Free Boundary Regularity for Harmonic Measure from Two Sides

Matthew Badger

University of Washington

Joint Mathematics Meetings New Orleans, Louisiana January 8, 2011

Research Partially Supported by NSF Grants DMS-0838212 and DMS-0856687

(□) (@) (E) (E) E

 \exists ! probability measure ω^X on $\partial\Omega$ called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$u(X) = \int_{\partial\Omega} f(Q) d\omega^X(Q)$$
 solves (D)

Harmonic Measure on 2-sided Domains

Let $\Omega \subset \mathbb{R}^n$ be 2-sided domain

- ω^+ harmonic measure of interior $\Omega^+=\Omega$
- ω^- harmonic measure of exterior $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$

Question: What is the relationship between ω^+ and ω^- ?

- When are ω⁺ and ω⁻ mutually absolutely continuous?
 (e.g. smooth domains, Lipschitz domains, chord arc domains)
- What conditions does $\omega^+ \ll \omega^- \ll \omega^+$ force on $\partial \Omega$?
- When is $\omega^+ \perp \omega^-$?
- What are the possible Hausdorff dimensions of ω^+ and ω^- ?

The Case n = 2: Jordan Domains

(McMillan 1969, Makarov 1985, Pommerenke 1986)
 The following are equivalent:

- $\omega^+ \ll \omega^- \ll \omega^+$
- $\partial \Omega = G \cup N$: $\omega^{\pm}(N) = 0$ and $\omega^{\pm} \sqcup G \ll \mathcal{H}^1 \sqcup G \ll \omega^{\pm} \sqcup G$ [\mathcal{H}^1 denotes 1-dimensional Hausdorff measure (i.e. length)]
- (Bishop-Carleson-Garnett-Jones 1989) $\omega^+ \perp \omega^-$ if and only if $\mathcal{H}^1(\{Q \in \partial \Omega^{\pm}: \partial \Omega^{\pm} \text{ has a unique tangent line}\}) = 0$

Dimension of Harmonic Measure

Definition: The (upper) Hausdorff dimension of harmonic measure dim $\omega = \inf \{ \dim E : E \subset \partial \Omega \text{ and } \omega(\partial \Omega \setminus E) = 0 \}$

- is the smallest dimension of a set with full harmonic measure
 - (Makarov 1985) dim $\omega = 1$ if $\Omega \subset \mathbb{R}^2$ is simply connected
 - (Wolff 1995) There are NTA domains in \mathbb{R}^3 with dim $\omega > 2$ – There are NTA domains in \mathbb{R}^3 with dim $\omega < 2$
 - (Lewis-Verchota-Vogel 2005) Reexamined Wolff's construction: For all n ≥ 3 there are 2-sided NTA domains in ℝⁿ such that
 - $\dim \omega^+ > n-1$, $\dim \omega^- > n-1$
 - dim $\omega^+ > n-1$, dim $\omega^- < n-1$
 - dim $\omega^+ < n-1$, dim $\omega^- < n-1$
 - (Kenig-Preiss-Toro 2009) If Ω is 2-sided NTA and $\omega^+ \ll \omega^- \ll \omega^+$, then dim $\omega^+ = \dim \omega^- = n 1$

Non-technical Formulation: If ω^+ and ω^- are "comparable", what does the boundary look like?

Technical Formulation: Suppose Ω^+ and Ω^- are NTA domains, $\omega^+ \ll \omega \ll \omega^-$ and log $f \in C(\partial \Omega)$ where

$$f(Q) = \frac{d\omega^-}{d\omega^+}(Q) = \lim_{r\downarrow 0} \frac{\omega^-(B(Q,r))}{\omega^+(B(Q,r))}.$$

Describe blow-ups of the boundary in the Hausdorff distance.

$$Q \in \partial \Omega, \ \lim_{i \to \infty} r_i \to 0$$
$$\lim_{i \to \infty} \frac{\partial \Omega - Q}{r_i} = \boxed{?}$$

Blow-ups of the Boundary are Homogeneous

Structure Theorem (B) Assume $\Omega \subset \mathbb{R}^n$ is 2-sided NTA, $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$.

There exists $d \ge 1$ (depending on the NTA constants) such that

$$\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d.$$

- **1** Every blow-up of $\partial\Omega$ about a point $Q \in \Gamma_k$ is the zero set $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.
- **2** The "flat points" Γ_1 is an open subset of $\partial \Omega$.
- **3** The "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.

Flat Points $Q \in \Gamma_1$

Figure: $h^{-1}(0)$ when *h* homogeneous harmonic polynomial of degree 1, i.e. a plane through the origin

Remarks

- $\Gamma_1 \subset \partial \Omega$ is open and $\omega^{\pm}(\partial \Omega \setminus \Gamma_1) = 0$.
- At $Q \in \Gamma_1$ one can see different planes as $\lim_{i\to\infty} \frac{\partial \Omega Q}{r_i}$ along different sequences of scales $r_i \downarrow 0$.
- In dimension n = 2, $\partial \Omega = \Gamma_1$ and $\partial \Omega$ is Reifenberg flat with vanishing constant.

Singularities $Q \in \Gamma_2 \cup \cdots \cup \Gamma_d$

Figure: $h^{-1}(0)$ where $h(x, y, z) = x^2(y-z) + y^2(x-z) + z^2(x-y) - xyz$ is an example blow-up of $\partial\Omega$ about $Q \in \Gamma_3$, $\Omega \subset \mathbb{R}^3$.

Remarks

- $\Gamma_2 \cup \cdots \cup \Gamma_d \subset \partial \Omega$ is closed and $\omega^{\pm}(\Gamma_2 \cup \cdots \cup \Gamma_d) = 0$.
- Examples shows that $\dim(\Gamma_2 \cup \cdots \cup \Gamma_d) = n 3$ is possible. Upper bound is unknown.
- In dimension n = 3, $\partial \Omega = \Gamma_1 \cup \Gamma_3 \cup \Gamma_5 \cup \cdots \cup \Gamma_{2k+1}$.

(Lewy 1977

Initial Observations: (Kenig-Toro 2006)

- On NTA domain: Blow-ups of the Boundary ←→ Tangent Measures of Harmonic Measure
 Under the hypothesis ω⁺ ≪ ω⁻ ≪ ω⁺ and log dω⁻/dω⁺ ∈ C(∂Ω),
 - tangent measures of ω^\pm are "polynomial harmonic measures".

GMT Tools: (Preiss 1987, Kenig-Preiss-Toro 2009)

• Under certain conditions, the cone of tangent measures $Tan(\mu, x)$ of a measure μ at $x \in spt x$ is connected.

If ω_h is a polynomial harmonic measure associated to a **homogeneous** harmonic polynomial of degree d, then

$$\frac{\omega_h(B(0,2r))}{\omega_h(B(0,r))} = 2^{n+d-2} \quad \text{for all } r > 0.$$

Key Estimate: (B)

If ω_h is a polynomial harmonic measure associated to any harmonic polynomial of degree d, then for all τ > 1

$$rac{\omega_h(B(0, au r))}{\omega_h(B(0,r))}\sim au^{n+d-2} \quad ext{as } r
ightarrow\infty \qquad (\star)$$

where the implied constant in (\star) only depend on *n* and *d*.

Structure Theorem

$$\omega^+ \ll \omega^- \ll \omega^+$$
, $\log \frac{d\omega^-}{d\omega^+} \in \mathcal{C}(\partial\Omega) \Rightarrow \boxed{\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d}$

Remarks

The theorem only requires $\log \frac{d\omega^-}{d\omega^+} \in VMO(d\omega^-)$, the space of functions of vanishing mean oscillation.

If $\Omega \subset \mathbb{R}^n$ is 2-sided NTA and $\omega^+ \ll \omega^- \ll \omega^+$, then $\partial \Omega = \Gamma_1 \cup \cdots \cup \Gamma_d \cup N$ where Γ_k is as above and $\omega^{\pm}(N) = 0$.

Structure Theorem

$$\omega^+ \ll \omega^- \ll \omega^+$$
, $\log \frac{d\omega^-}{d\omega^+} \in \mathcal{C}(\partial\Omega) \Rightarrow \boxed{\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d}$

Open Questions

1 Can we write $\Gamma_1 = G \cup N$ where • G is (n-1)-rectifiable and $\omega^{\pm} \ll \mathcal{H}^{n-1} \ll \omega^{\pm}$ on G • $\omega^{\pm}(N) = 0$

[The answer is yes if $\omega^+ \ll \omega^- \ll \omega^+$ and $\mathcal{H}^{n-1}(\partial\Omega) < \infty$]

2 Is dim
$$\Gamma_k < n-1$$
 for $k \ge 2$?

3 Can we relax the NTA assumptions? Is there a version of the theorem on semi-uniform John domains?