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Part 1 — Motivation



Dirichlet Problem and Harmonic Measure

Let n � 2 and let Ω � Rn be a regular domain for (D).

Dirichlet Problem

Given f 2 Cc(@Ω),

find u 2 C2(Ω) \ C(Ω):

(D)

 ∆u = 0 in Ω

u = f on @Ω

∆ = @x1x1 + @x2x2 + � � �+ @xnxn

9! family of probability measures f!XgX2Ω on the boundary @Ω

called harmonicmeasure ofΩwith pole at X 2 Ω such that

u(X) =

∫
@Ω

f (Q)d!X (Q) solves (D)

For unbounded domains, we may also consider harmonic measure

with pole at infinity.
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Examples of Regular Domains

NTA domains introduced by Jerison and Kenig 1982:

Quantitative Openness + Quantitative Path Connectedness

Smooth Domains Lipschitz Domains Quasispheres

(e.g. snowflake)



Two-Phase Free Boundary Regularity Problem

Ω � Rn is a 2-sided domain if:

1. Ω+ = Ω is open and connected

2. Ω� = Rn n Ω is open and connected

3. @Ω+ = @Ω�

Let Ω � Rn be a 2-sided domain, equipped with harmonic

measures !+ on Ω+ and !� on Ω�.

If !+ � !� � !+, then f =
d!�
d!+

exists, f 2 L1(d!+).

Determine the extent to which existence or regularity of f
controls the geometry or regularity of the boundary @Ω.
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Regularity of a boundary can be expressed in terms of

geometric blowups of the boundary



Measure-Theoretic Tangents Exist at Typical Points

Theorem (Azzam-Mourgoglou-Tolsa-Volberg 2016)

Let Ω � R
n be a 2-sided domain with harmonic measures !� on Ω�. If

!+ � !� � !+, then @Ω = G [ N, where

1. !�(N) = 0 andHn�1 G is locally finite,

2. !� G � Hn�1 G � !� G ,

3. up to a !�-null set, G is contained in a countable union of graphs of

Lipschitz functions fi : Vi ! V?
i , V 2 G(n; n � 1).

In contemporary Geometric Measure Theory, we express (3) by saying

!� are (n � 1)-dimensional Lipschitz graph rectifiable.

In particular, if !+ � !� � !+, then at !�-a.e. x 2 @Ω,

there is a unique !�-approximate tangent plane V 2 G(n; n � 1):

lim sup
r#0

!�(B(x ; r))
rn�1 > 0 and lim sup

r#0

!�(B(x ; r) n Cone(x + V ; �))

rn�1 = 0

for every cone around the (n � 1)-plane x + V .
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Example: Polynomial Singularity

Figure: The zero set of Szulkin’s (1978) degree 3 homogeneous harmonic

polynomial p(x ; y ; z) = x3 � 3xy2 + z3 � 1:5(x2 + y2)z

Ω� = fp� > 0g is a 2-sided NTA domain, !+ = !� (pole at infinity),

log d!�
d!+ � 0 but @Ω� = fp = 0g is not smooth at the origin.

log d!�
d!+ is smooth 6) @Ω is smooth
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Useful Terminology: Local Set Approximation

(B-Lewis 2015)

Let A � R
n be closed, let xi 2 A, let xi ! x 2 A, and let ri # 0.

If
A� x

ri
! T , we say that T is a tangent set of A at x .

I Attouch-Wets topology: Σi ! Σ if and only if for every r > 0,
limi!1

(
supx2Σi\Br dist(x ;Σ) + supy2Σ\Br dist(y ;Σi)

)
= 0

I There is at least one tangent set at each x 2 A.

I There could be more than one tangent set at each x 2 A.

If
A� xi

ri
! S , we say that S is a pseudotangent set of A at x .

I Every tangent set of A at x is a pseudotangent set of A at x .

I There could be pseudotangent sets that are not tangent sets.

We say that A is locally bilaterallywell approximated by S if

every pseudotangent set of A belongs to S .
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Tangents underWeak Regularity

Theorem (Kenig-Toro 2006, B 2011, B-Engelstein-Toro 2017)
Let Ω � R

n be a 2-sided NTA domain equipped with harmonic measures

!� on Ω�. If !+ � !� � !+ and f =
d!�

d!+
has log f 2 VMO(d!+) , then

I @Ω is locally bilaterally well approximated by zero sets of

harmonic polynomials p : Rn ! R of degree at most d0 such that

Ω�
p = fx : �p(x) > 0g are NTA domains and dimM @Ω = n � 1.

Moreover, we can partition @Ω = Γ1 [ S = Γ1 [ Γ2 [ � � � [ Γd0 :

I Γ1 is relatively open in @Ω, Γ1is locally bilaterally well approximated by

(n � 1)-planes, and dimM Γ1 = n � 1

I S is closed, !�(S) = 0 and dimM S � n � 3

I S = Γ2 [ � � � [ Γd0 , where x 2 Γd , every tangent set of @Ω at x is the

zero set of a homogeneous harmonic polynomial q of degree d such

that Ω�
q are NTA domains.
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Zero Sets of HHP in R2 and R3 of Degrees 1, 2, 3, 4, 5

Admissible Tangents

I In first row, only the first example (degree 1) separates the plane

into 2-sided NTA domains

I In second row, only the first, third, and fifth examples (odd degrees)

separate space into 2-sided NTA domains (Lewy 1977)

I In R4 or higher dimensions, there are examples of all degrees that

separate space into 2-sided NTA domains (B-Engelstein-Toro 2017)
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Theorem (Engelstein 2016 + B-Engelstein-Toro 2020)

Assume that Ω� are NTA and log f 2 C0;�(@Ω) (Hölder continuous) .

Then @Ω has a unique tangent set at every x 2 @Ω.

Theorem (B-Engelstein-Toro 2023)

For any d � 1, there exist examples where Ω� are NTA, Γd 6= ;,

log f 2 C(@Ω) n
⋃

�>0 C0;�(@Ω) (continuous, but not Hölder) and

@Ω has continuumof distinct tangent sets at some x 2 Γd .

Figure: Blow-ups Σ=r of the interface Σ = @Ω� of the graph domains

associated to v(x ; y) = x log j log(
√

x2 + y2)j sin(log j log(
√

x2 + y2)j) at a

flat point 0 2 Γ1. Left: r = 1 Center: r = 10�6 Right: r = 10�12



Wewant to carry out the same sort of investigation in

the context of the heat equation



Heat Dirichlet Problem and Caloric Measure

Let n � 1 and let Ω � R
n+1 = R

n � R be a regular domain for (HD).

The essential boundary @eΩ includes the part of @Ω that is accessible by

paths in Ωmoving backwards-in-time.

9! family of probability measures

f!X ;tg(X ;t)2Ω on @eΩ called caloric measure

ofΩwith pole at (X ; t) 2 Ω such that

u(X ; t) =
∫
@eΩ

f (Y ; s)d!X ;t(Y ; s)

solves heat Dirichlet problemwith

boundary data f 2 Cc(@eΩ): u 2 C2(Ω),

@tu �∆X u = 0 in Ω and u �
= f on @eΩ

*requires interpretation on @ssΩ � @eΩ

Theorem
Caloric measure of present & future is zero:

!X ;t(f(Y ; s) 2 @Ω : s � tg) = 0



Two-Phase Caloric Free Boundary Regularity

Caloric Analogue of Kenig-Toro (2006) + B (2011):

Theorem (Mourgoglou-Puliatti 2021)

Let Ω+ = Rn+1 nΩ� and Ω� = Rn+1 nΩ+ be complimentary domains

with “nice” (for heat potential theory) common boundary.

Let !� be caloric measures on Ω� with poles at (X�
0 ; t0).

If !+ � !� � !+ and f = d!�
d!+ has log f 2 VMO(d!+) , then

I @Ω is locally bilaterally well approximated1 by zero sets of

caloric polynomials p : Rn+1 ! R of degree at most d0

such that Ω�p = fx : �p(x) > 0g are connected.

Moreover, we can partition @Ω = Γ1 [ Γ2 [ � � � [ Γd0 where

I (X ; t) 2 Γd , every tangent set of @Ω at (X ; t) is the zero set of
a parabolically homogeneous caloric polynomial q of degree d
such that Ω�q are connected.

1where pseudotangent sets are defined using parabolic dilations
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Mourgoglou and Puliatti did not give anyexamples of

time-dependent homogeneous caloric polynomials

whose zero set separates Rn+1 into two components

To validate their theory, we need examples to verify

that time-dependent blow-ups exist

Examples exist, but not for all pairs of n and d !
This is the content of B-Jeznach (2024)
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Part 2 — Nodal Domains

of Caloric Polynomials



Nodal Domains

Let u : Rn+1 ! R be continuous.

I The nodal set of u is fu = 0g (possibly empty).

I A nodal domain of u is a connected component of fu 6= 0g.

N (u) 2 f0; 1; 2; : : : g [ f1g denotes number of nodal domains of u

A polynomial p : Rn+1 ! R in variables (X ; t) = (X1; : : : ;Xn; t)with
real coefficients is caloric if p solves heat equation: @tp �∆X p � 0.

Lemma
If p : Rn+1 ! R is a non-constant caloric polynomial of degree d ,
then 2 � N (p) � (d + 1)n(d + 2).
Proof: There is a point (X ; t) 2 Rn+1 with t < 0 at which p(X ; t) = 0
(orthogonality of negative-time slices). Applying the mean value property

for heat balls, there are (X�; t�) near (X ; t)with t� < t at which
�p(X�; t�) > 0. HenceN (p) � 2. The upper bound holds for arbitrary

polynomials in Rn+1 of degree d byMilnor (1964).



Time Coefficients of Caloric Polynomials
Suppose that we have a polynomial solution of the heat equation:

p(X ; t) = tdpd(X) + td�1pd�1(X) + � � �+ tp1(X) + p0(X); pd(X) 6� 0

Applying the heat opeartor @t �∆X we get:

td(�∆X pd(X)) + td�1(dpd(X)�∆X pd�1(X))

+ � � �+ t(2p2(X)�∆X p1(X)) + (p1(X)�∆X p0(X)) = 0

∆X pd(X) = 0 : pd(X) is harmonic

∆X pd�1(X) = dpd(X) : pd�1(X) is bi-harmonic

...
...

∆X p1(X) = 2p2(X) : p1(X) is d-harmonic

∆X p0(X) = p1(X) : p0(X) is (d + 1)-harmonic
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Time Coefficients of Caloric Polynomials
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Homogeneous Caloric Polynomials

If u(X ; t) solves the heat equation � > 0, then v(X ; t) � u(�X ; �2t) solves
the heat equation.

A homogeneous caloric polynomial (HCP) of degree d is a caloric

polynomial p on Rn+1 that is parabolically homogeneous:

p(�X ; �2t) � �dp(X ; t)

I For any exponent k 2 N and multi-index � 2 Nn, the monomial tkX�

is parabolically homogeneous of degree 2k + j�j.

I Parabolic and algebraic homogeneity are distinct notions:

p(x ; t) = t2 + tx2 + x4=12

is an HCP of degree 4 in R1+1, but p is not algebraically homogeneous.

Nevertheless, the parabolic degree and the algebraic degree of an

HCP always coincide.

I Any time-dependent HCP has degree at least 2.



Homogeneous Caloric Polynomials

If u(X ; t) solves the heat equation � > 0, then v(X ; t) � u(�X ; �2t) solves
the heat equation.

A homogeneous caloric polynomial (HCP) of degree d is a caloric

polynomial p on Rn+1 that is parabolically homogeneous:

p(�X ; �2t) � �dp(X ; t)

I For any exponent k 2 N and multi-index � 2 Nn, the monomial tkX�

is parabolically homogeneous of degree 2k + j�j.

I Parabolic and algebraic homogeneity are distinct notions:

p(x ; t) = t2 + tx2 + x4=12

is an HCP of degree 4 in R1+1, but p is not algebraically homogeneous.

Nevertheless, the parabolic degree and the algebraic degree of an

HCP always coincide.

I Any time-dependent HCP has degree at least 2.



Homogeneous Caloric Polynomials

If u(X ; t) solves the heat equation � > 0, then v(X ; t) � u(�X ; �2t) solves
the heat equation.

A homogeneous caloric polynomial (HCP) of degree d is a caloric

polynomial p on Rn+1 that is parabolically homogeneous:

p(�X ; �2t) � �dp(X ; t)

I For any exponent k 2 N and multi-index � 2 Nn, the monomial tkX�

is parabolically homogeneous of degree 2k + j�j.

I Parabolic and algebraic homogeneity are distinct notions:

p(x ; t) = t2 + tx2 + x4=12

is an HCP of degree 4 in R1+1, but p is not algebraically homogeneous.

Nevertheless, the parabolic degree and the algebraic degree of an

HCP always coincide.

I Any time-dependent HCP has degree at least 2.



Homogeneous Caloric Polynomials

If u(X ; t) solves the heat equation � > 0, then v(X ; t) � u(�X ; �2t) solves
the heat equation.

A homogeneous caloric polynomial (HCP) of degree d is a caloric

polynomial p on Rn+1 that is parabolically homogeneous:

p(�X ; �2t) � �dp(X ; t)

I For any exponent k 2 N and multi-index � 2 Nn, the monomial tkX�

is parabolically homogeneous of degree 2k + j�j.

I Parabolic and algebraic homogeneity are distinct notions:

p(x ; t) = t2 + tx2 + x4=12

is an HCP of degree 4 in R1+1, but p is not algebraically homogeneous.

Nevertheless, the parabolic degree and the algebraic degree of an

HCP always coincide.

I Any time-dependent HCP has degree at least 2.



Homogeneous Caloric Polynomials

If u(X ; t) solves the heat equation � > 0, then v(X ; t) � u(�X ; �2t) solves
the heat equation.

A homogeneous caloric polynomial (HCP) of degree d is a caloric

polynomial p on Rn+1 that is parabolically homogeneous:

p(�X ; �2t) � �dp(X ; t)

I For any exponent k 2 N and multi-index � 2 Nn, the monomial tkX�

is parabolically homogeneous of degree 2k + j�j.

I Parabolic and algebraic homogeneity are distinct notions:

p(x ; t) = t2 + tx2 + x4=12

is an HCP of degree 4 in R1+1, but p is not algebraically homogeneous.

Nevertheless, the parabolic degree and the algebraic degree of an

HCP always coincide.

I Any time-dependent HCP has degree at least 2.



HCP in R1+1

Fact: In R1, harmonic functions linear: u00(x) = 0 ) u(x) = mx + b.

Corollary: Up to scaling by a constant, there is a unique HCP in

R1+1 of each degree d � 1: p0(x ; t) = 1 p1(x ; t) = x
p2(x ; t) = t + 1

2 x2 p3(x ; t) = tx + 1
3 x3

p2k(x ; t) = tk + k
2! tk�1x2 + k(k�1)

4! tk�2x4 + � � �+ k!
(2k)!x2k

p2k+1(x ; t) = tkx + k
3! tk�1x3 + k(k�1)

5! tk�2x5 + � � �+ k!
(2k+1)!x2k+1

Theorem: For each multi-index � 2 Nn, define

p�(X ; t) = p�1(X1; t) � � � p�n(Xn; t). Then fp�(X ;t) : j�j = dg is a basis
for the vector space of all HCPs in Rn+1 of degree d (and zero).

Examples: xy = p1(x ; t)p1(y ; t)
Examples: x2 � y2 = 2(t + 1

2 x2)� 2(t + 1
2 y2) = 2p2(x ; t)� 2p2(y ; t)
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Theorem (Factorization Lemma)
For all d � 2, the “basic hcp” pd(x ; t) in R1+1 assumes the form

pd(x ; t) =
{

(t + ad;1x2) � � � (t + ad;kx2) when d = 2k is even;

x(t + ad;1x2) � � � (t + ad;kx2) when d = 2k + 1 is odd;

for some distinct numbers 0 < ad;1 < � � � < ad;k . Moreover,

p2k�1(x ; t) = x(t + a1x2) � � � (t + ak�1x2); p2k+1(x ; t) = x(t + c1x2) � � � (t + ckx2);

p2k(x ; t) = (t + b1x2) � � � (t + bkx2);

with the ai’s, bi’s, and ci’s each listed in increasing order, then the

coefficients associated with consecutive polynomials are interlaced:{
b1 < a1 < b2 < a2 < � � � < ak�1 < bk ;

c1 < b1 < c2 < b2 < � � � < bk�1 < ck < bk :

Why? pd(x ;�1) = dd=2e!
d! Hd(x=2), where Hd(x) is the so-calledHermite

orthogonal polynomial. Use facts about these and parabolic scaling.
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I The nodal set of a degree d hcp in R1+1 is a union of bd=2c nested,
downward-opening parabolas with a common turning point at the

origin, and when d is odd, an additional vertical line (the t-axis).

I From left to right, we illustrate the cases d = 2, …, d = 5.

I Inside the nodal set of pdpd+1, the “nodal parabolas” of consecutive

hcps pd and pd+1 are intertwined:

I “widest” parabola of pd+1 sits above “widest” parabola of pd ;

I “widest” parabola of pd above “second widest” parabola of pd+1;

I and so on...

Corollary

Any hcp p(x ; t) in R1+1 of degree d � 1 has exactly 2dd=2e nodal domains.



Consequence:

In the n = 1 case of Mourgoglou and Puliatti’s theorem,

log d!�
d!+ 2 VMO(d!+) implies that @Ω = Γ1 [ Γ2.

The only tangent sets of the boundary are:

Remark: So far this improvement only uses classical

results



Part 3 — New Results



Minimum and Maximum Number of Nodal Domains

Let mn;d and Mn;d denote the minimum and maximum number of

nodal domains among time-dependent HCP in Rn+1 of degree d .
Recall that m1;d = M1;d = 2dd=2e.

Theorem (B-Jeznach 2024: minimum number mn;d )

When n = 2,

m2;d =

2; when d 6� 0 (mod 4);

3; when d � 0 (mod 4):

When n � 3, we have mn;d = 2 for all d � 2.

Theorem (B-Jeznach 2024: maximum number Mn;d )

For all n � 2, Mn;d = Θ(dn) as d !1. More precisely,⌊
d
n

⌋n
� Mn;d �

(
n + d

n

)
for all n � 2; d � 2:



The method of proof is constructive and gives examples acheiving mn;d .

Example 1: The polynomial

p(x ; y ; t) = 150t(3x + y) + 27x3 + 267x2y + 144xy2 � 64y3

is an hcp of degree 3 in R2+1 andN (p) = 2.

Example 2: The polynomial

p(x ; y ; t) = 7500t2 + 150t(37x2 � 7xy + 13y2)

+ 192x4 + 176x3y + 1623x2y2 � 351xy3 � 108y4

is an hcp of degree 4 in R2+1 andN (p) = 3.

Example 3: The polynomial

p(x ; y ; z; t) = 12t2 + 12tx2 + x4 + y4 � 6y2z2 + z4

is an hcp of degree 4 in R3+1 andN (p) = 2.

The zero set in each example is smooth outside of the origin.



Figure: Gallery of nodal sets of homogeneous caloric polynomials in R2+1

achieving the minimum number m2;d of nodal domains

From left to right, d = 4, d = 5, and d = 6

For increased visibility, we show the intersection of the full nodal set with a

spherical annulus



Consequence:

Corollary

Let Ω� � Rn+1 be as in Mourgoglou and Puliatti’s theorem.

Assume that log d!�
d!+ 2 VMO(d!+)

When n = 2,
@Ω =

⋃
k�0

Γ4k+1 [ Γ4k+2 [ Γ4k+3;

for every d 6� 0 (mod 4), the stratum Γd is nonempty for some pair

of domains satisfying the free boundary condition.

When n = 3, the stratum Γd can be nonempty for every d � 1.



Part 4 — Some Proof Ideas



Let’s focus on the problem of finding HCP in R2+1 that

realize the minimal number of nodal domains.

Counting the nodal domains of an HCP p is equivalent to counting

the nodal domains of pjS2 . We can attempt to implement Lewy’s

method for spherical harmonics (1977) in the parabolic context:

1. Begin with an HCP �1 of degree d whose nodal set can be

described explicitly.

2. Find another HCP �2 of degree d so that the nodal set of the

perturbation u = �1 � ��2 in S2 is a single Jordan curve.

The key difficulty in this strategy is finding certain compatibility

conditions between �1; �2.



Lemma (Lewy 1977, B-Jeznach 2024)

Suppose that G : Br (0) � R
2 ! R takes the form of a product

G(x ; y) =
∏m

i=1 gi(x ; y) for some m � 2, where g1; : : : ; gm : Br (0)! R are

real-analytic functions satisfying

I gi(0; 0) = 0 and @y gi(0; 0) 6= 0 for all i ,

I fgi = 0g \ fgj = 0g = f(0; 0)g for all i 6= j .

If F : Br (0)! R is C1 and F (0; 0) > 0, then there exists � 2 (0; r) and �0 > 0
such that for all � 2 (0; �0), the nodal set of G � �F in B� (0) consists of m
pairwise disjoint simple curves, one inside each of the m connected

components of fG > 0g. The same conclusion holds when F (0; 0) < 0
except that then the nodal set of the perturbation G � �F lies in fG < 0g.



Figure: Zero set of G(x ; y) = (x4 � y � y2)(x2(x2 � 1) + 1
2 y)(3x3 � y) and its

perturbation G � �F : � = 10�5, F (x ; y) = 1 (left), F (x ; y) = �1 (right).



The Case d � 3 is Odd
Let pd(x ; t) denote the basic HCP in R1+1.

Theorem (B-Jeznach 2024)

Assume d � 3 is odd. For all sufficiently small � > 0 and � > 0,

u�;�(x ; y ; t) := ypd�1(x ; t)� �pd(x cos�� y sin�; t)

is a time-dependent hcp in R2+1 of degree d andNu�;� = 2

Figure: Nodal set when d = 5, � = 0:3, � = �=10



Rewrite u�;�jS2(x ; y ; t) in spherical coordinates
Fix " > 0 and � > 0 (small) and write u = u�;�, p = pd�1, q = pd , and

q�(x ; y ; t) = pd(x cos�� y sin�; t).

Consider the standard spherical coordinates on S2 given by

x = cos � cos�; y = sin � cos�; t = sin�; �� < � � �; ��=2 � � � �=2

and write p, q, q�, and u for the functions corresponding to
ypd(x ; t), q(x ; t), q�(x ; y ; t), and u�;�(x ; y ; t) on S2 written in spherical

coordinates. Hence

p(�; �) = sin � cos�

k∏
i=1

(
sin�+ bi cos

2 � cos2 �
)
;

q(�; �) = cos � cos�

k∏
i=1

(
sin�+ ci cos

2 � cos2 �
)
;

q�(�; �) = q(� + �; �); u(�; �) = p(�; �)� �q�(�; �):



Figure: Proof of Theorem (1/2): Nodal set of p (top/left), q (top/right), and u
(bottom) when k = 3 and � and � are sufficiently small.



Figure: Proof of Theorem (2/2): Nodal sets of p (top) and u (bottom) near

� = 0 (left) and � = �=2 (right) when k = 3. Sign of q� at singular points in

nodal set of p determines local configuration of nodal domains of u.



The Other Cases

Theorem (cf. Theorem 1 in Lewy (1977))

Assume d = 4k + 2 for some k � 0. Let  (x ; y) = Im((x + iy)d) and

let pd(x ; t) be the basic hcp in R1+1. For all sufficiently small � > 0,

u�(x ; y ; t) :=  (x ; y)� �pd(x ; t)

is a time-dependent hcp in R2+1 of degree d andN (u�) = 2

Theorem (B-Jeznach 2024)

Assume d = 4k for some k � 1. For small enough � > 0 and � > 0,

u�;�(x ; y ; t) :=p2k(x ; t)p2k(y ; t)

+ �p2k+1(x cos�� y sin�; t)p2k�1(x sin�+ y cos�; t)

is a time-dependent hcp in R2+1 of degree d andN (u�;�) = 3



Thank you for your attention!

Connecticut, TwoWeeks Ago


