Quasiconformal Planes and Bi-Lipschitz Parameterizations

Joint work with Jonas Azzam James T. Gill Steffen Rohde Tatiana Toro

Matthew Badger

University of Connecticut

October 24, 2014

The Sixth Ahlfors-Bers Colloquiu

Yale University

October 23 – 26, 2014

Research partially supported by NSF DMS 0838212 and NSF DMS 1203497.

 $f: \Omega \xrightarrow{\sim} \Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f \in W^{1,n}_{loc}(\Omega)$

$$H_{f}(\Omega) = \max\left\{\frac{|f(y) - f(x)|}{|f(z) - f(x)|} : x, y, z \in \Omega, \frac{|y - x|}{|z - x|} \le 1\right\} \in [1, \infty]$$

 $f: \Omega \xrightarrow{\sim} \Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f \in W^{1,n}_{loc}(\Omega)$

If Df(x) exists and has singular values $\lambda_1(x) \leq \cdots \leq \lambda_n(x)$, then $\mathcal{K}_{f}(x) = \max\left(\frac{\lambda_{n}(x)}{\lambda_{1}(x)}\frac{\lambda_{n}(x)}{\lambda_{2}(x)}\cdots\frac{\lambda_{n}(x)}{\lambda_{n}(x)},\frac{\lambda_{1}(x)}{\lambda_{1}(x)}\frac{\lambda_{2}(x)}{\lambda_{1}(x)}\cdots\frac{\lambda_{n}(x)}{\lambda_{1}(x)}\right)$

$$H_f(\Omega) = \max\left\{\frac{|f(y) - f(x)|}{|f(z) - f(x)|} : x, y, z \in \Omega, \frac{|y - x|}{|z - x|} \le 1\right\} \in [1, \infty]$$

 $f: \Omega \xrightarrow{\sim} \Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f \in W^{1,n}_{loc}(\Omega)$

If Df(x) exists and has singular values $\lambda_1(x) \leq \cdots \leq \lambda_n(x)$, then $\mathcal{K}_{f}(x) = \max\left(\frac{\lambda_{n}(x)}{\lambda_{1}(x)}\frac{\lambda_{n}(x)}{\lambda_{2}(x)}\cdots\frac{\lambda_{n}(x)}{\lambda_{n}(x)},\frac{\lambda_{1}(x)}{\lambda_{1}(x)}\frac{\lambda_{2}(x)}{\lambda_{1}(x)}\cdots\frac{\lambda_{n}(x)}{\lambda_{1}(x)}\right)$

The maximal dilatation (local distortion)

$$\mathcal{K}_f(\Omega) = \mathop{\mathrm{ess\,sup}}_{x\in\Omega} \mathcal{K}_f(x) \in [1,\infty]$$

$$H_f(\Omega) = \max\left\{\frac{|f(y) - f(x)|}{|f(z) - f(x)|} : x, y, z \in \Omega, \frac{|y - x|}{|z - x|} \le 1\right\} \in [1, \infty]$$

 $f: \Omega \xrightarrow{\sim} \Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f \in W^{1,n}_{loc}(\Omega)$

If Df(x) exists and has singular values $\lambda_1(x) \leq \cdots \leq \lambda_n(x)$, then $K_f(x) = \max\left(\frac{\lambda_n(x)}{\lambda_1(x)}\frac{\lambda_n(x)}{\lambda_2(x)}\cdots\frac{\lambda_n(x)}{\lambda_n(x)},\frac{\lambda_1(x)}{\lambda_1(x)}\frac{\lambda_2(x)}{\lambda_1(x)}\cdots\frac{\lambda_n(x)}{\lambda_1(x)}\right)$

The maximal dilatation (local distortion)

$$\mathcal{K}_f(\Omega) = \mathop{\mathrm{ess\,sup}}_{x\in\Omega} \mathcal{K}_f(x) \in [1,\infty]$$

The weak quasisymmetry constant (global distortion)

$$H_f(\Omega) = \max\left\{\frac{|f(y) - f(x)|}{|f(z) - f(x)|} : x, y, z \in \Omega, \frac{|y - x|}{|z - x|} \le 1\right\} \in [1, \infty]$$

 $f: \Omega \xrightarrow{\sim} \Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f \in W^{1,n}_{loc}(\Omega)$

For all $n \geq 2$ and all domains $\Omega \subset \mathbb{R}^n$, $K_f(\Omega) \leq H_f(\Omega)^{n-1}$

When $n \ge 2$ and $\Omega = \mathbb{R}^n$, $H_f(\mathbb{R}^n) - 1 \le \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for Φ₂(t) — Lehto, Virtanen, Väisälä 1959.
 Φ_n(0) = 0 (n ≥ 3) — Vuorinen 1989.

When $n \geq 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$\Phi_2(K-1) \le C_2(K-1) \quad (n=2)$$

$$\Phi_n(K-1) \le C_n(K-1) \log\left(\frac{1}{K-1}\right) \quad (n \ge 3)$$

• Estimate $(n \ge 3)$ by Seittenranta 1996 (cf. Prause 2007) It is not known if the logarithm term is necessary.

 $f: \Omega \xrightarrow{\sim} \Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f \in W^{1,n}_{loc}(\Omega)$

For all $n\geq 2$ and all domains $\Omega\subset \mathbb{R}^n$, $K_f(\Omega)\leq H_f(\Omega)^{n-1}$

When $n \ge 2$ and $\Omega = \mathbb{R}^n$, $H_f(\mathbb{R}^n) - 1 \le \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for Φ₂(t) — Lehto, Virtanen, Väisälä 1959.
 Φ_n(0) = 0 (n ≥ 3) — Vuorinen 1989.

When $n \geq 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$\Phi_2(K-1) \le C_2(K-1) \quad (n=2)$$

$$\Phi_n(K-1) \le C_n(K-1) \log\left(\frac{1}{K-1}\right) \quad (n \ge 3)$$

Estimate $(n \ge 3)$ by Seittenranta 1996 (cf. Prause 2007) It is not known if the logarithm term is necessary.

 $f: \Omega \xrightarrow{\sim} \Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f \in W^{1,n}_{loc}(\Omega)$

For all $n \geq 2$ and all domains $\Omega \subset \mathbb{R}^n$, $K_f(\Omega) \leq H_f(\Omega)^{n-1}$

When $n \ge 2$ and $\Omega = \mathbb{R}^n$, $H_f(\mathbb{R}^n) - 1 \le \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for Φ₂(t) — Lehto, Virtanen, Väisälä 1959.
 Φ_n(0) = 0 (n ≥ 3) — Vuorinen 1989.

When $n \geq 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$\Phi_2(K-1) \le C_2(K-1) \quad (n=2)$$

$$\Phi_n(K-1) \le C_n(K-1) \log\left(\frac{1}{K-1}\right) \quad (n \ge 3)$$

■ Estimate $(n \ge 3)$ by Seittenranta 1996 (cf. Prause 2007) It is not known if the logarithm term is necessary.

 $f: \Omega \xrightarrow{\sim} \Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f \in W^{1,n}_{loc}(\Omega)$

For all
$$n \geq 2$$
 and all domains $\Omega \subset \mathbb{R}^n$, $K_f(\Omega) \leq H_f(\Omega)^{n-1}$

When $n \ge 2$ and $\Omega = \mathbb{R}^n$, $H_f(\mathbb{R}^n) - 1 \le \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for Φ₂(t) — Lehto, Virtanen, Väisälä 1959.
Φ_n(0) = 0 (n ≥ 3) — Vuorinen 1989.

When $n \ge 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$\Phi_2(K-1) \le C_2(K-1) \quad (n=2)$$

$$\Phi_n(K-1) \le C_n(K-1) \log\left(\frac{1}{K-1}\right) \quad (n \ge 3)$$

■ Estimate $(n \ge 3)$ by Seittenranta 1996 (cf. Prause 2007) It is not known if the logarithm term is necessary.

 $f: \Omega \xrightarrow{\sim} \Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f \in W^{1,n}_{loc}(\Omega)$

For all
$$n \geq 2$$
 and all domains $\Omega \subset \mathbb{R}^n$, $K_f(\Omega) \leq H_f(\Omega)^{n-1}$

When
$$n \ge 2$$
 and $\Omega = \mathbb{R}^n$,
 $H_f(\mathbb{R}^n) - 1 \le \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for Φ₂(t) — Lehto, Virtanen, Väisälä 1959.
Φ_n(0) = 0 (n ≥ 3) — Vuorinen 1989.

When $n \geq 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$\Phi_2(K-1) \le C_2(K-1) \quad (n=2)$$

$$\Phi_n(K-1) \le C_n(K-1) \log\left(\frac{1}{K-1}\right) \quad (n \ge 3)$$

■ Estimate $(n \ge 3)$ by Seittenranta 1996 (cf. Prause 2007) It is not known if the logarithm term is necessary.

 $f: \Omega \xrightarrow{\sim} \Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f \in W^{1,n}_{loc}(\Omega)$

For all
$$n \geq 2$$
 and all domains $\Omega \subset \mathbb{R}^n$,
 $K_f(\Omega) \leq H_f(\Omega)^{n-1}$

When
$$n \ge 2$$
 and $\Omega = \mathbb{R}^n$,
 $H_f(\mathbb{R}^n) - 1 \le \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for Φ₂(t) — Lehto, Virtanen, Väisälä 1959.
Φ_n(0) = 0 (n ≥ 3) — Vuorinen 1989.

When $n \geq 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$\Phi_2(K-1) \le C_2(K-1) \quad (n=2)$$

$$\Phi_n(K-1) \le C_n(K-1) \log\left(\frac{1}{K-1}\right) \quad (n \ge 3)$$

■ Estimate (n ≥ 3) by Seittenranta 1996 (cf. Prause 2007) It is not known if the logarithm term is necessary.

Estimate for $H_f(B(z, s))$ when $K_f(B(z, Rs))$ is near 1

 $f: \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$ a homeomorphism of \mathbb{R}^n and $f \in W^{1,n}_{loc}(\mathbb{R}^n)$

Theorem (B., Gill, Rohde, Toro 2012) Given $n \ge 2$ and $1 < K \le \min\{4/3, K'\}$, set

$$R = \left(\frac{c}{K-1}\right)^{c/(K-1)} > 1,$$

where c > 1 is a constant that only depends on n and K'. If $K_f(\mathbb{R}^n) \le K'$ and $K_f(B(z, Rs)) \le K$, then

$$H_f(B(z,s)) - 1 \leq C(K-1)\log\left(rac{1}{K-1}
ight),$$

where C > 1 is an absolute constant.

Proof uses geometric definition of quasiconformal maps and modulus estimates.

Estimate for $H_f(B(z, s))$ when $K_f(B(z, Rs))$ is near 1

 $f: \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$ a homeomorphism of \mathbb{R}^n and $f \in W^{1,n}_{loc}(\mathbb{R}^n)$

Theorem (B., Gill, Rohde, Toro 2012) Given $n \ge 2$ and $1 < K \le \min\{4/3, K'\}$, set

$$R = \left(\frac{c}{K-1}\right)^{c/(K-1)} > 1,$$

where c > 1 is a constant that only depends on n and K'. If $K_f(\mathbb{R}^n) \le K'$ and $K_f(B(z, Rs)) \le K$, then

$$H_f(B(z,s))-1 \leq C(K-1)\log\left(rac{1}{K-1}
ight),$$

where C > 1 is an absolute constant.

Proof uses geometric definition of quasiconformal maps and modulus estimates.

A map $f : \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$ is *K*-quasiconformal if

• f is a homeomorphism, • $f \in W^{1,n}(\mathbb{R}^n)$, • $K_f(\mathbb{R}^n) \leq K$.

A quasiplane $\Sigma = f(\mathbb{R}^m)$ is image of \mathbb{R}^m under QC map of \mathbb{R}^n $(1 \le m \le n-1)$. The codimension of Σ is n-m.

Examples:

General Question: What is the relationship between the distortion of f near \mathbb{R}^m and the geometry of the quasiplane $\Sigma = f(\mathbb{R}^m)$?

< ロ > < 同 > < 三 > < 三 > <

A map $f : \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$ is *K*-quasiconformal if

• f is a homeomorphism, • $f \in W^{1,n}(\mathbb{R}^n)$, • $K_f(\mathbb{R}^n) \leq K$.

A quasiplane $\Sigma = f(\mathbb{R}^m)$ is image of \mathbb{R}^m under QC map of \mathbb{R}^n $(1 \le m \le n-1)$. The codimension of Σ is n-m.

Examples:

General Question: What is the relationship between the distortion of f near \mathbb{R}^m and the geometry of the quasiplane $\Sigma = f(\mathbb{R}^m)$?

< ロ > < 同 > < 三 > < 三 > <

A map $f : \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$ is *K*-quasiconformal if

• f is a homeomorphism, • $f \in W^{1,n}(\mathbb{R}^n)$, • $K_f(\mathbb{R}^n) \leq K$.

A quasiplane $\Sigma = f(\mathbb{R}^m)$ is image of \mathbb{R}^m under QC map of \mathbb{R}^n $(1 \le m \le n-1)$. The codimension of Σ is n-m.

Examples:

General Question: What is the relationship between the distortion of f near \mathbb{R}^m and the geometry of the quasiplane $\Sigma = f(\mathbb{R}^m)$?

・ロト ・聞ト ・ヨト ・ヨト

A map $f : \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$ is *K*-quasiconformal if

• f is a homeomorphism, • $f \in W^{1,n}(\mathbb{R}^n)$, • $K_f(\mathbb{R}^n) \leq K$.

A quasiplane $\Sigma = f(\mathbb{R}^m)$ is image of \mathbb{R}^m under QC map of \mathbb{R}^n $(1 \le m \le n-1)$. The codimension of Σ is n-m.

Examples:

General Question: What is the relationship between the distortion of f near \mathbb{R}^m and the geometry of the quasiplane $\Sigma = f(\mathbb{R}^m)$?

(日) (同) (三) (三) (三)

A map $f : \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$ is *K*-quasiconformal if

• f is a homeomorphism, • $f \in W^{1,n}(\mathbb{R}^n)$, • $K_f(\mathbb{R}^n) \leq K$.

A quasiplane $\Sigma = f(\mathbb{R}^m)$ is image of \mathbb{R}^m under QC map of \mathbb{R}^n $(1 \le m \le n-1)$. The codimension of Σ is n-m.

Examples:

General Question: What is the relationship between the distortion of f near \mathbb{R}^m and the geometry of the quasiplane $\Sigma = f(\mathbb{R}^m)$?

(日) (同) (三) (三) (三)

How is the geometry of $\Sigma = f(\mathbb{R}^m)$ controlled by the distortion of the map f near \mathbb{R}^m ?

Let A_t be tubular neighborhood of \mathbb{R}^m of size t.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

- If $K_f(\mathbb{R}^n) = 1$, then $f(\mathbb{R}^m)$ is an *m*-plane
- If $f(\mathbb{R}^m)$ is asymptotically conformal, then dim_H $f(\mathbb{R}^m) = m$
- There exist asymptotical conformal $f(\mathbb{R}^m)$ such that $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally infinite (e.g. "flat snowflakes")
- The issue is $K_f(A_t)$ can converge to 1 very slowly as $t \to 0!$

How is the geometry of $\Sigma = f(\mathbb{R}^m)$ controlled by the distortion of the map f near \mathbb{R}^m ?

Let A_t be tubular neighborhood of \mathbb{R}^m of size t.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

- If $K_f(\mathbb{R}^n) = 1$, then $f(\mathbb{R}^m)$ is an *m*-plane
- If $f(\mathbb{R}^m)$ is asymptotically conformal, then dim_H $f(\mathbb{R}^m) = m$
- There exist asymptotical conformal $f(\mathbb{R}^m)$ such that $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally infinite (e.g. "flat snowflakes")
- The issue is $K_f(A_t)$ can converge to 1 very slowly as $t \to 0!$

How is the geometry of $\Sigma = f(\mathbb{R}^m)$ controlled by the distortion of the map f near \mathbb{R}^m ?

Let A_t be tubular neighborhood of \mathbb{R}^m of size t.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

- If $K_f(\mathbb{R}^n) = 1$, then $f(\mathbb{R}^m)$ is an *m*-plane
- If $f(\mathbb{R}^m)$ is asymptotically conformal, then dim_H $f(\mathbb{R}^m) = m$
- There exist asymptotical conformal $f(\mathbb{R}^m)$ such that $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally infinite (e.g. "flat snowflakes")
- The issue is $K_f(A_t)$ can converge to 1 very slowly as $t \to 0!$

How is the geometry of $\Sigma = f(\mathbb{R}^m)$ controlled by the distortion of the map f near \mathbb{R}^m ?

At Bⁿ(x,t) B^m(x,t)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Let A_t be tubular neighborhood of \mathbb{R}^m of size t.

 $\Sigma = f(\mathbb{R}^m)$ is asymptotically conformal if $K_f(A_t) \to 1$ as $t \to 0$.

- If $K_f(\mathbb{R}^n) = 1$, then $f(\mathbb{R}^m)$ is an *m*-plane
- If $f(\mathbb{R}^m)$ is asymptotically conformal, then dim_H $f(\mathbb{R}^m) = m$
- There exist asymptotical conformal $f(\mathbb{R}^m)$ such that $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally infinite (e.g. "flat snowflakes")

The issue is $K_f(A_t)$ can converge to 1 very slowly as $t \to 0!$

How is the geometry of $\Sigma = f(\mathbb{R}^m)$ controlled by the distortion of the map f near \mathbb{R}^m ?

At Bⁿ(x,t) B^m(x,t)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Let A_t be tubular neighborhood of \mathbb{R}^m of size t.

- If $K_f(\mathbb{R}^n) = 1$, then $f(\mathbb{R}^m)$ is an *m*-plane
- If $f(\mathbb{R}^m)$ is asymptotically conformal, then dim_H $f(\mathbb{R}^m) = m$
- There exist asymptotical conformal $f(\mathbb{R}^m)$ such that $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally infinite (e.g. "flat snowflakes")
- The issue is $K_f(A_t)$ can converge to 1 very slowly as $t \to 0!$

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$\int_0^{t_0} \Psi(\mathcal{K}_f(A_t)-1)\frac{dt}{t} < \infty.$$

(日) (同) (三) (三) (三)

Theorem (Carleson 1967, Anderson, Becker, Lesley 1988) If $\Psi(t) = t^2$, n = 2, then $\mathcal{H}^1 \sqcup f(\mathbb{R}^1)$ is locally finite. Examples show that the conclusion may fail when $\Psi(t) = t^{2+\varepsilon}$.

Theorem (Mattila and Vuorinen 1990) If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is Lipschitz, and thus, the measure $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite.

Theorem (Reshetnyak 1994)

If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is C^1 and the quasiplane $f(\mathbb{R}^m)$ is an *m*-dimensional C^1 embedded submanifold of \mathbb{R}^n .

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$\int_0^{t_0} \Psi(\mathcal{K}_f(\mathcal{A}_t)-1) rac{dt}{t} < \infty.$$

Theorem (Carleson 1967, Anderson, Becker, Lesley 1988) If $\Psi(t) = t^2$, n = 2, then $\mathcal{H}^1 \sqcup f(\mathbb{R}^1)$ is locally finite. Examples show that the conclusion may fail when $\Psi(t) = t^{2+\varepsilon}$.

Theorem (Mattila and Vuorinen 1990) If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is Lipschitz, and thus, the measure $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite.

Theorem (Reshetnyak 1994)

If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is C^1 and the quasiplane $f(\mathbb{R}^m)$ is an *m*-dimensional C^1 embedded submanifold of \mathbb{R}^n .

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$\int_0^{t_0} \Psi(\mathcal{K}_f(A_t)-1) \frac{dt}{t} < \infty.$$

イロト 不得下 イヨト イヨト 二日

Theorem (Carleson 1967, Anderson, Becker, Lesley 1988) If $\Psi(t) = t^2$, n = 2, then $\mathcal{H}^1 \sqcup f(\mathbb{R}^1)$ is locally finite. Examples show that the conclusion may fail when $\Psi(t) = t^{2+\varepsilon}$.

Theorem (Mattila and Vuorinen 1990) If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is Lipschitz, and thus, the measure

 $\mathcal{H}^m \sqsubseteq f(\mathbb{R}^m)$ is locally finite.

Theorem (Reshetnyak 1994)

If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is C^1 and the quasiplane $f(\mathbb{R}^m)$ is an *m*-dimensional C^1 embedded submanifold of \mathbb{R}^n .

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$\int_0^{t_0} \Psi(\mathcal{K}_f(A_t)-1) \frac{dt}{t} < \infty.$$

イロト 不得下 イヨト イヨト 二日

Theorem (Carleson 1967, Anderson, Becker, Lesley 1988) If $\Psi(t) = t^2$, n = 2, then $\mathcal{H}^1 \sqcup f(\mathbb{R}^1)$ is locally finite. Examples show that the conclusion may fail when $\Psi(t) = t^{2+\varepsilon}$.

Theorem (Mattila and Vuorinen 1990) If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is Lipschitz, and thus, the measure $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite.

Theorem (Reshetnyak 1994)

If $\Psi(t) = t$, then $f|_{\mathbb{R}^m}$ is C^1 and the quasiplane $f(\mathbb{R}^m)$ is an *m*-dimensional C^1 embedded submanifold of \mathbb{R}^n .

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$\int_0^{t_0} \Psi(\mathcal{K}_f(A_t)-1) rac{dt}{t} < \infty.$$

イロト 不得下 イヨト イヨト 二日

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Psi(t) = (t \log t^{-1})^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

- This hypothesis includes the case $\Psi(t) = t^{2-\varepsilon}$, for any $\varepsilon > 0$
- The conclusion is strictly weaker than saying that *f*(ℝ^{*m*}) is a *C*¹ submanifold of ℝ^{*n*}. Examples show conclusion is sharp.
- The conclusion is about $f(\mathbb{R}^m)$, not about $f|_{\mathbb{R}^m}$.
- The exponent 2 is the best possible, cannot replace with $2 + \varepsilon$.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$\int_0^{t_0} \Psi(\mathcal{K}_f(A_t)-1) rac{dt}{t} < \infty.$$

イロト 不得下 イヨト イヨト 二日

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Psi(t) = (t \log t^{-1})^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

- This hypothesis includes the case $\Psi(t) = t^{2-\varepsilon}$, for any $\varepsilon > 0$
- The conclusion is strictly weaker than saying that *f*(ℝ^{*m*}) is a *C*¹ submanifold of ℝ^{*n*}. Examples show conclusion is sharp.
- The conclusion is about $f(\mathbb{R}^m)$, not about $f|_{\mathbb{R}^m}$.
- The exponent 2 is the best possible, cannot replace with $2 + \varepsilon$.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$\int_0^{t_0} \Psi(\mathcal{K}_f(A_t)-1) rac{dt}{t} < \infty.$$

イロト 不得下 イヨト イヨト 二日

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Psi(t) = (t \log t^{-1})^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

- This hypothesis includes the case $\Psi(t) = t^{2-\varepsilon}$, for any $\varepsilon > 0$
- The conclusion is strictly weaker than saying that $f(\mathbb{R}^m)$ is a C^1 submanifold of \mathbb{R}^n . Examples show conclusion is sharp.

The conclusion is about $f(\mathbb{R}^m)$, not about $f|_{\mathbb{R}^m}$.

The exponent 2 is the best possible, cannot replace with $2 + \varepsilon$.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$\int_0^{t_0} \Psi(\mathcal{K}_f(A_t)-1) rac{dt}{t} < \infty.$$

イロト イポト イヨト イヨト 三日

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Psi(t) = (t \log t^{-1})^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

- This hypothesis includes the case $\Psi(t) = t^{2-\varepsilon}$, for any $\varepsilon > 0$
- The conclusion is strictly weaker than saying that *f*(ℝ^{*m*}) is a *C*¹ submanifold of ℝ^{*n*}. Examples show conclusion is sharp.
- The conclusion is about $f(\mathbb{R}^m)$, not about $f|_{\mathbb{R}^m}$.

The exponent 2 is the best possible, cannot replace with $2 + \varepsilon$.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$\int_0^{t_0} \Psi(\mathcal{K}_f(A_t)-1) rac{dt}{t} < \infty.$$

イロト 不得下 イヨト イヨト 二日

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Psi(t) = (t \log t^{-1})^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

- This hypothesis includes the case $\Psi(t) = t^{2-\varepsilon}$, for any $\varepsilon > 0$
- The conclusion is strictly weaker than saying that *f*(ℝ^{*m*}) is a *C*¹ submanifold of ℝ^{*n*}. Examples show conclusion is sharp.
- The conclusion is about $f(\mathbb{R}^m)$, not about $f|_{\mathbb{R}^m}$.
- The exponent 2 is the best possible, cannot replace with $2 + \varepsilon$.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that for all $x_0 \in \mathbb{R}^m$, $\int_0^{t_0} \sup_{x \in B^m(x_0, t_0)} \Upsilon(H_f(B^n(x, t)) - 1) \frac{dt}{t} < \infty \qquad B^n(x, t) \quad B^m(x, t)$

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Upsilon(t) = t^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

• Recall that $H_f(\mathbb{R}^n) - 1 \leq C_n(K_f(\mathbb{R}^n) - 1) \log\left(\frac{1}{K_f(\mathbb{R}^n) - 1}\right)$.

 To derive "maximal dilatation" version from "quasisymmetry" version, use localized estimate (BGRT 2012).

イロト 不得下 イヨト イヨト 二日

Let
$$f : \mathbb{R}^n \to \mathbb{R}^n$$
 be quasiconformal
and assume that for all $x_0 \in \mathbb{R}^m$,
$$\int_0^{t_0} \sup_{x \in B^m(x_0, t_0)} \Upsilon(H_f(B^n(x, t)) - 1) \frac{dt}{t} < \infty \qquad B^n(x, t) \quad B^m(x, t)$$

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Upsilon(t) = t^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

Recall that $H_f(\mathbb{R}^n) - 1 \leq C_n(K_f(\mathbb{R}^n) - 1) \log\left(\frac{1}{K_f(\mathbb{R}^n) - 1}\right)$.

 To derive "maximal dilatation" version from "quasisymmetry" version, use localized estimate (BGRT 2012).

Let
$$f : \mathbb{R}^n \to \mathbb{R}^n$$
 be quasiconformal
and assume that for all $x_0 \in \mathbb{R}^m$,
$$\int_0^{t_0} \sup_{x \in B^m(x_0, t_0)} \Upsilon(H_f(B^n(x, t)) - 1) \frac{dt}{t} < \infty \qquad B^n(x, t) \quad B^m(x, t)$$

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Upsilon(t) = t^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

• Recall that
$$H_f(\mathbb{R}^n) - 1 \leq C_n(\mathcal{K}_f(\mathbb{R}^n) - 1) \log\left(rac{1}{\mathcal{K}_f(\mathbb{R}^n) - 1}
ight).$$

 To derive "maximal dilatation" version from "quasisymmetry" version, use localized estimate (BGRT 2012).

・ロン ・聞と ・ヨン ・ヨン … ヨ

Let
$$f : \mathbb{R}^n \to \mathbb{R}^n$$
 be quasiconformal
and assume that for all $x_0 \in \mathbb{R}^m$,
$$\int_0^{t_0} \sup_{x \in B^m(x_0, t_0)} \Upsilon(H_f(B^n(x, t)) - 1) \frac{dt}{t} < \infty \qquad B^n(x, t) \quad B^m(x, t)$$

Theorem (B., Gill, Rohde, Toro 2012, Azzam, B., Toro 2014) If $\Upsilon(t) = t^2$, then $\mathcal{H}^m \sqcup f(\mathbb{R}^m)$ is locally finite. Moreover: $f(\mathbb{R}^m)$ is locally $(1 + \delta)$ -bi-Lipschitz equivalent to open subsets of \mathbb{R}^m for every choice of $\delta > 0$.

- Recall that $H_f(\mathbb{R}^n) 1 \leq C_n(\mathcal{K}_f(\mathbb{R}^n) 1) \log\left(\frac{1}{\mathcal{K}_f(\mathbb{R}^n) 1}\right)$.
- To derive "maximal dilatation" version from "quasisymmetry" version, use localized estimate (BGRT 2012).

Two Measurements of Flatness of a Set

Two Measurements of Flatness of a Set

Bi-Lipschitz Parameterization Theorem

Theorem (David and Toro 2012)

For all $1 \le m \le n-1$ and $M < \infty$, there are $L = L(m, n, M) < \infty$ and $\delta_0 = \delta_0(n, m) > 0$ with the following property. Suppose that $A \subset \mathbb{R}^n$ is closed, $x_0 \in A$, $r_0 > 0$, and $0 < \delta \le \delta_0$.

lf

$$\sup_{x\in\mathcal{A}\cap\mathcal{B}^n(x_0,r_0)}\int_0^{r_0}\beta_{\mathcal{A}}(x,r)^2\frac{dr}{r}\leq M<\infty, \tag{(\star)}$$

and

$$heta_{\mathcal{A}}(x,r) \leq \delta \quad \textit{for all } x \in \mathcal{A} \cap \mathcal{B}^n(x_0,r_0) \textit{ and } 0 < r \leq r_0, \quad (\star\star)$$

then there exist (i) an L-bi-Lipschitz map $g : \mathbb{R}^n \to \mathbb{R}^n$ and (ii) an m-dimensional plane V containing x_0 such that

$$A \cap B^{n}(x_{0}, r_{0}/10) = g(V) \cap B^{n}(x_{0}, r_{0}/10).$$

Quasiplanes and Bi-Lipschitz Paramaterizations – Matthew Badger – University of Connecticut

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Quasisymmetry Controls Local Flatness

Lemma (Prause 2007, ABT 2014) Suppose that $1 \le m \le n-1$, $x \in \mathbb{R}^m$, and e is a unit vector. If $f : \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$, then

$$\beta_{f(\mathbb{R}^m)}\left(f(x), \frac{1}{2}|f(x+re)-f(x)|\right) \leq 144n\left(H_f(B^n(x,2r))-1\right).$$

Theorem (Azzam, B., Toro 2014)

For all $\varepsilon > 0$, there exists $\eta = \eta(n, m, \varepsilon) > 0$ such that if $f : \mathbb{R}^n \to \mathbb{R}^n$ is quasiconformal, $H_f(\mathbb{R}^m) \leq H$, and $H_f(B^n(x_0, 6r_0)) - 1 \leq \eta$ for some $x_0 \in \mathbb{R}^m$ and $r_0 > 0$, then

$$\theta_{f(\mathbb{R}^m)}(f(x),r) \leq H\varepsilon$$

for all $x \in B^m(x_0, r_0)$ and $0 < r \le \frac{1}{54}$ diam $f(B^m(x_0, r_0))$.

Quasiplanes and Bi-Lipschitz Paramaterizations – Matthew Badger – University of Connecticut

イロン 不通 と 不良 と 不良 と 一度

Quasisymmetry Controls Local Flatness

Lemma (Prause 2007, ABT 2014) Suppose that $1 \le m \le n - 1$, $x \in \mathbb{R}^m$, and e is a unit vector. If $f : \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$, then

$$\beta_{f(\mathbb{R}^m)}\left(f(x), \frac{1}{2}|f(x+re)-f(x)|\right) \leq 144n\left(H_f(B^n(x,2r))-1\right).$$

Theorem (Azzam, B., Toro 2014)

For all $\varepsilon > 0$, there exists $\eta = \eta(n, m, \varepsilon) > 0$ such that if $f : \mathbb{R}^n \to \mathbb{R}^n$ is quasiconformal, $H_f(\mathbb{R}^m) \leq H$, and $H_f(B^n(x_0, 6r_0)) - 1 \leq \eta$ for some $x_0 \in \mathbb{R}^m$ and $r_0 > 0$, then

$$\theta_{f(\mathbb{R}^m)}(f(x),r) \leq H\varepsilon$$

for all $x \in B^m(x_0, r_0)$ and $0 < r \le \frac{1}{54} \operatorname{diam} f(B^m(x_0, r_0))$.

Quasiplanes and Bi-Lipschitz Paramaterizations – Matthew Badger – University of Connecticut

医静脉 医原体 医原体 医原

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal.

Theorem (Azzam, B., Toro 2014) Let $1 \le m \le n-1$. If for some $x_0 \in \mathbb{R}^m$ and $t_0 > 0$,

$$\sup_{x\in B^m(x_0,t_0)}\int_0^{t_0}\left(H_f(B^n(x,t))-1\right)^2\frac{dt}{t}\leq C<\infty,$$

then there is $s_0 > 0$ such that $f(\mathbb{R}^m) \cap B^n(f(x_0), s_0)$ is L-bi-Lipschitz equivalent to an open subset of \mathbb{R}^m , where L depends only on the dimensions n and m and the bound C.

weaker hypothesis: 'sup' outside integral vs. inside integral
 weaker conclusion: L-bi-Lipschitz local parameterization vs. (1 + δ)-bi-Lipschitz parameterizations ∀δ > 0.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal.

Theorem (Azzam, B., Toro 2014) Let $1 \le m \le n-1$. If for some $x_0 \in \mathbb{R}^m$ and $t_0 > 0$,

$$\sup_{x\in B^m(x_0,t_0)}\int_0^{t_0}\left(H_f(B^n(x,t))-1\right)^2\frac{dt}{t}\leq C<\infty,$$

then there is $s_0 > 0$ such that $f(\mathbb{R}^m) \cap B^n(f(x_0), s_0)$ is L-bi-Lipschitz equivalent to an open subset of \mathbb{R}^m , where L depends only on the dimensions n and m and the bound C.

weaker hypothesis: 'sup' outside integral vs. inside integral
 weaker conclusion: *L*-bi-Lipschitz local parameterization vs. (1 + δ)-bi-Lipschitz parameterizations ∀δ > 0.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be guasiconformal.

Theorem (Azzam, B., Toro 2014)
Let
$$2 \le m \le n-1$$
. If for all $x_0 \in \mathbb{R}^m$ and $t_0 > 0$,
$$\int_{\mathbb{R}^m(x_0, t_0)} \int_0^{t_0} (H_f(B^n(x, t)) - 1)^2 \frac{dt}{t} dx \le C \mathscr{L}^m(B^m(x_0, t_0)),$$

$$J_{B^m(x_0,t_0)}J_0$$

then $f(\mathbb{R}^m)$ has "big pieces of bi-Lipschitz images of \mathbb{R}^m ".

- BPBI: $\exists L > 1$ and $\alpha > 0$ such that $\forall \xi \in f(\mathbb{R}^m)$ and s > 0,
- Restriction to $m \ge 2$: our proof uses a theorem of Gehring We do not know whether theorem holds when m = 1.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal.

Theorem (Azzam, B., Toro 2014)
Let
$$2 \le m \le n-1$$
. If for all $x_0 \in \mathbb{R}^m$ and $t_0 > 0$,
$$\int \int_{-\infty}^{t_0} (H_c(B^n(x, t)) - 1)^2 \frac{dt}{dt} dx \le C \mathscr{L}^m(B^m(x_0, t_0))$$

$$\int_{B^m(x_0,t_0)} \int_0^{\infty} (H_f(B^n(x,t))-1)^2 \frac{dt}{t} dx \leq C \mathscr{L}^m(B^m(x_0,t_0)),$$

then $f(\mathbb{R}^m)$ has "big pieces of bi-Lipschitz images of \mathbb{R}^m ".

 BPBI: ∃L > 1 and α > 0 such that ∀ξ ∈ f(ℝ^m) and s > 0, f(ℝ^m) ∩ Bⁿ(ξ, s) intersects some L-bi-Lipschitz image of ℝ^m in a set of ℋ^m measure at least αs^m.

Restriction to m ≥ 2: our proof uses a theorem of Gehring that Jh is an A_∞ weight if h : ℝ^m → ℝ^m is quasiconformal.
 We do not know whether theorem holds when m = 1.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal.

Theorem (Azzam, B., Toro 2014)
Let
$$2 \le m \le n - 1$$
. If for all $x_0 \in \mathbb{R}^m$ and $t_0 > 0$,

$$\int_{B^{m}(x_{0},t_{0})}\int_{0}^{t_{0}}(H_{f}(B^{n}(x,t))-1)^{2}\frac{dt}{t}dx\leq C\mathscr{L}^{m}(B^{m}(x_{0},t_{0})),$$

then $f(\mathbb{R}^m)$ has "big pieces of bi-Lipschitz images of \mathbb{R}^m ".

- BPBI: ∃L > 1 and α > 0 such that ∀ξ ∈ f(ℝ^m) and s > 0, f(ℝ^m) ∩ Bⁿ(ξ, s) intersects some L-bi-Lipschitz image of ℝ^m in a set of ℋ^m measure at least αs^m.
- Restriction to m ≥ 2: our proof uses a theorem of Gehring that Jh is an A_∞ weight if h : ℝ^m → ℝ^m is quasiconformal. We do not know whether theorem holds when m = 1.