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I turn away in fright and horror from this lamentable
plague of functions that do not have derivatives.

— C. Hermite, 1893

...clouds are not spheres, mountains are not cones,
coastlines are not circles, and bark is not smooth, nor
does lightning travel in a straight line.

— B. Mandelbrot, 1977
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Aspects of nonsmooth analysis

1 nonsmooth objects (e.g. sets, measures...)
in (smooth) spaces

2 nonsmooth functions
between (smooth) spaces

3 nonsmooth spaces
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Cantor sets
C (λ), 0 < λ < 1/2:

C (λ) =
∞⋂
k=0

Ck(λ)

1 At stage k : Ck(λ) has 2k intervals of length λk

2 Lebesgue measure L(Ck(λ)) = (2λ)k , 0 < 2λ < 1

3 Lebesgue measure
L(C (λ)) = limk→∞ L(Ck(λ)) = limk→∞(2λ)k = 0
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Cantor sets
Lebesgue measure cannot distinguish C (1/3), C (1/4), C (9/20)
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Cantor sets
But our intuition says that C (1/4) “<” C (1/3) “<” C (9/20)
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s-dimensional Hausdorff measures Hs on Rn

Let A ⊆ Rn be any set. Let s ≥ 0 be any nonnegative real number

1 For any δ > 0 cover A by sets E1,E2, . . . of diameter ≤ δ
2 Weight each set in the cover by its diameter to power s

3 Optimize over all such covers

Hs
δ(A) := inf

{ ∞∑
i=1

(diamEi )
s : A ⊂

∞⋃
i=1

Ei ; diamEi ≤ δ

}

4 Use only finer and finer covers

Hs(A) := lim
δ→0
Hs
δ(A)

Hs is called s-dimensional Hausdorff measure
(Borel regular outer measure)
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Some examples / properties of Hausdorff measure

1 Open balls BRn(x , r) in Rn have Hn(B(x , r)) = c(n)rn

2 If s < n, then Hs(BRn(x , r)) =∞

3 If t > n, then Ht(BRn(x , r)) = 0

4 Line segments [a, b] in Rn have H1([a, b]) = |b − a|

5 If s < 1, then Hs([a, b]) =∞

6 If s > 1, then Hs([a, b]) = 0

7 If A ⊆ Rn and Hr (A) > 0, then Hs(A) =∞ for all s < r

8 If A ⊆ Rn and Hr (A) <∞, then Ht(A) = 0 for all t > r
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Hausdorff dimension

For any set A ⊆ Rn, there is a unique number d ∈ [0, n] such that

1 Hs(A) =∞ for all s < d

2 Hs(A) = 0 for all s > d

The number d = dimH(A) where the transition happens is called
the Hausdorff dimension of A.
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Hausdorff dimension of Cantor sets

For all λ ∈ (0, 1/2), the Cantor set C (λ) has Hausdorff dimension

dimH C (λ) =
log(2)

log(1/λ)
∈ (0, 1)

dimH C (1/4) = log(2)/ log(4) = 0.5000000...

dimH C (1/3) = log(2)/ log(3) = 0.6309292...

dimH C (9/20) = log(2)/ log(20/9) = 0.8680532...

dimH C (λ) ↓ 0 as λ ↓ 0

dimH C (λ) ↑ 1 as λ ↑ 1/2
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Metric spaces

A metric space is a set X equipped with a distance function
dist : X × X → [0,∞): for all x , y , z ∈ X

1 nondegenerate: dist(x , y) = 0 if and only if x = y

2 symmetric: dist(x , y) = dist(y , x)

3 triangle inequality: dist(x , z) ≤ dist(x , y) + dist(y , z).

Metric spaces are core objects / spaces in analysis

The definition of Hausdorff measure and Hausdorff dimension only
use the notions of coverings and diameter. So they make sense in
any metric space.

Computing the exact Hausdorff measure of a set is very hard.

Computing the Hausdorff dimension of a set is feasible.
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Maps between metric spaces

Let X ,Y be metric spaces. A map f : X → Y is Lipschitz if
there exists L <∞ such that

distY (f (x), f (y)) ≤ L distX (x , y) for all x , y ∈ X .

Natural class of maps between metric spaces: involves only
distance functions for the source and target spaces

Lipschitz maps do not stretch distances “too much”
(no more than a bounded multiplicative factor)

Let BX (x , r) denote an open ball in X . Let BY (y , s) denote
an open ball in Y . Then

f (BX (x , r)) ⊆ BY (f (x), Lr) for all x ∈ X and r > 0

For all sets E ⊆ X , diam f (E ) ≤ L diamE .
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Lipschitz maps don’t increase dimension

Theorem
If f : X → Y is Lipschitz, then Hs(f (X )) ≤ LsHs(X ).

Corollary

If f : X → Y is Lipschitz, then dimH f (X ) ≤ dimH X.

∑
i

(diam f (Ei ))s ≤ Ls
∑
i

(diamEi )
s .
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How large is the set of points where a Lipschitz function is
not differentiable?

Theorem (Rademacher)

If f : Rn → R is Lipschitz, then

Hn ({x ∈ Rn : f is not differentiable at x}) = 0.
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A research level problem about analysis in metric spaces:
Are there versions of Rademacher’s theorem in X 6= Rn?

What does it mean to take a derivative of a function
f : X → R when X is a metric space?

When does a metric space have some differentiable structure?
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A research level problem about analysis in metric spaces:
Are there versions of Rademacher’s theorem in X 6= Rn?

Theorem (Cheeger 1999)

Assume X is a metric space equipped with a measure µ such that

µ(B(x , 2r)) ≤ Cµ(B(x , r)) for all x ∈ X and r > 0

and (X , µ) satisfies a Poincaré inequality (Event #3 by Kleiner)
Then there exists

positive µ measure sets Ui of dimension 1 ≤ ni <∞
Lipschitz maps φi : Ui → Rni

such that for every Lipschitz map f : X → R, for every i ≥ 1, and
for µ-a.e. x ∈ Ui , there exists dfx ∈ Rni such that

lim
y→x

|f (y)− f (x)− dfx · (φi (y)− φi (x))|
dist(x , y)

= 0.
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µ(B(x , 2r)) ≤ Cµ(B(x , r)) for all x ∈ X and r > 0

and (X , µ) satisfies a Poincaré inequality (Event #3 by Kleiner)
Then there exists

positive µ measure sets Ui of dimension 1 ≤ ni <∞
Lipschitz maps φi : Ui → Rni

such that for every Lipschitz map f : X → R, for every i ≥ 1, and
for µ-a.e. x ∈ Ui , there exists dfx ∈ Rni such that

lim
y→x

|f (y)− f (x)− dfx · (φi (y)− φi (x))|
dist(x , y)

= 0.
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Additional classes of nonsmooth maps

Bi-Lipschitz maps

Hölder continuous maps

Sobolev maps

Quasiconformal maps

Quasisymmetric maps

Coarse isometries
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The Heisenberg group Hn

Hn = R2n × R.

p = (p1, . . . , p2n, p2n+1) := (p′, p2n+1) ∈ Hn,

p · q = (p1 + q1, · · · , p2n + q2n, p2n+1 + q2n+1 − A(p′, q′)) ,

A(p′, q′) = 2
n∑

i=1

(piqi+n − pi+nqi ).

Hn is not Abelian.

‖p‖H = (|p′|4 + p22n+1)1/4 and dH(p, q) = ‖p−1 · q‖H .

δr (p) = (rp′, r2p2n+1) and dH(δr (p), δr (q)) = rdH(p, q).
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The Heisenberg group Hn

Non-trivial subgroups of H1 can be:

Horizontal lines:

La = {(t, at, 0) ∈ H1 : t ∈ R}.

the (vertical) center of the group

T = {(0, 0, t) ∈ H1 : t ∈ R}.

the vertical subgroups,

Va = {(t, at, s) ∈ H1 : t, s ∈ R}.
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The Heisenberg group Hn: some Analysis

f : Rn → Rm is differentiable at x if there exists L : Rn → Rm

linear s.t

lim
y→x

|f (x)− f (y)− L(x − y)|
|x − y |

= 0.

f : Hn → Rm is Pansu-differentiable if there exists an Hn-linear
map L : Hn → Rm s.t

lim
y→x

|f (x)− f (y)− L(y−1 · x)|
dH(x , y)

= 0.

Theorem (Pansu Rademacher theorem)

Let U ⊂ Hn and f : U → Rm Lipshitz. Then f is Pansu
differentiable a.e in U.
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The Heisenberg group H1 as a fractal space

H1 ≈ R3.

|B(x , r)| = c r4 =⇒ dimH H1 = 4. (!)

If Σ is a smooth surface then dimH Σ = 3.

There exist (many) curves γ with dimH γ = 2.
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The geometry of H
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The geometry of H: Sub-Riemannian structure
Let X1,X2 be the left invariant vector fields

X1 = ∂x1 + 2x2∂x3 and X2 = ∂x2 − 2x1∂x3 .

Motion is only allowed along the horizontal planes:

HpH1 = span{X1(p),X2(p)}.
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Horizontal curves in H1

Horizontal curve:
An absolutely continuous curve γ : [0, S ]→ H1 such that

γ̇(s) ∈ Hγ(s)H1 for a.e. s ∈ [0, S ].

Length of a horizontal curve γ = (x , y , t) : [0, S ]→ H1:

`H(γ) =

∫ S

0

√
ẋ(s)2 + ẏ(s)2ds = `E (γ̃)

where γ̃ = π(γ) = (x , y) : [0,S ]→ R2.
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CC distance and geodesics in H1

CC-metric in H1: For p, q ∈ H1

dcc(p, q)

= inf{`H(γ) : γ : [0,S ]→ H1 horizontal , γ(0) = p, γ(0) = q}.

dcc is globally equivalent to dH .

A geodesic between p, q ∈ H1 is a horizontal curve of shortest
length joining p and q.

The only geodesically convex subsets of H1 are the empty set,
points, arcs of geodesics and H1 .
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The bubble set in H1

A horizontal curve γ connecting the origin to (0, 0, t) ∈ H1 is
a geodesic iff γ̃, i.e. its projection on R2, is a circle.

Thus there exist infinitely many such geodesics.

Rotating such a geodesic produces a surface Σ.

Dilating and translating vertically we obtain sets centered at
the origin o:

B(o,R) = {(p′, p3) ∈ H1 : |p3| < fR(|p′|)}

where fR(r) = 1
4

(
R2 arccos

(
r
R

)
+ r
√
R2 − r2

)
.

∂B(o,R) is C 2 but not C 3.
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The bubble set in H1
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The isoperimetric problem in Rn

Isoperimetric Inequality in Rn: For Ω bounded Borel set with finite
perimeter measure P.

|Ω|
n−1
n ≤ CnP(Ω)

Sharp constant Cn = (n1−1/nω
1/n
n−1)−1, where ωn−1 = surface

area of Sn−1.

Equality holds if and only if Ω is an n-sphere.
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The isoperimetric problem in H1

In R3 among all simple closed surfaces with given surface area, the
sphere encloses a region of maximal volume.

Theorem (Pansu)

There exists some C > 0 such that

|Ω|3/4 ≤ CPH(Ω)

for any bounded open set Ω with C 1 boundary.

Conjecture (Pansu 1982)

The best constant in the Heisenberg Isoperimetric inequality is
33/4

4
√
π

and equality holds iff Ω is a bubble set.
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The Kakeya conjecture

A Borel set in Rn, n ≥ 2 is called a Kakeya, or a Besicovitch set, if
it contains a unit segment in every direction and it has zero
Lebesgue measure.

(Besicovitch 20’s) Besicovitch sets exist in Rn for all n ≥ 2.

(Davies 1971) In R2, Besicovitch sets have Hausdorff
dimension 2.

Conjecture

If B is a Besicovitch set in Rn, n ≥ 3, then

dimH B = n.
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Kakeya sets and Harmonic Analysis

The disk conjecture in Rn, n ≥ 2,:
χB(0,1) is an Lp multiplier if 2n/(n + 1) < p < 2n/(2n − 1).

Fefferman in 1971 disproved the disk conjecture using
Besicovitch sets.

The Restriction Conjecture in Rn, n ≥ 3,

‖f̂ ‖Lq(Rn) .n,q ‖f ‖L∞(Sn−1) for q > 2n/(n − 1).

The restriction conjecture is equivalent to the Kakeya
conjecture!

The Kakeya conjecture implies the Bochner-Riesz conjecture.
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Best bounds for the Kakeya conjecture

Let B be a Besicovitch set in Rn

(Wolff, 95) For n = 3, 4,

dimH B ≥ n + 2

2
.

(Katz and Tao, 02) For n ≥ 5,

dimH B ≥ (2−
√

2)(n − 4) + 3.

Although the best known bounds are not due to him, Bourgain
has greatly contributed in the progress of the problem.
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has greatly contributed in the progress of the problem.
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