. Let 1 ≤ m ≤ n − 1 and let 1 ≤ p ≤ 2. If µ is a locally finite Borel
measure on Rn such that µ� Hm, then the following are equivalent:

• µ is m-rectifiable;
• Dm(µ, x) > 0 at µ-a.e. x ∈ Rn and (1.5) holds.

In a companion paper to [Tol15], Azzam and Tolsa [AT15] prove that in the case p = 2,
Theorem A holds with the hypothesis Dm(µ, x) > 0 at µ-a.e. x ∈ Rn on the lower density
replaced by a weaker assumption D

m
(µ, x) > 0 at µ-a.e. x ∈ Rn on the upper density.
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For general m-rectifiable measures that are allowed to be singular with respect to Hm,
the following basic problem in geometric measure theory is still open.

Problem 1.10. For all 1 ≤ m ≤ n− 1, find necessary and sufficient conditions in order for
a locally finite Borel measure µ on Rn to be m-rectifiable. (Do not assume that µ� Hm.)

Partial progress on Problem 1.10 has recently been made in [GKS10, BS15, AM15] in
the case m = 1. In [GKS10], Garnett, Killip, and Schul exhibit a family (νδ)0<δ≤δ0 of
self-similar locally finite Borel measures on Rn, which are

• doubling : 0 < νδ(B(x, r)) ≤ Cδ νδ(B(x, r/2)) <∞ for all x ∈ Rn and r > 0;

• badly linearly approximable: β
(1)
2 (νδ, B(x, r)) ≥ cδ > 0 for all x ∈ Rn and r > 0;

• singular : D1(νδ, x) =∞ at νδ-a.e. x ∈ Rn (hence νδ ⊥ H1); and,
• 1-rectifiable: νδ(Rn \

⋃
i Γi) = 0 for some countable family of rectifiable curves Γi.

In [BS15], Badger and Schul identify a pointwise necessary condition for an arbitrary
locally finite Borel measure µ on Rn to be 1-rectifiable.

Theorem 1.11 ([BS15, Theorem A]). Let n ≥ 2 and let ∆ be a system of closed or half-
open dyadic cubes in Rn of side length at most 1. If µ is a locally finite Borel measure on
Rn and µ is 1-rectifiable, then∑

Q∈∆

β
(1)
2 (µ, 3Q)2 diamQ

µ(Q)
χQ(x) <∞ at µ-a.e. x ∈ Rn.

The second result of this note is a sufficient condition for a measure µ withD1(µ, x) =∞
at µ-a.e. x ∈ Rn to be 1-rectifiable.

Theorem B. Let n ≥ 2 and let ∆ be a system of half-open dyadic cubes in Rn of side
length at most 1. If µ is a locally finite Borel measure on Rn and

(1.6)
∑
Q∈∆

diamQ

µ(Q)
χQ(x) <∞ at µ-a.e. x ∈ Rn,

then µ is 1-rectifiable, and moreover, there exist a countable family of rectifiable curves Γi
and Borel sets Bi ⊆ Γi such that H1(Bi) = 0 for all i ≥ 1 and µ (Rn \

⋃∞
i=1 Bi) = 0.

Together Theorem 1.11 and Theorem B provide a full characterization of 1-rectifiability
of measures with “pointwise large beta number” (1.7). Examples of measures that sat-
isfy this beta number condition include the measures (νδ)0<δ≤δ0 from [GKS10], or more
generally, any doubling measure µ on Rn whose support is Rn.

Corollary 1.12. Let n ≥ 2 and let ∆ be a system of half-open dyadic cubes in Rn of side
length at most 1. If µ is a locally finite Borel measure such that

(1.7) lim inf
Q∈∆,x∈Q

diamQ→0

β
(1)
2 (µ, 3Q) > 0 at µ-a.e. x ∈ Rn,

then µ is 1-rectifiable if and only if (1.6) holds.

Finally, we note that in recent work Azzam and Mourgoglou [AM15] give a weaker
condition for 1-rectifiability of a doubling measure with connected support.
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Theorem 1.13 ([AM15]). Let µ be a doubling measure whose support is a topologically
connected metric space X and let E ⊆ X be compact. Then µ E is 1-rectifiable if and
only if D1(µ, x) > 0 for µ-a.e. x ∈ E.

When applied to a doubling measure µ on Rn whose support is Rn, Corollary 1.12 and
Theorem 1.13 imply that if D1(µ, x) > 0 at µ-a.e. x ∈ Rn, then (1.6) holds.

The remainder of this note is split into two sections. We prove Theorem A in §2 and
we prove Theorem B in §3.

2. Proof of Theorem A

We show how to reduce Theorem A to Theorem 1.7 using standard geometric measure
theory techniques; see Chapters 1, 2, 4, and 6 of [Mat95] for general background. In fact,
we will establish the following “localized version” of Theorem A.

Theorem 2.1. Let 1 ≤ m ≤ n− 1 and let

(2.1)

{
1 ≤ p <∞ if m = 1 or m = 2,
1 ≤ p < 2m/(m− 2) if m ≥ 3.

If µ is a locally finite Borel measure on Rn such that

Jp(µ, x) :=

∫ 1

0

β(m)
p (µ,B(x, r))2 dr

r
<∞ at µ-a.e. x ∈ Rn,

then µ
{
x ∈ Rn : 0 < Dm(µ, x) ≤ D

m
(µ, x) <∞

}
is m-rectifiable.

Proof. Without loss of generality, we assume for the duration of the proof that Hm is
normalized so that ωm = Hm(Bm(0, 1)) = 2m. This is the convention used in [Mat95].

Suppose that 1 ≤ m ≤ n − 1, let p belong to the range (2.1), and let µ be a locally
finite Borel measure on Rn such that Jp(µ, x) <∞ at µ-a.e. x ∈ Rn. Define

A :=
{
x ∈ Rn : 0 < Dm(µ, x) ≤ D

m
(µ, x) <∞

}
.

Also, for each pair of integers j, k ≥ 1, define

A(j, k) :=
{
x ∈ B(0, 2k) : 2−jrm ≤ µ(B(x, r)) ≤ 2jrm for all 0 < r ≤ 2−k

}
.

Then A(j, k) is compact and A(j, k) ⊆ A(j + 1, k + 1) for all j, k ≥ 1. Also note that

A =
∞⋃

j,k=1

A(j, k) =
∞⋃

j,k=1

A(j, k),

Thus, to prove that µ A is m-rectifiable, it suffices to verify that µ A(j, k) is m-
rectifiable for all j, k ≥ 1.

Fix any j, k ≥ 1 and set K := A(j, k), ν := µ K, and σ := Hm K. In order to
prove that ν is m-rectifiable, it is enough to show that ν � σ � ν and σ is m-rectifiable.
By Theorem 6.9 in [Mat95], since 2−j−1−m ≤ D

m
(µ, x) ≤ 2j+1−m for all x ∈ K, we have

(2.2) ν(B(x, r)) = µ(K ∩B(x, r)) ≤ 2j+1Hm(K ∩B(x, r)) = 2j+1σ(B(x, r))

and

(2.3) σ(B(x, r)) = Hm(K ∩B(x, r)) ≤ 2j+1+mµ(K ∩B(x, r)) = 2j+1+mν(B(x, r))
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for all x ∈ Rn and r > 0. Note that

σ(Rn) = σ(B(0, 2k)) ≤ 2j+1+mµ(B(0, 2k)) <∞,
since µ is locally finite. That is, σ is a finite measure. Thus, ν and σ are mutually
absolutely continuous by (2.2), (2.3), and Lemma 2.13 in [Mat95]. Now,

(2.4) σ(B(x, r)) ≤ 2j+1+mµ(B(x, r)) ≤ 22j+2+mrm for all x ∈ K and 0 < r ≤ 2−k−1.

On the other hand, let K ′ denote the set of x ∈ K such that

2ν(B(x, r)) = 2µ(K ∩B(x, r)) ≥ µ(B(x, r)) for all 0 < r ≤ rx

for some rx ≤ 2−k−1. Then σ(Rn \K ′) = 0, because ν(Rn \K ′) = µ(K \K ′) = 0, and

(2.5) σ(B(x, r)) ≥ 2−j−2µ(B(x, r)) ≥ 2−2j−3rm for all x ∈ K ′ and 0 < r ≤ rx.

In particular, Dm(σ, x) ≥ c(m, j) > 0 at σ-a.e. x ∈ Rn. To conclude that σ is m-rectifiable
using Theorem 1.7, it remains to verify Jp(σ, x) <∞ at σ-a.e. x ∈ Rn.

By (2.4) and (2.5), there exists a constant C = C(m, j) <∞ such that

C−1 ≤ ν(B(x, r))

σ(B(x, r))
≤ C for all 0 < r ≤ rx at σ-a.e. x ∈ Rn.

Thus, by differentiation of Radon measures, we can write dν = f dσ, where f ∈ L1
loc(dσ)

and C−1 ≤ f(x) ≤ C at σ-a.e. x ∈ Rn. Therefore, at σ-a.e. x ∈ Rn, for every 0 < r ≤ rx
and for every m-dimensional affine plane `,∫

B(x,r)

(
dist(y, `)

diamB(x, r)

)p
dσ(y)

σ(B(x, r))
≤ C2

∫
B(x,r)

(
dist(y, `)

diamB(x, r)

)p
dν(y)

ν(B(x, r))

≤ 2C2

∫
B(x,r)

(
dist(y, `)

diamB(x, r)

)p
dµ(y)

µ(B(x, r))
.

Thus, β
(m)
p (σ,B(x, r))2 ≤ (2C2)

2/p
β

(m)
p (µ,B(x, r))2 for all 0 < r ≤ rx at σ-a.e. x ∈ Rn.

Since Jp(µ, x) < ∞ at µ-a.e. x ∈ Rn and σ � µ, it follows that Jp(σ, x) < ∞ at σ-
a.e. x ∈ Rn. Finally, since K is compact, σ = Hm K is finite, and Dm(σ, x) > 0 and
Jp(σ, x) < ∞ at σ-a.e. x ∈ Rn, we conclude that σ is m-rectifiable by Theorem 1.7.

As noted above, this implies that ν = µ A(j, k) is m-rectifiable for all j, k ≥ 1, and
therefore, µ A is m-rectifiable. �

3. Proof of Theorem B

For every Borel measure µ on Rn, define the quantity

S(µ, x) :=
∑
Q∈∆

diamQ

µ(Q)
χQ(x) ∈ [0,∞] for all x ∈ Rn,

where ∆ denotes any system of half-open dyadic cubes in Rn of side length at most 1.
Theorem B is a special case of the following statement.

Theorem 3.1. Let n ≥ 2. If µ is a locally finite Borel measure on Rn, then

ρ := µ {x ∈ Rn : S(µ, x) <∞}
is 1-rectifiable. Moreover, there exists a countable family of rectifiable curves Γi ⊂ Rn and
Borel sets Bi ⊆ Γi such that H1(Bi) = 0 for all i ≥ 1 and ρ(Rn \

⋃∞
i=1Bi) = 0.
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We start with a lemma, which will be used to organize the proof of Theorem 3.1.

Lemma 3.2. Let n ≥ 1 and let µ be a locally finite Borel measure on Rn. Given Q0 ∈ ∆
such that η := µ(Q0) > 0 and N <∞, let

A := {x ∈ Q0 : S(µ, x) ≤ N}.

For all 0 < ε < 1/η, the set of dyadic cubes Q ⊆ Q0 can be partitioned into good cubes
and bad cubes with the following properties:

(1) every child of a bad cube is a bad cube;
(2) the set B := A \

⋃
{Q : Q ⊆ Q0 is a bad cube} satisfies µ(B) ≥ (1− εη)µ(A);

(3)
∑

diamQ < N/ε, where the sum ranges over all good cubes Q ⊆ Q0.

Proof. Suppose that n, µ, Q0, η, N , and A are given as above and let ε > 0. If µ(A) = 0,
then we may declare every dyadic cube Q ⊆ Q0 to be a bad cube and the conclusion
of the lemma hold trivially. Thus, suppose that µ(A) > 0. Declare that a dyadic cube
Q ⊆ Q0 is a bad cube if there exists a dyadic cube R ⊆ Q0 such that Q ⊆ R and
µ(A ∩ R) ≤ εµ(A)µ(R). We call a dyadic cube Q ⊆ Q0 a good cube if Q is not a bad
cube. Property (1) is immediate. To check property (2), observe that

µ(A \B) ≤
∑

maximal bad Q⊆Q0

µ(A ∩Q) ≤ εµ(A)
∑

maximal bad Q⊆Q0

µ(Q) ≤ εµ(A)µ(Q0),

where the last inequality follows because the maximal bad cubes are pairwise disjoint
(since ∆ is composed of half-open cubes). Recalling µ(Q0) = η, it follows that

µ(B) = µ(A)− µ(A \B) ≥ (1− εη)µ(A).

Thus, property (2) holds. Finally, since S(µ, x) ≤ N for all x ∈ A,

Nµ(A) ≥
∫
A

S(µ, x) dµ(x) ≥
∑
Q⊆Q0

diamQ
µ(A ∩Q)

µ(Q)
> εµ(A)

∑
good Q⊆Q0

diamQ,

where we interpret µ(A ∩Q)/µ(Q) = 0 if µ(Q) = 0. Because µ(A) > 0, it follows that∑
good Q⊆Q0

diamQ <
N

ε
.

This verifies property (3). �

Lemma 3.3. Let n ≥ 2 and let µ be a locally finite Borel measure on Rn. If

µ({x ∈ Q0 : S(µ, x) ≤ N}) > 0 for some Q0 ∈ ∆ and N <∞,

then for all 0 < ε < 1/µ(Q0) the set B = B(µ,Q0, N, ε) described in Lemma 3.2 lies in a
rectifiable curve Γ with H1(Γ) < N/2ε and H1(B) = 0.

Proof. Let n ≥ 2 and let µ be a locally finite Borel measure on Rn. Suppose µ(A) > 0
for some Q0 ∈ ∆ and N <∞, where A = {x ∈ Q0 : S(µ, x) ≤ N}. Then η := µ(Q0) > 0,
as well. Given any 0 < ε < 1/η, let B = B(µ,Q0, N, ε) denote the set from Lemma 3.2.
Since ε is small enough such that µ(B) ≥ (1− εη)µ(A) > 0, the cube Q0 is a good cube.
Construct a connected set T ⊂ Rn by drawing a (closed) straight line segment `Q from
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the center of each good cube Q ( Q0 to the center of its parent, which is also a good
cube. Let T denote the closure of T . For all δ > 0,

T ⊆
⋃

good Q(Q0
diamQ>δ

`Q ∪
⋃

good Q⊆Q0
diamQ≤δ

Q,

whence

H1
δ(T ) ≤

∑
good Q(Q0
diamQ>δ

diam `Q +
∑

good Q⊆Q0
diamQ≤δ

diamQ =
∑

good Q(Q0
diamQ>δ

1

2
diamQ+

∑
good Q⊆Q0
diamQ≤δ

diamQ.

Here we used the fact that any straight line segment ` can be subdivided into finitely
many line segments `′1, . . . , `

′
k such that diam `′i ≤ δ for all i and

∑k
i=1 diam `′i = diam `.

Since
∑

good Q⊆Q0
diamQ < N/ε, it follows that

H1(T ) = lim
δ↓0
H1
δ(T ) ≤ 1

2

∑
good Q(Q0

diamQ <
N

2ε
.

Now,

B ⊆ Q0 \
⋃

bad Q⊂Q0

Q

=
⋃{

∞⋂
i=0

Qi : Q0 ⊇ Q1 ⊇ · · · is a chain of good cubes, lim
i→∞

diamQi = 0

}
(3.1)

⊆
{

lim
i→∞

xi : xi ∈ `Qi
for some good cubes Q0 ⊇ Q1 ⊇ · · · , lim

i→∞
diamQi = 0

}
.(3.2)

Thus, B ⊆ T by (3.2). Moreover, refining (3.1), we obtain B ⊆
⋂∞
j=1Gj, where

Gj =
⋃{

∞⋂
i=j

Q′i : Q′j ) Q′j+1 ) · · · is a chain of good cubes, diamQ′j ≤ 2−j

}
.

Since
∑

good Q⊆Q0
diamQ <∞, we haveH1

2−j(Gj)→ 0, which impliesH1(B) = 0. Finally,

because T is a continuum in Rn withH1(T ) <∞, T coincides with the image Γ = f([0, 1])
of some Lipschitz map f : [0, 1] → Rn; e.g. see [DS93, Theorem I.1.8] or [Sch07, Lemma
3.7]. �

The proof of Theorem 3.1 uses Lemmas 3.2 and 3.3 repeatedly over a suitable, countable
choice of parameters.

Proof of Theorem 3.1. Suppose n ≥ 2 and let µ be a locally finite Borel measure on Rn.
Our goal is to show that µ {x ∈ Rn : S(µ, x) <∞} is 1-rectifiable. It suffices to prove
that µ {x ∈ Q0 : S(µ, x) ≤ N} is 1-rectifiable for all Q0 ∈ ∆ and for all integers N ≥ 1.

Fix Q0 ∈ ∆ and N ≥ 1. Let A = {x ∈ Q0 : S(µ, x) ≤ N}. If µ(A) = 0, then there
is nothing to prove. Thus, assume µ(A) > 0. Then η = µ(Q0) > 0, as well. Pick any
sequence (εi)

∞
i=1 such that 0 < εi < 1/η for all i ≥ 1 and εi → 0 as i→∞. By Lemmas 3.2
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and 3.3, there exist a Borel set Bi = B(µ,Q0, N, εi) ⊆ A and a rectifiable curve Γi ⊇ Bi

such that H1(Bi) = 0 and µ(A \Bi) ≤ εiηµ(A). Hence

µ

(
A \

∞⋃
i=1

Γi

)
≤ µ

(
A \

∞⋃
i=1

Bi

)
≤ inf

j≥1
µ(A \Bj) ≤ ηµ(A) inf

j≥1
εj = 0.

Therefore, µ A is 1-rectifiable, and moreover, µ A (Rn \
⋃∞
i=1Bi) = 0. �
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