Multiscale Analysis of 1-Rectifiable Measures

Matthew Badger Joint work with Raanan Schul

Department of Mathematics Stony Brook University

October 6, 2013

AMS Southeastern Sectional Meeting - Louisville, Kentucky

Special Session on Harmonic Analysis and PDE

Research Partially Supported by an NSF Postdoctoral Fellowship DMS 12-03497

□ ▶ 《母 ▶ 《母 ▶ 《母 ▶ 《 母 ● ⑦ � ④

Part | Rectifiable Measures

Part II L^2 Beta Numbers and Jones Functions

Part III New Results

General Definition

Let μ be a Borel measure on \mathbb{R}^n and let $1 \leq m \leq n-1$. We say that μ is *m*-rectifiable if there exist countably many

• Lipschitz maps $f_i : [0,1]^m \to \mathbb{R}^n$

such that

$$\mu\left(\mathbb{R}^n\setminus \bigcup_i f_i([0,1]^m)\right)=0.$$

(Federer's terminology: \mathbb{R}^n is countably (μ, m) -rectifiable.)

Examples

- rectifiable curves/surfaces: $\mathcal{H}^m \sqcup f([0,1]^m)$,
- ▶ (countably) rectifiable sets: $\sum_i \mathcal{H}^m \sqcup E_i$, $E_i \subset f_i([0,1]^m)$

• Dirac mass δ_x at $x \in \mathbb{R}^n$

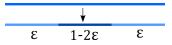
Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \ge 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

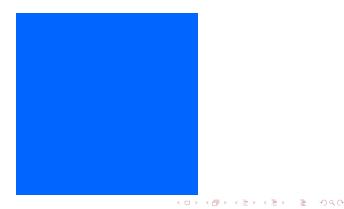
Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \ge 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

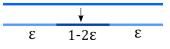


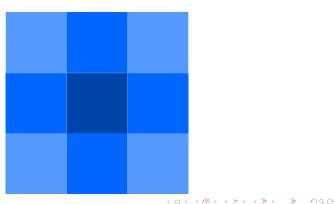
▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → の へ ()

Theorem (Garnett-Killip-Schul 2010)

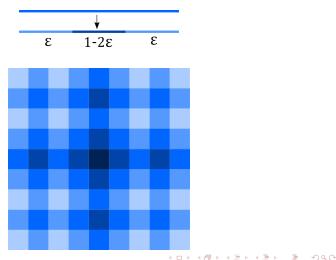


Theorem (Garnett-Killip-Schul 2010)

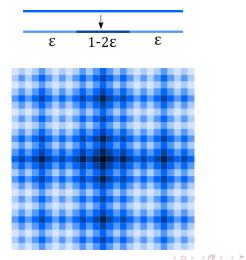




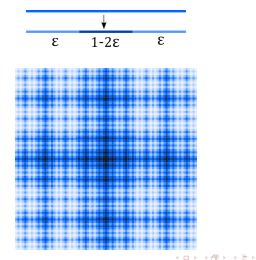
Theorem (Garnett-Killip-Schul 2010)



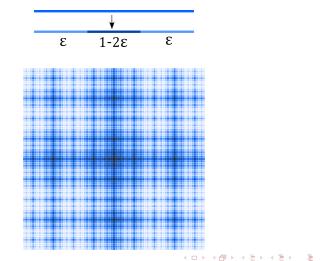
Theorem (Garnett-Killip-Schul 2010)



Theorem (Garnett-Killip-Schul 2010)



Theorem (Garnett-Killip-Schul 2010)



Grades of Rectifiable Measures

$\{ m$ -rectifiable measures μ on $\mathbb{R}^n \}$

U١

 $\{ m$ -rectifiable measures μ on \mathbb{R}^n such that $\mu \ll \mathcal{H}^m \}$

U١

 $\{ m \text{-rectifiable measures } \mu \text{ on } \mathbb{R}^n \text{ of the form } \mu = \mathcal{H}^m \sqcup E \}$

Absolutely Continuous Rectifiable Measures

The lower and upper (Hausdorff) *m*-density of a measure μ at *x*:

$$\underline{D}^m(\mu, x) = \liminf_{r \downarrow 0} \frac{\mu(B(x, r))}{c_m r^m} \quad \overline{D}^m(\mu, x) = \limsup_{r \downarrow 0} \frac{\mu(B(x, r))}{c_m r^m}.$$

Write $D^m(\mu, x)$, the *m*-density of μ at *x*, if $\underline{D}^m(\mu, x) = \overline{D}^m(\mu, x)$.

Theorem (Mattila 1975)

Suppose that $E \subset \mathbb{R}^n$ is Borel and $\mu = \mathcal{H}^m \sqcup E$ is locally finite. Then μ is m-rectifiable if and only if $D^m(\mu, x) = 1$ μ -a.e.

Theorem (Preiss 1987)

Suppose that μ is a locally finite Borel measure on \mathbb{R}^n . Then μ is m-rectifiable and $\mu \ll \mathcal{H}^m$ if and only if $0 < D^m(\mu, x) < \infty \mu$ -a.e.

There are additional characterizations (tangent measures, etc.)

General Rectifiable Measures

Problem

For all $1 \le m \le n-1$, find necessary and sufficient conditions for a locally finite Borel measure μ on \mathbb{R}^n to be m-rectifiable.

• Do not assume $\mu \ll \mathcal{H}^m$.

Theorem (B-Schul)

Necessary condition for the case m = 1 and $n \ge 2$:

If μ is 1-rectifiable, then at μ -almost every $x \in \mathbb{R}^n$,

• $\mu \sqcup B(x, r)$ concentrates mass around a line $\ell_{x,r}$ as $r \to 0$; or

• the density $\mu(B(x,r))/r \to \infty$ sufficiently fast as $r \to 0$.

Part I Rectifiable Measures

Part II L² Beta Numbers and Jones Functions

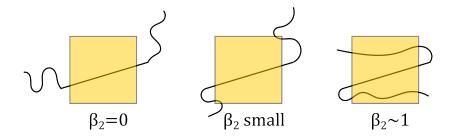
Part III New Results

L² Beta Numbers

Let μ be a locally finite Borel measure on \mathbb{R}^n and $Q \subset \mathbb{R}^n$ a cube. Define the L^2 beta number $\beta_2^2(\mu, Q) \in [0, 1]$ by

$$\beta_2^2(\mu, Q) = \inf_{\ell} \int_Q \left(\frac{\operatorname{dist}(x, \ell)}{\operatorname{diam} Q} \right)^2 \frac{d\mu(x)}{\mu(Q)}$$

where the infimum runs over all lines ℓ in \mathbb{R}^n .



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

L^2 Jones Functions

A collection $\{w(\mu, Q)\}$ of weights \rightsquigarrow weighted L^2 Jones function:

$$J^w_2(\mu,r,x) = \sum_{\substack{ ext{side } Q \leq r \ Q ext{ dyadic}}} eta_2^2(\mu,3Q) w(\mu,Q) \chi_Q(x).$$

Two Special Cases

 $w(\mu, Q) \equiv 1 \rightsquigarrow \text{ ordinary } L^2 \text{ Jones function}$ $J_2(\mu, r, x) = \sum_{\substack{\text{side } Q \leq r \\ Q \text{ dyadic}}} \beta_2^2(\mu, 3Q) \chi_Q(x).$

 $w(\mu, Q) \equiv \left(\frac{\mu(Q)}{\operatorname{diam} Q}\right)^{-1} \rightsquigarrow \text{density-normalized } L^2 \text{ Jones function}$ $\widetilde{J}_2(\mu, r, x) = \sum_{\substack{\text{side } Q \leq r \\ Q \text{ dyadic}}} \beta_2^2(\mu, 3Q) \frac{\operatorname{diam} Q}{\mu(Q)} \chi_Q(x).$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Ordinary Jones Function and Rectifiable Sets

A Borel measure μ on \mathbb{R}^n is *m*-Ahlfors regular if $\mu(B(x, r)) \sim r^m$ for all x in the support of μ and for all $0 < r < r_0(\mu)$.

Theorem (David-Semmes 1991)

Suppose $E \subset \mathbb{R}^n$ is closed and $\mu = \mathcal{H}^m \sqcup E$ is m-AR. Then μ is uniformly m-rectifiable if and only if

$$\int_{B(x_0,r)} J_2(\mu,r,x) d\mu(x) \lesssim r^m \quad \text{for all } x_0 \in E, \ 0 < r < \text{diam } E.$$

Theorem (Pajot 1997)

Suppose $K \subset \mathbb{R}^n$ is compact and $\mu = \mathcal{H}^m \sqcup K$.

Suppose μ is m-AR. Then μ is m-rectifiable if and only if J₂(μ, x) < ∞ μ-a.e.</p>

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

► Suppose $\mathcal{H}^m(K) < \infty$. Then μ is m-rectifiable if both $\underline{D}^m(\mu, x) > 0$ and $J_2(\mu, x) < \infty$ μ -a.e.

Part I Rectifiable Measures

Part II L^2 Beta Numbers and Jones Functions

Part III New Results

Necessary Conditions for 1-Rectifiable Measures

Theorem (B-Schul)

Let μ be a locally finite Borel measure on \mathbb{R}^n .

• If μ is 1-rectifiable, then

$$\widetilde{J}_2(\mu,x) = \sum_{\substack{ ext{side } Q \leq 1 \ Q ext{ dyadic}}} eta_2^2(\mu, 3Q) rac{ ext{diam } Q}{\mu(Q)} \chi_Q(x) < \infty \quad \mu ext{-a.e.}$$

• If μ is 1-rectifiable and $\mu \ll \mathcal{H}^1$, then

$$J_2(\mu,x) = \sum_{\substack{ ext{side } Q \leq 1 \ Q ext{ dyadic}}} eta_2^2(\mu, 3Q) \chi_Q(x) < \infty \quad \mu ext{-a.e.}$$

Corollary (B-Schul + Pajot 1997) Suppose $K \subset \mathbb{R}^n$ is compact and $\mathcal{H}^1(K) < \infty$. Then $\mu = \mathcal{H}^1 \sqcup K$ 1-rectifiable if and only if $\underline{D}^1(\mu, x) > 0$ and $J_2(\mu, x) < \infty \mu$ -a.e.

くして 山田 ふかく 山下 ふきゃくしゃ

Heart of the Theorem

Proposition (B-Schul)

Suppose $\nu(\mathbb{R}^n) < \infty$, $\Gamma \subset \mathbb{R}^n$ is a rectifiable curve, $E \subset \Gamma$ is Borel and $\nu(E \cap B(x, r)) \ge cr$ for all $x \in E$ and $0 < r \le r_0$. Then

$$\int_{E} \widetilde{J}_{2}(\nu, r_{0}, x) d\nu(x) \lesssim_{n,c} \mathcal{H}^{1}(\Gamma) + \nu(\mathbb{R}^{n} \setminus \Gamma).$$

$$\int_{E} \widetilde{J}_{2}(\nu, r_{0}, x) d\nu(x) = \sum_{\substack{\text{side } Q \leq r_{0} \\ Q \text{ dyadic}}} \beta_{2}^{2}(\nu, 3Q) \operatorname{diam} Q \frac{\nu(E \cap Q)}{\nu(Q)}$$

- ▶ Dyadic cubes Q with $\nu(E \cap Q) > 0 \rightsquigarrow$ two classes: $\{\beta_2^2(\nu, 3Q) \leq \beta_{\Gamma}(3Q)\}$ and $\{\beta_{\Gamma}(3Q) \ll \beta_2^2(\nu, 3Q)\}$
- Sum over first class ≤_n H¹(Γ): Traveling Salesman Theorem for Rectifiable Curves (Jones 1990 in ℝ², Okikiolu 1992 in ℝⁿ)
- Sum over second class $\leq_{n,c} \nu(\mathbb{R}^n \setminus \Gamma)$: New Estimate!

Future Directions

Problem

For all $1 \le m \le n-1$, find necessary and sufficient conditions for a locally finite Borel measure μ on \mathbb{R}^n to be m-rectifiable.

• Do not assume $\mu \ll \mathcal{H}^m$.

Necessary Conditions

- If μ is *m*-rectifiable, then $\underline{D}^m(\mu, x) > 0$ μ -a.e.
- If μ is 1-rectifiable, then $\widetilde{J}_2(\mu, x) < \infty$ μ -a.e. (B-Schul)
- What happens for *m*-rectifiable measures, $m \ge 2$?

Sufficient Conditions

- If $\underline{D}^1(\mu, x) > 0$ and $\widetilde{J}_2(\mu, x) < \infty \mu$ -a.e., is μ 1-rectifiable?
- ▶ Same ? is open for $\mu \ll \mathcal{H}^1$ (but settled for $\mu = \mathcal{H}^1 \sqcup K$).