Quasiconformal Planes and Bi-Lipschitz Parameterizations

Joint work with Jonas Azzam James T. Gill **Steffen Rohde Tatiana Toro**

Matthew Badger

University of Connecticut

October 24, 2014

October 23 – 26, 2014

Research partially supported by NSF DMS 0838212 a[nd N](#page-0-0)[SF](#page-1-0) [DMS 1](#page-0-0)[20](#page-1-0)[3497](#page-0-0).

 $f:\Omega\stackrel{\sim}{\to}\Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f\in W_{loc}^{1,n}(\Omega)$

If $Df(x)$ exists and has singular values $\lambda_1(x) \leq \cdots \leq \lambda_n(x)$, then $K_f(x) = \max \left(\frac{\lambda_n(x)}{\lambda_n(x)} \right)$ $\lambda_1(x)$ $\lambda_n(x)$ $\frac{\lambda_n(x)}{\lambda_2(x)} \cdots \frac{\lambda_n(x)}{\lambda_n(x)}$ $\frac{\lambda_n(x)}{\lambda_n(x)}, \frac{\lambda_1(x)}{\lambda_1(x)}$ $\lambda_1(x)$ $\lambda_2(x)$ $\frac{\lambda_2(x)}{\lambda_1(x)} \cdots \frac{\lambda_n(x)}{\lambda_1(x)}$ $\lambda_1(x)$ \setminus

The maximal dilatation (local distortion)

 $\mathcal{K}_f(\Omega)=\operatorname{\mathsf{ess\,sup}}\mathcal{K}_f(x)\in[1,\infty]$ x∈Ω

The weak quasisymmetry constant (global distortion)

$$
H_f(\Omega) = \max\left\{\frac{|f(y) - f(x)|}{|f(z) - f(x)|} : x, y, z \in \Omega, \frac{|y - x|}{|z - x|} \le 1\right\} \in [1, \infty]
$$

 $f:\Omega\stackrel{\sim}{\to}\Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f\in W_{loc}^{1,n}(\Omega)$

If $Df(x)$ exists and has singular values $\lambda_1(x) \leq \cdots \leq \lambda_n(x)$, then $K_f(x) = \max \left(\frac{\lambda_n(x)}{\lambda_n(x)} \right)$ $\lambda_1(x)$ $\lambda_n(x)$ $\frac{\lambda_n(x)}{\lambda_2(x)} \cdots \frac{\lambda_n(x)}{\lambda_n(x)}$ $\frac{\lambda_n(x)}{\lambda_n(x)}, \frac{\lambda_1(x)}{\lambda_1(x)}$ $\lambda_1(x)$ $\lambda_2(x)$ $\frac{\lambda_2(x)}{\lambda_1(x)} \cdots \frac{\lambda_n(x)}{\lambda_1(x)}$ $\lambda_1(x)$ \setminus

The maximal dilatation (local distortion)

 $\mathcal{K}_f(\Omega)=\operatorname{\mathsf{ess\,sup}}\mathcal{K}_f(x)\in[1,\infty]$ x∈Ω

The weak quasisymmetry constant (global distortion)

$$
H_f(\Omega) = \max\left\{ \frac{|f(y) - f(x)|}{|f(z) - f(x)|} : x, y, z \in \Omega, \frac{|y - x|}{|z - x|} \le 1 \right\} \in [1, \infty]
$$

 $f:\Omega\stackrel{\sim}{\to}\Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f\in W_{loc}^{1,n}(\Omega)$

If $Df(x)$ exists and has singular values $\lambda_1(x) \leq \cdots \leq \lambda_n(x)$, then $K_f(x) = \max \left(\frac{\lambda_n(x)}{\lambda_n(x)} \right)$ $\lambda_1(x)$ $\lambda_n(x)$ $\frac{\lambda_n(x)}{\lambda_2(x)} \cdots \frac{\lambda_n(x)}{\lambda_n(x)}$ $\frac{\lambda_n(x)}{\lambda_n(x)}, \frac{\lambda_1(x)}{\lambda_1(x)}$ $\lambda_1(x)$ $\lambda_2(x)$ $\frac{\lambda_2(x)}{\lambda_1(x)} \cdots \frac{\lambda_n(x)}{\lambda_1(x)}$ $\lambda_1(x)$ \setminus

The maximal dilatation (local distortion)

$$
K_f(\Omega)=\operatornamewithlimits{ess\,sup}_{x\in\Omega}K_f(x)\in[1,\infty]
$$

The weak quasisymmetry constant (global distortion)

$$
H_f(\Omega) = \max\left\{ \frac{|f(y) - f(x)|}{|f(z) - f(x)|} : x, y, z \in \Omega, \frac{|y - x|}{|z - x|} \le 1 \right\} \in [1, \infty]
$$

 $f:\Omega\stackrel{\sim}{\to}\Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f\in W_{loc}^{1,n}(\Omega)$

If $Df(x)$ exists and has singular values $\lambda_1(x) \leq \cdots \leq \lambda_n(x)$, then $K_f(x) = \max \left(\frac{\lambda_n(x)}{\lambda_n(x)} \right)$ $\lambda_1(x)$ $\lambda_n(x)$ $\frac{\lambda_n(x)}{\lambda_2(x)} \cdots \frac{\lambda_n(x)}{\lambda_n(x)}$ $\frac{\lambda_n(x)}{\lambda_n(x)}, \frac{\lambda_1(x)}{\lambda_1(x)}$ $\lambda_1(x)$ $\lambda_2(x)$ $\frac{\lambda_2(x)}{\lambda_1(x)} \cdots \frac{\lambda_n(x)}{\lambda_1(x)}$ $\lambda_1(x)$ \setminus

The maximal dilatation (local distortion)

$$
\mathcal{K}_f(\Omega)=\operatornamewithlimits{ess\,sup}_{x\in\Omega}\mathcal{K}_f(x)\in[1,\infty]
$$

The weak quasisymmetry constant (global distortion)

$$
H_f(\Omega) = \max \left\{ \frac{|f(y) - f(x)|}{|f(z) - f(x)|} : x, y, z \in \Omega, \frac{|y - x|}{|z - x|} \leq 1 \right\} \in [1, \infty]
$$

[Quasiplanes and Bi-Lipschitz Paramaterizations](#page-0-0) – Matthew Badger – University of Connecticut 1 / 14

 \curvearrowright

 $f:\Omega\stackrel{\sim}{\to}\Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f\in W_{loc}^{1,n}(\Omega)$

For all $n \geq 2$ and all domains $\Omega \subset \mathbb{R}^n$, $K_f(\Omega) \leq H_f(\Omega)^{n-1}$

When $n \geq 2$ and $\Omega = \mathbb{R}^n$, $H_f(\mathbb{R}^n) - 1 \leq \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for $\Phi_2(t)$ — Lehto, Virtanen, Väisälä 1959. $\phi_n(0) = 0$ ($n \ge 3$) — Vuorinen 1989.

When $n \geq 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$
\Phi_2(K-1) \le C_2(K-1) \quad (n=2)
$$

$$
\Phi_n(K-1) \le C_n(K-1) \log \left(\frac{1}{K-1}\right) \quad (n \ge 3)
$$

■ Estimate ($n \geq 3$) by Seittenranta 1996 (cf. Prause 2007) It is not known if the logarithm term is [ne](#page-4-0)[ce](#page-6-0)[s](#page-5-0)s[ar](#page-10-0)[y](#page-11-0)[.](#page-0-0)

 $f:\Omega\stackrel{\sim}{\to}\Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f\in W_{loc}^{1,n}(\Omega)$

For all $n \geq 2$ and all domains $\Omega \subset \mathbb{R}^n$, $K_f(\Omega) \leq H_f(\Omega)^{n-1}$

When $n \geq 2$ and $\Omega = \mathbb{R}^n$, $H_f(\mathbb{R}^n) - 1 \leq \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for $\Phi_2(t)$ — Lehto, Virtanen, Väisälä 1959. $\phi_n(0) = 0$ ($n \ge 3$) — Vuorinen 1989.

When $n \geq 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$
\Phi_2(K-1) \le C_2(K-1) \quad (n=2)
$$

$$
\Phi_n(K-1) \le C_n(K-1) \log \left(\frac{1}{K-1}\right) \quad (n \ge 3)
$$

■ Estimate ($n \geq 3$) by Seittenranta 1996 (cf. Prause 2007) It is <u>not</u> known if the logarithm term is [ne](#page-5-0)[ce](#page-7-0)[s](#page-5-0)s[ar](#page-10-0)[y](#page-11-0)[.](#page-0-0)

 $f:\Omega\stackrel{\sim}{\to}\Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f\in W_{loc}^{1,n}(\Omega)$

For all $n \geq 2$ and all domains $\Omega \subset \mathbb{R}^n$, $K_f(\Omega) \leq H_f(\Omega)^{n-1}$

When $n \geq 2$ and $\Omega = \mathbb{R}^n$, $H_f(\mathbb{R}^n) - 1 \leq \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for $\Phi_2(t)$ — Lehto, Virtanen, Väisälä 1959. $\phi_n(0) = 0$ ($n \ge 3$) — Vuorinen 1989.

When $n \geq 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$
\Phi_2(K-1) \le C_2(K-1) \quad (n=2)
$$

$$
\Phi_n(K-1) \le C_n(K-1) \log \left(\frac{1}{K-1}\right) \quad (n \ge 3)
$$

■ Estimate ($n \geq 3$) by Seittenranta 1996 (cf. Prause 2007) It is not known if the logarithm term is [ne](#page-6-0)[ce](#page-8-0)[s](#page-5-0)s[ar](#page-10-0)[y](#page-11-0)[.](#page-0-0)

 $f:\Omega\stackrel{\sim}{\to}\Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f\in W_{loc}^{1,n}(\Omega)$

For all $n \geq 2$ and all domains $\Omega \subset \mathbb{R}^n$, $K_f(\Omega) \leq H_f(\Omega)^{n-1}$

When $n \geq 2$ and $\Omega = \mathbb{R}^n$, $H_f(\mathbb{R}^n) - 1 \leq \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for $\Phi_2(t)$ — Lehto, Virtanen, Väisälä 1959. \bullet _n(0) = 0 (n \geq 3) — Vuorinen 1989.

When $n \geq 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$
\Phi_2(K-1) \le C_2(K-1) \quad (n=2)
$$

$$
\Phi_n(K-1) \le C_n(K-1) \log \left(\frac{1}{K-1}\right) \quad (n \ge 3)
$$

■ Estimate ($n \geq 3$) by Seittenranta 1996 (cf. Prause 2007) It is not known if the logarithm term is [ne](#page-7-0)[ce](#page-9-0)[s](#page-5-0)s[ar](#page-10-0)[y](#page-11-0)[.](#page-0-0)

 $f:\Omega\stackrel{\sim}{\to}\Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f\in W_{loc}^{1,n}(\Omega)$

For all $n \geq 2$ and all domains $\Omega \subset \mathbb{R}^n$, $K_f(\Omega) \leq H_f(\Omega)^{n-1}$

When $n \geq 2$ and $\Omega = \mathbb{R}^n$, $H_f(\mathbb{R}^n) - 1 \leq \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for $\Phi_2(t)$ — Lehto, Virtanen, Väisälä 1959. \bullet _n(0) = 0 (n \geq 3) — Vuorinen 1989.

When $n \geq 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$
\Phi_2(K-1) \leq C_2(K-1) \quad (n=2)
$$

$$
\Phi_n(K-1) \leq C_n(K-1) \log \left(\frac{1}{K-1} \right) \quad (n \geq 3)
$$

■ Estimate ($n \geq 3$) by Seittenranta 1996 (cf. Prause 2007) It is not known if the logarithm term is [ne](#page-8-0)[ce](#page-10-0)[s](#page-5-0)s[ar](#page-10-0)[y](#page-11-0)[.](#page-0-0)

 $f:\Omega\stackrel{\sim}{\to}\Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f\in W_{loc}^{1,n}(\Omega)$

For all $n \geq 2$ and all domains $\Omega \subset \mathbb{R}^n$, $K_f(\Omega) \leq H_f(\Omega)^{n-1}$

When $n \geq 2$ and $\Omega = \mathbb{R}^n$, $H_f(\mathbb{R}^n) - 1 \leq \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for $\Phi_2(t)$ — Lehto, Virtanen, Väisälä 1959. \bullet $\phi_n(0) = 0$ ($n \geq 3$) — Vuorinen 1989.

When $n \geq 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$
\Phi_2(K-1) \leq C_2(K-1) \quad (n=2)
$$

$$
\Phi_n(K-1) \leq C_n(K-1) \log \left(\frac{1}{K-1} \right) \quad (n \geq 3)
$$

■ Estimate ($n \geq 3$) by Seittenranta 1996 (cf. Prause 2007) It is <u>not</u> known if the logarithm term is [ne](#page-9-0)[ce](#page-11-0)[s](#page-5-0)s[ar](#page-10-0)[y](#page-11-0)[.](#page-0-0)

Estimate for $H_f(B(z, s))$ when $K_f(B(z, Rs))$ is near 1

 $f:\mathbb{R}^n\stackrel{\sim}{\to}\mathbb{R}^n$ a homeomorphism of \mathbb{R}^n and $f\in W^{1,n}_{loc}(\mathbb{R}^n)$

Theorem (B., Gill, Rohde, Toro 2012) Given $n \geq 2$ and $1 < K \leq \min\{4/3, K'\}$, set

$$
R = \left(\frac{c}{K-1}\right)^{c/(K-1)} > 1,
$$

where $c > 1$ is a constant that only depends on n and K'. If $K_f(\mathbb{R}^n) \leq K'$ and $K_f(B(z, Rs)) \leq K$, then

$$
H_f(B(z,s))-1\leq C(K-1)\log\left(\frac{1}{K-1}\right),
$$

where $C > 1$ is an absolute constant.

Proof uses geometric definition of quasiconformal maps and modulus estimates. **KORK ER KERKER KORA**

Estimate for $H_f(B(z, s))$ when $K_f(B(z, Rs))$ is near 1

 $f:\mathbb{R}^n\stackrel{\sim}{\to}\mathbb{R}^n$ a homeomorphism of \mathbb{R}^n and $f\in W^{1,n}_{loc}(\mathbb{R}^n)$

Theorem (B., Gill, Rohde, Toro 2012) Given $n \geq 2$ and $1 < K \leq \min\{4/3, K'\}$, set

$$
R = \left(\frac{c}{K-1}\right)^{c/(K-1)} > 1,
$$

where $c > 1$ is a constant that only depends on n and K'. If $K_f(\mathbb{R}^n) \leq K'$ and $K_f(B(z, Rs)) \leq K$, then

$$
H_f(B(z,s))-1\leq C(K-1)\log\left(\frac{1}{K-1}\right),
$$

where $C > 1$ is an absolute constant.

Proof uses geometric definition of quasiconformal maps and modulus estimates. **KORK ER KERKER KORA**

A map $f:\mathbb{R}^n\stackrel{\sim}{\to}\mathbb{R}^n$ is K-<mark>quasiconformal</mark> if • f is a homeomorphism, • $f \in W^{1,n}(\mathbb{R}^n)$, • $K_f(\mathbb{R}^n) \leq K$.

A quasiplane $\Sigma=f(\mathbb{R}^m)$ is image of \mathbb{R}^m under QC map of \mathbb{R}^n $(1 \le m \le n-1)$. The **codimension** of Σ is $n-m$.

Examples:

General Question: What is the relationship between the distortion of f near \mathbb{R}^m and the geometry of the quasiplane $\Sigma = f(\mathbb{R}^m)$?

[Quasiplanes and Bi-Lipschitz Paramaterizations](#page-0-0) – Matthew Badger – University of Connecticut 4 / 14

イロト イ押ト イヨト イヨト

A map $f:\mathbb{R}^n\stackrel{\sim}{\to}\mathbb{R}^n$ is K-<mark>quasiconformal</mark> if • f is a homeomorphism, • $f \in W^{1,n}(\mathbb{R}^n)$, • $K_f(\mathbb{R}^n) \leq K$. A quasiplane $\Sigma = f(\mathbb{R}^m)$ is image of \mathbb{R}^m under QC map of \mathbb{R}^n $(1 \le m \le n-1)$. The codimension of Σ is $n-m$.

Examples:

General Question: What is the relationship between the distortion of f near \mathbb{R}^m and the geometry of the quasiplane $\Sigma = f(\mathbb{R}^m)$?

[Quasiplanes and Bi-Lipschitz Paramaterizations](#page-0-0) – Matthew Badger – University of Connecticut 4 / 14

K ロ ▶ | K 母 ▶ | K ヨ ▶ | K ヨ ▶ |

A map $f:\mathbb{R}^n\stackrel{\sim}{\to}\mathbb{R}^n$ is K-<mark>quasiconformal</mark> if • f is a homeomorphism, • $f \in W^{1,n}(\mathbb{R}^n)$, • $K_f(\mathbb{R}^n) \leq K$. A quasiplane $\Sigma = f(\mathbb{R}^m)$ is image of \mathbb{R}^m under QC map of \mathbb{R}^n

 $(1 \le m \le n-1)$. The **codimension** of Σ is $n-m$.

Examples:

General Question: What is the relationship between the distortion of f near \mathbb{R}^m and the geometry of the quasiplane $\Sigma = f(\mathbb{R}^m)$?

[Quasiplanes and Bi-Lipschitz Paramaterizations](#page-0-0) – Matthew Badger – University of Connecticut 4 / 14

K ロ ▶ | K 母 ▶ | K ヨ ▶ | K ヨ ▶ |

A map $f:\mathbb{R}^n\stackrel{\sim}{\to}\mathbb{R}^n$ is K-<mark>quasiconformal</mark> if • f is a homeomorphism, • $f \in W^{1,n}(\mathbb{R}^n)$, • $K_f(\mathbb{R}^n) \leq K$.

A quasiplane $\Sigma = f(\mathbb{R}^m)$ is image of \mathbb{R}^m under QC map of \mathbb{R}^n $(1 \le m \le n-1)$. The **codimension** of Σ is $n-m$.

Examples:

General Question: What is the relationship between the distortion of f near \mathbb{R}^m and the geometry of the quasiplane $\Sigma = f(\mathbb{R}^m)$?

[Quasiplanes and Bi-Lipschitz Paramaterizations](#page-0-0) – Matthew Badger – University of Connecticut 4 / 14

イロト イ押ト イヨト イヨト

A map $f:\mathbb{R}^n\stackrel{\sim}{\to}\mathbb{R}^n$ is K-<mark>quasiconformal</mark> if • f is a homeomorphism, • $f \in W^{1,n}(\mathbb{R}^n)$, • $K_f(\mathbb{R}^n) \leq K$. A quasiplane $\Sigma = f(\mathbb{R}^m)$ is image of \mathbb{R}^m under QC map of \mathbb{R}^n

 $(1 \le m \le n-1)$. The **codimension** of Σ is $n-m$.

Examples:

General Question: What is the relationship between the distortion of f near \mathbb{R}^m and the geometry of the quasiplane $\Sigma = f(\mathbb{R}^m)$?

イロト イ押 トイラ トイラト

How is the geometry of $\Sigma = f(\mathbb{R}^m)$ controlled by the distortion of the map f near \mathbb{R}^m ?

Let A_t be tubular neighborhood of \mathbb{R}^m of size t.

KOD KARD KED KED E VOOR

- If $K_f(\mathbb{R}^n) = 1$, then $f(\mathbb{R}^m)$ is an *m*-plane
- If $f(\mathbb{R}^m)$ is asymptotically conformal, then $\dim_H f(\mathbb{R}^m) = m$
- There exist asymptotical conformal $f(\mathbb{R}^m)$ such that $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally infinite (e.g. "flat snowflakes")
- The issue is $K_f(A_t)$ can converge to 1 very slowly as $t \to 0!$

How is the geometry of $\Sigma = f(\mathbb{R}^m)$ controlled by the distortion of the map f near \mathbb{R}^m ?

Let A_t be tubular neighborhood of \mathbb{R}^m of size t.

KOD KARD KED KED E VOOR

- If $K_f(\mathbb{R}^n) = 1$, then $f(\mathbb{R}^m)$ is an m-plane
- If $f(\mathbb{R}^m)$ is asymptotically conformal, then $\dim_H f(\mathbb{R}^m) = m$
- There exist asymptotical conformal $f(\mathbb{R}^m)$ such that $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally infinite (e.g. "flat snowflakes")
- The issue is $K_f(A_t)$ can converge to 1 very slowly as $t \to 0!$

How is the geometry of $\Sigma = f(\mathbb{R}^m)$ controlled by the distortion of the map f near \mathbb{R}^m ?

Let A_t be tubular neighborhood of \mathbb{R}^m of size t.

KOD KARD KED KED E VOOR

- If $K_f(\mathbb{R}^n) = 1$, then $f(\mathbb{R}^m)$ is an m-plane
- If $f(\mathbb{R}^m)$ is asymptotically conformal, then $\dim_H f(\mathbb{R}^m) = m$
- There exist asymptotical conformal $f(\mathbb{R}^m)$ such that $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally infinite (e.g. "flat snowflakes")
- The issue is $K_f(A_t)$ can converge to 1 very slowly as $t \to 0!$

How is the geometry of $\Sigma = f(\mathbb{R}^m)$ controlled by the distortion of the map f near \mathbb{R}^m ?

 A_{t} X $Bⁿ(x,t)$ $B^{m}(x,t)$

KOD KARD KED KED E VOOR

Let A_t be tubular neighborhood of \mathbb{R}^m of size t.

 $\Sigma = f(\mathbb{R}^m)$ is asymptotically conformal if $\mathcal{K}_f(\mathcal{A}_t) \to 1$ as $t \to 0.$

- If $K_f(\mathbb{R}^n) = 1$, then $f(\mathbb{R}^m)$ is an m-plane
- If $f(\mathbb{R}^m)$ is asymptotically conformal, then $\dim_H f(\mathbb{R}^m) = m$
- There exist asymptotical conformal $f(\mathbb{R}^m)$ such that $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally infinite (e.g. "flat snowflakes")

■ The issue is $K_f(A_t)$ can converge to 1 very slowly as $t \to 0!$

How is the geometry of $\Sigma = f(\mathbb{R}^m)$ controlled by the distortion of the map f near \mathbb{R}^m ?

 A_{t} X $Bⁿ(x,t)$ $B^{m}(x,t)$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 → 9 Q Q

Let A_t be tubular neighborhood of \mathbb{R}^m of size t.

- If $K_f(\mathbb{R}^n) = 1$, then $f(\mathbb{R}^m)$ is an m-plane
- If $f(\mathbb{R}^m)$ is asymptotically conformal, then $\dim_H f(\mathbb{R}^m) = m$
- There exist asymptotical conformal $f(\mathbb{R}^m)$ such that $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally infinite (e.g. "flat snowflakes")
- The issue is $K_f(A_t)$ can converge to 1 very slowly as $t \to 0$!

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$
\int_0^{t_0}\Psi(K_f(A_t)-1)\frac{dt}{t}<\infty.
$$

Theorem (Carleson 1967, Anderson, Becker, Lesley 1988) If $\Psi(t) = t^2$, $n = 2$, then $\mathcal{H}^1 \sqcup f(\mathbb{R}^1)$ is locally finite. Examples show that the conclusion may fail when $\Psi(t) = t^{2+\epsilon}$.

Theorem (Mattila and Vuorinen 1990) If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is Lipschitz, and thus, the measure $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite.

If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is C^1 and the quasiplane $f(\mathbb{R}^m)$ is an m-dimensional C^1 embedded submanifold of \mathbb{R}^n . K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ○唐

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$
\int_0^{t_0}\Psi(K_f(A_t)-1)\frac{dt}{t}<\infty.
$$

KONKAPIK KENYEN E

Theorem (Carleson 1967, Anderson, Becker, Lesley 1988) If $\Psi(t) = t^2$, $n = 2$, then $\mathcal{H}^1 \sqcup f(\mathbb{R}^1)$ is locally finite. Examples show that the conclusion may fail when $\Psi(t) = t^{2+\epsilon}$.

Theorem (Mattila and Vuorinen 1990) If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is Lipschitz, and thus, the measure $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite.

If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is C^1 and the quasiplane $f(\mathbb{R}^m)$ is an m-dimensional C^1 embedded submanifold of \mathbb{R}^n .

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$
\int_0^{t_0}\Psi(K_f(A_t)-1)\frac{dt}{t}<\infty.
$$

イロト 不優 ト 不重 ト 不重 トー 重

Theorem (Carleson 1967, Anderson, Becker, Lesley 1988) If $\Psi(t) = t^2$, $n = 2$, then $\mathcal{H}^1 \sqcup f(\mathbb{R}^1)$ is locally finite. Examples show that the conclusion may fail when $\Psi(t) = t^{2+\epsilon}$.

Theorem (Mattila and Vuorinen 1990)

If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is Lipschitz, and thus, the measure $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite.

If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is C^1 and the quasiplane $f(\mathbb{R}^m)$ is an m-dimensional C^1 embedded submanifold of \mathbb{R}^n .

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$
\int_0^{t_0}\Psi(K_f(A_t)-1)\frac{dt}{t}<\infty.
$$

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow B$

Theorem (Carleson 1967, Anderson, Becker, Lesley 1988) If $\Psi(t) = t^2$, $n = 2$, then $\mathcal{H}^1 \sqcup f(\mathbb{R}^1)$ is locally finite. Examples show that the conclusion may fail when $\Psi(t) = t^{2+\epsilon}$.

Theorem (Mattila and Vuorinen 1990)

If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is Lipschitz, and thus, the measure $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite.

Theorem (Reshetnyak 1994)

If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is C^1 and the quasiplane $f(\mathbb{R}^m)$ is an m-dimensional C^1 embedded submanifold of \mathbb{R}^n .

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$
\int_0^{t_0}\Psi(K_f(A_t)-1)\frac{dt}{t}<\infty.
$$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Psi(t) = (t \log t^{-1})^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

This hypothesis includes the case $\Psi(t)=t^{2-\varepsilon}$, for any $\varepsilon>0$

The conclusion is strictly weaker than saying that $f(\mathbb{R}^m)$ is a C^1 submanifold of \mathbb{R}^n . Examples show conclusion is sharp.

The conclusion is about $f(\mathbb{R}^m)$, not about $f|_{\mathbb{R}^m}$.

The exponent 2 is the best possible, cannot replace with $2 + \varepsilon$.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$
\int_0^{t_0}\Psi(K_f(A_t)-1)\frac{dt}{t}<\infty.
$$

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Psi(t) = (t \log t^{-1})^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

- This hypothesis includes the case $\Psi(t)=t^{2-\varepsilon}$, for any $\varepsilon>0$
- The conclusion is strictly weaker than saying that $f(\mathbb{R}^m)$ is a C^1 submanifold of \mathbb{R}^n . Examples show conclusion is sharp.
- The conclusion is about $f(\mathbb{R}^m)$, not about $f|_{\mathbb{R}^m}$.
- The exponent 2 is the best possible, cannot replace with $2 + \varepsilon$.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$
\int_0^{t_0}\Psi(K_f(A_t)-1)\frac{dt}{t}<\infty.
$$

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Psi(t) = (t \log t^{-1})^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

- This hypothesis includes the case $\Psi(t)=t^{2-\varepsilon}$, for any $\varepsilon>0$
- The conclusion is strictly weaker than saying that $f(\mathbb{R}^m)$ is a C^1 submanifold of \mathbb{R}^n . Examples show conclusion is sharp.

The conclusion is about $f(\mathbb{R}^m)$, not about $f|_{\mathbb{R}^m}$.

The exponent 2 is the best possible, cannot replace with $2 + \varepsilon$.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$
\int_0^{t_0} \Psi(K_f(A_t)-1)\frac{dt}{t}<\infty.
$$

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Psi(t) = (t \log t^{-1})^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

- This hypothesis includes the case $\Psi(t)=t^{2-\varepsilon}$, for any $\varepsilon>0$
- The conclusion is strictly weaker than saying that $f(\mathbb{R}^m)$ is a C^1 submanifold of \mathbb{R}^n . Examples show conclusion is sharp.
- The conclusion is about $f(\mathbb{R}^m)$, not about $f|_{\mathbb{R}^m}$.

The exponent 2 is the best possible, cannot replace with $2 + \varepsilon$.

٠

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$
\int_0^{t_0}\Psi(K_f(A_t)-1)\frac{dt}{t}<\infty.
$$

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Psi(t) = (t \log t^{-1})^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

- This hypothesis includes the case $\Psi(t)=t^{2-\varepsilon}$, for any $\varepsilon>0$
- The conclusion is strictly weaker than saying that $f(\mathbb{R}^m)$ is a C^1 submanifold of \mathbb{R}^n . Examples show conclusion is sharp.
- The conclusion is about $f(\mathbb{R}^m)$, not about $f|_{\mathbb{R}^m}$.
- The exponent 2 is the best possible, cannot replace with $2 + \varepsilon$.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal A and assume that for all $x_0 \in \mathbb{R}^m$, X \int_0 $\Upsilon(H_f(B^n(x,t))-1)\frac{dt}{t}<\infty$ $Bⁿ(x,t)$ $B^{m}(x,t)$ sup 0 $x\in B^m(x_0,t_0)$

If $\Upsilon(t) = t^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

Recall that $H_f(\mathbb{R}^n)-1\leq \mathcal{C}_n(K_f(\mathbb{R}^n)-1)\log\left(\frac{1}{K_f(\mathbb{R}^n)-1}\right)$.

■ To derive "maximal dilatation" version from "quasisymmetry" version, use localized estimate (BGRT 2012).

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow B$

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Upsilon(t) = t^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

Recall that $H_f(\mathbb{R}^n)-1\leq \mathcal{C}_n(K_f(\mathbb{R}^n)-1)\log\left(\frac{1}{K_f(\mathbb{R}^n)-1}\right)$.

■ To derive "maximal dilatation" version from "quasisymmetry" version, use localized estimate (BGRT 2012).

イロト 不優 ト 不思 ト 不思 トー 語

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Upsilon(t) = t^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

\n- Recall that
$$
H_f(\mathbb{R}^n) - 1 \leq C_n(K_f(\mathbb{R}^n) - 1) \log \left(\frac{1}{K_f(\mathbb{R}^n) - 1} \right)
$$
.
\n

■ To derive "maximal dilatation" version from "quasisymmetry" version, use localized estimate (BGRT 2012).

[Quasiplanes and Bi-Lipschitz Paramaterizations](#page-0-0) – Matthew Badger – University of Connecticut 8 / 14

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow B$

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Upsilon(t) = t^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

- Recall that $H_f({\mathbb R}^n)-1\leq \mathcal{C}_n (K_f({\mathbb R}^n)-1)\log\left(\frac{1}{K_f({\mathbb R}^n)-1}\right)$.
- To derive "maximal dilatation" version from "quasisymmetry" version, use localized estimate (BGRT 2012).

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 → 9 Q Q

Two Measurements of Flatness of a Set

Two Measurements of Flatness of a Set

Bi-Lipschitz Parameterization Theorem

Theorem (David and Toro 2012)

For all $1 \le m \le n-1$ and $M < \infty$, there are $L = L(m, n, M) < \infty$ and $\delta_0 = \delta_0(n, m) > 0$ with the following property. Suppose that $A\subset\mathbb{R}^n$ is closed, $x_0\in A$, $r_0>0$, and $0<\delta\leq\delta_0$.

If

$$
\sup_{x \in A \cap B^{n}(x_0,r_0)} \int_0^{r_0} \beta_A(x,r)^2 \frac{dr}{r} \leq M < \infty, \tag{*}
$$

KOD KARD KED KED BLOGG

and

$$
\theta_A(x,r) \leq \delta \quad \text{for all } x \in A \cap B^n(x_0,r_0) \text{ and } 0 < r \leq r_0, \quad (\star \star)
$$

then there exist (i) an L-bi-Lipschitz map $g : \mathbb{R}^n \to \mathbb{R}^n$ and (ii) an m-dimensional plane V containing x_0 such that

$$
A\cap B^{n}(x_0,r_0/10)=g(V)\cap B^{n}(x_0,r_0/10).
$$

Quasisymmetry Controls Local Flatness

Lemma (Prause 2007, ABT 2014)

Suppose that $1 \le m \le n-1$, $x \in \mathbb{R}^m$, and e is a unit vector. If $f: \mathbb{R}^n \overset{\sim}{\to} \mathbb{R}^n$, then

$$
\beta_{f(\mathbb{R}^m)}\left(f(x),\frac{1}{2}|f(x+re)-f(x)|\right)\leq 144n\left(H_f(B^n(x,2r))-1\right).
$$

For all $\varepsilon > 0$, there exists $\eta = \eta(n, m, \varepsilon) > 0$ such that if $f:\mathbb{R}^n\to\mathbb{R}^n$ is quasiconformal, $H_f(\mathbb{R}^m)\leq H$, and $H_f(B^n(x_0, 6r_0)) - 1 \leq \eta$ for some $x_0 \in \mathbb{R}^m$ and $r_0 > 0$, then

$$
\theta_{f(\mathbb{R}^m)}(f(x),r) \leq H\varepsilon
$$

for all $x \in B^m(x_0, r_0)$ and $0 < r \leq \frac{1}{54}$ diam $f(B^m(x_0, r_0))$.

[Quasiplanes and Bi-Lipschitz Paramaterizations](#page-0-0) – Matthew Badger – University of Connecticut 12 / 14

イロト 不優 ト 不思 ト 不思 トー 語

Quasisymmetry Controls Local Flatness

Lemma (Prause 2007, ABT 2014)

Suppose that $1 \le m \le n-1$, $x \in \mathbb{R}^m$, and e is a unit vector. If $f: \mathbb{R}^n \overset{\sim}{\to} \mathbb{R}^n$, then

$$
\beta_{f(\mathbb{R}^m)}\left(f(x),\frac{1}{2}|f(x+re)-f(x)|\right)\leq 144n\left(H_f(B^n(x,2r))-1\right).
$$

Theorem (Azzam, B., Toro 2014)

For all $\varepsilon > 0$, there exists $\eta = \eta(n, m, \varepsilon) > 0$ such that if $f:\mathbb{R}^n\to\mathbb{R}^n$ is quasiconformal, $H_f(\mathbb{R}^m)\leq H$, and $H_f(B^n(x_0, 6r_0)) - 1 \leq \eta$ for some $x_0 \in \mathbb{R}^m$ and $r_0 > 0$, then

$$
\theta_{f(\mathbb{R}^m)}(f(x),r)\leq H\varepsilon
$$

for all $x \in B^m(x_0, r_0)$ and $0 < r \leq \frac{1}{54}$ diam $f(B^m(x_0, r_0))$.

[Quasiplanes and Bi-Lipschitz Paramaterizations](#page-0-0) – Matthew Badger – University of Connecticut 12 / 14

KORK ERRY ABY DR YOUR

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal.

Theorem (Azzam, B., Toro 2014) Let $1 \leq m \leq n-1$. If for some $x_0 \in \mathbb{R}^m$ and $t_0 > 0$,

$$
\sup_{x\in B^m(x_0,t_0)}\int_0^{t_0}\left(H_f(B^n(x,t))-1\right)^2\frac{dt}{t}\leq C<\infty,
$$

then there is $s_0 > 0$ such that $f(\mathbb{R}^m) \cap B^n(f(x_0), s_0)$ is L-bi-Lipschitz equivalent to an open subset of \mathbb{R}^m , where L depends only on the dimensions n and m and the bound C.

weaker hypothesis: 'sup' outside integral vs. inside integral **EX weaker conclusion: L-bi-Lipschitz local parameterization** vs. $(1 + \delta)$ -bi-Lipschitz parameterizatio[ns](#page-41-0) $\forall \delta > 0$ $\forall \delta > 0$ $\forall \delta > 0$ $\forall \delta > 0$ [.](#page-0-0)

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal.

Theorem (Azzam, B., Toro 2014) Let $1 \leq m \leq n-1$. If for some $x_0 \in \mathbb{R}^m$ and $t_0 > 0$,

$$
\sup_{x\in B^m(x_0,t_0)}\int_0^{t_0}\left(H_f(B^n(x,t))-1\right)^2\frac{dt}{t}\leq C<\infty,
$$

then there is $s_0 > 0$ such that $f(\mathbb{R}^m) \cap B^n(f(x_0), s_0)$ is L-bi-Lipschitz equivalent to an open subset of \mathbb{R}^m , where L depends only on the dimensions n and m and the bound C.

weaker hypothesis: 'sup' outside integral vs. inside integral **E** weaker conclusion: L-bi-Lipschitz local parameterization vs. $(1 + \delta)$ -bi-Lipschitz parameterizatio[ns](#page-42-0) $\forall \delta > 0$ $\forall \delta > 0$ $\forall \delta > 0$ $\forall \delta > 0$ [.](#page-0-0) $\mathcal{A}(\overline{\mathcal{A}}) \rightarrow \mathcal{A}(\mathbb{B}) \rightarrow \mathcal{A}(\mathbb{B}) \rightarrow \mathbb{B}$

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal.

Theorem (Azzam, B., Toro 2014) Let $2 \le m \le n-1$. If for all $x_0 \in \mathbb{R}^m$ and $t_0 > 0$,

$$
\int_{B^m(x_0,t_0)} \int_0^{t_0} \left(H_f(B^n(x,t))-1 \right)^2 \frac{dt}{t} dx \leq C \mathscr{L}^m(B^m(x_0,t_0)),
$$

then $f(\mathbb{R}^m)$ has "big pieces of bi-Lipschitz images of \mathbb{R}^m ".

BPBI: $\exists L > 1$ and $\alpha > 0$ such that $\forall \xi \in f(\mathbb{R}^m)$ and $s > 0$, $f(\mathbb{R}^m) \cap B^n(\xi,s)$ intersects some L-bi-Lipschitz image of \mathbb{R}^m in a set of \mathscr{H}^m measure at least αs^m .

Restriction to $m \geq 2$: our proof uses a theorem of Gehring that Jh is an A_∞ weight if $h:\mathbb{R}^m\to\mathbb{R}^m$ is quasiconformal. We do not know whether theorem hold[s w](#page-43-0)[he](#page-45-0)[n](#page-41-0) $m = 1$ $m = 1$ $m = 1$ $m = 1$.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal.

Theorem (Azzam, B., Toro 2014) Let $2 \le m \le n-1$. If for all $x_0 \in \mathbb{R}^m$ and $t_0 > 0$,

$$
\int_{B^m(x_0,t_0)} \int_0^{t_0} \left(H_f(B^n(x,t))-1 \right)^2 \frac{dt}{t} dx \leq C \mathscr{L}^m(B^m(x_0,t_0)),
$$

then $f(\mathbb{R}^m)$ has "big pieces of bi-Lipschitz images of \mathbb{R}^m ".

BPBI: $\exists L > 1$ and $\alpha > 0$ such that $\forall \xi \in f(\mathbb{R}^m)$ and $s > 0$, $f(\mathbb{R}^m) \cap B^n(\xi,s)$ intersects some L-bi-Lipschitz image of \mathbb{R}^m in a set of \mathscr{H}^m measure at least αs^m .

Restriction to $m \geq 2$: our proof uses a theorem of Gehring that Jh is an A_∞ weight if $h:\mathbb{R}^m\to\mathbb{R}^m$ is quasiconformal. We do not know whether theorem hold[s w](#page-44-0)[he](#page-46-0)[n](#page-44-0) $m = 1$ $m = 1$ $m = 1$ $m = 1$.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal.

Theorem (Azzam, B., Toro 2014) Let $2 \le m \le n-1$. If for all $x_0 \in \mathbb{R}^m$ and $t_0 > 0$,

$$
\int_{B^m(x_0,t_0)} \int_0^{t_0} \left(H_f(B^n(x,t)) - 1 \right)^2 \frac{dt}{t} dx \leq C \mathscr{L}^m(B^m(x_0,t_0)),
$$

then $f(\mathbb{R}^m)$ has "big pieces of bi-Lipschitz images of \mathbb{R}^m ".

- BPBI: $\exists L > 1$ and $\alpha > 0$ such that $\forall \xi \in f(\mathbb{R}^m)$ and $s > 0$, $f(\mathbb{R}^m) \cap B^n(\xi,s)$ intersects some L-bi-Lipschitz image of \mathbb{R}^m in a set of \mathscr{H}^m measure at least αs^m .
- Restriction to $m \geq 2$: our proof uses a theorem of Gehring that Jh is an A_{∞} weight if $h:\mathbb{R}^m\to\mathbb{R}^m$ is quasiconformal. We do not know whether theorem hold[s w](#page-45-0)[he](#page-0-1)[n](#page-44-0) $m = 1$ $m = 1$ $m = 1$ $m = 1$.