Nodal Domains of Homogeneous Caloric Polynomials

loint work with Cole leznach

Matthew Badger

University of Connecticut

May 2024

University of Arkansas 49th Annual Spring Lecture Series

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶

 2990

Research partially supported by NSF DMS 2154047

Part 1 — Motivation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q*

Dirichlet Problem and Harmonic Measure

Let $n\geq 2$ and let $\Omega\subset \mathbb{R}^n$ be a regular domain for (D).

∃! family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary ∂Ω called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$
u(X) = \int_{\partial \Omega} f(Q) d\omega^X(Q) \quad \text{ solves (D)}
$$

For unbounded domains, we may also consider harmonic measure with pole at infinity.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Dirichlet Problem and Harmonic Measure

Let $n\geq 2$ and let $\Omega\subset \mathbb{R}^n$ be a regular domain for (D).

∃! family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary ∂Ω called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$
u(X) = \int_{\partial \Omega} f(Q) d\omega^X(Q) \quad \text{ solves (D)}
$$

For unbounded domains, we may also consider harmonic measure with pole at infinity.

KORK ERKEY EL YOUR

Dirichlet Problem and Harmonic Measure

Let $n\geq 2$ and let $\Omega\subset \mathbb{R}^n$ be a regular domain for (D).

∃! family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary ∂Ω called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$
u(X) = \int_{\partial \Omega} f(Q) d\omega^X(Q) \quad \text{ solves (D)}
$$

For unbounded domains, we may also consider harmonic measure with pole at infinity.

KORK ERKEY EL YOUR

Examples of Regular Domains

NTA domains introduced by Jerison and Kenig 1982: Quantitative Openness + Quantitative Path Connectedness

Smooth Domains Lipschitz Domains Quasispheres

(e.g. snowflake)

 299

4 ロ > 4 何 > 4 ミ > 4 ミ >

Two-Phase Free Boundary Regularity Problem

$Ω ⊂ ℝⁿ$ is a **2-sided domain** if:

- 1. $\Omega^+ = \Omega$ is open and connected
- 2. $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ is open and connected

4 ロ > 4 何 > 4 ミ > 4 ミ > 1

 2990

3. $\partial \Omega^+ = \partial \Omega^-$

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided domain, equipped with harmonic measures ω^+ on Ω^+ and ω^- on Ω^- .

If
$$
\omega^+ \ll \omega^- \ll \omega^+
$$
, then $f = \frac{d\omega^-}{d\omega^+}$ exists, $f \in L^1(d\omega^+)$.

Determine the extent to which existence or regularity of f controls the geometry or regularity of the boundary $\partial \Omega$.

Two-Phase Free Boundary Regularity Problem

$Ω ⊂ ℝⁿ$ is a **2-sided domain** if:

- 1. $\Omega^+ = \Omega$ is open and connected
- 2. $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ is open and connected
- 3. $\partial \Omega^+ = \partial \Omega^-$

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided domain, equipped with harmonic measures ω^+ on Ω^+ and ω^- on $\Omega^-.$

If
$$
\omega^+ \ll \omega^- \ll \omega^+
$$
, then $f = \frac{d\omega^-}{d\omega^+}$ exists, $f \in L^1(d\omega^+)$.

Determine the extent to which existence or regularity of f controls the geometry or regularity of the boundary ∂Ω.

Regularity of a boundary can be expressed in terms of geometric blowups of the boundary

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Measure-Theoretic Tangents Exist at Typical Points

Theorem (Azzam-Mourgoglou-Tolsa-Volberg 2016) Let $\Omega\subset \mathbb{R}^n$ be a 2-sided domain with harmonic measures ω^\pm on $\Omega^\pm.$ If $\omega^+\ll\omega^-\ll\omega^+$, then $\partial\Omega=G\cup N$, where

- 1. $\omega^{\pm}(N)=0$ and $\mathcal{H}^{n-1}\sqcup G$ is locally finite,
- 2. $\omega^{\pm} \sqcup G \ll \mathcal{H}^{n-1} \sqcup G \ll \omega^{\pm} \sqcup G$,
- 3. up to a ω^\pm -null set, G is contained in a countable union of graphs of Lipschitz functions $f_i: V_i \to V_i^{\perp}$, $V \in G(n, n-1)$.

In contemporary Geometric Measure Theory, we express (3) by saying ω^\pm are ($n-1)$ -dimensional **Lipschitz graph rectifiable**.

In particular, if $\omega^+\ll\omega^-\ll\omega^+$, then at ω^\pm -a.e. $\mathrm{x}\in\partial\Omega$, there is a unique ω^\pm -approximate tangent plane $V\in G(n,n-1)$:

$$
\limsup_{r\downarrow 0}\frac{\omega^{\pm}(B(x,r))}{r^{n-1}}>0 \quad \text{and} \quad \limsup_{r\downarrow 0}\frac{\omega^{\pm}(B(x,r)\setminus \text{Cone}(x+V,\alpha))}{r^{n-1}}=0
$$

K ロ K K 레 K K ミ K K E K X H X K K X H Z H X A C Y C K

for every cone around the $(n - 1)$ -plane $x + V$.

Measure-Theoretic Tangents Exist at Typical Points

Theorem (Azzam-Mourgoglou-Tolsa-Volberg 2016) Let $\Omega\subset \mathbb{R}^n$ be a 2-sided domain with harmonic measures ω^\pm on $\Omega^\pm.$ If $\omega^+\ll\omega^-\ll\omega^+$, then $\partial\Omega=G\cup N$, where

- 1. $\omega^{\pm}(N)=0$ and $\mathcal{H}^{n-1}\sqcup G$ is locally finite,
- 2. $\omega^{\pm} \sqcup G \ll \mathcal{H}^{n-1} \sqcup G \ll \omega^{\pm} \sqcup G$,
- 3. up to a ω^\pm -null set, G is contained in a countable union of graphs of Lipschitz functions $f_i: V_i \to V_i^{\perp}$, $V \in G(n, n-1)$.

In contemporary Geometric Measure Theory, we express (3) by saying ω^\pm are ($n-1)$ -dimensional **Lipschitz graph rectifiable**.

In particular, if $\omega^+ \ll \omega^- \ll \omega^+$, then at ω^\pm -a.e. $\mathrm{x} \in \partial \Omega$, there is a unique ω^\pm -approximate tangent plane $V\in G(n,n-1)$:

$$
\limsup_{r\downarrow 0}\frac{\omega^{\pm}(B(x,r))}{r^{n-1}}>0\quad\text{and}\quad\limsup_{r\downarrow 0}\frac{\omega^{\pm}(B(x,r)\setminus\text{Cone}(x+V,\alpha))}{r^{n-1}}=0
$$

K ロ K K 레 K K ミ K K E K X H X K K X H Z H X A C Y C K

for every cone around the $(n - 1)$ -plane $x + V$.

Measure-Theoretic Tangents Exist at Typical Points

Theorem (Azzam-Mourgoglou-Tolsa-Volberg 2016) Let $\Omega\subset \mathbb{R}^n$ be a 2-sided domain with harmonic measures ω^\pm on $\Omega^\pm.$ If $\omega^+\ll\omega^-\ll\omega^+$, then $\partial\Omega=G\cup N$, where

- 1. $\omega^{\pm}(N)=0$ and $\mathcal{H}^{n-1}\sqcup G$ is locally finite,
- 2. $\omega^{\pm} \sqcup G \ll \mathcal{H}^{n-1} \sqcup G \ll \omega^{\pm} \sqcup G$,
- 3. up to a ω^\pm -null set, G is contained in a countable union of graphs of Lipschitz functions $f_i: V_i \to V_i^{\perp}$, $V \in G(n, n-1)$.

In contemporary Geometric Measure Theory, we express (3) by saying ω^\pm are ($n-1)$ -dimensional **Lipschitz graph rectifiable**.

In particular, if $\omega^+\ll\omega^-\ll\omega^+$, then at ω^\pm -a.e. $\mathrm{\mathsf{x}}\in\partial\Omega$, there is a unique ω^\pm -approximate tangent plane $\mathsf{V}\in\mathsf{G}(n,n-1)$:

$$
\limsup_{r\downarrow 0}\frac{\omega^{\pm}(B(x,r))}{r^{n-1}}>0\quad\text{and}\quad\limsup_{r\downarrow 0}\frac{\omega^{\pm}(B(x,r)\setminus\text{Cone}(x+V,\alpha))}{r^{n-1}}=0
$$

for every cone around the $(n - 1)$ -plane $x + V$.

KID KA LIKA DI KE KA LIKA KIDIKA DI KA

Example: Polynomial Singularity

Figure: The zero set of Szulkin's (1978) degree 3 homogeneous harmonic polynomial $p(x, y, z) = x^3 - 3xy^2 + z^3 - 1.5(x^2 + y^2)z$

 $\Omega^{\pm}=\{p^{\pm}>0\}$ is a 2-sided NTA domain, $\omega^{+}=\omega^{-}$ (pole at infinity), $\log \frac{d\omega^+}{d\omega^+}\equiv 0$ but $\partial \Omega^\pm=\{p=0\}$ is not smooth at the origin.

K ロ X × 伊 X × ミ X × ミ X → ミ ミ

Example: Polynomial Singularity

Figure: The zero set of Szulkin's (1978) degree 3 homogeneous harmonic polynomial $p(x, y, z) = x^3 - 3xy^2 + z^3 - 1.5(x^2 + y^2)z$

 $\Omega^{\pm}=\{p^{\pm}>0\}$ is a 2-sided NTA domain, $\omega^{+}=\omega^{-}$ (pole at infinity), $\log \frac{d\omega^-}{d\omega^+}\equiv 0$ but $\partial \Omega^\pm=\{p=0\}$ is not smooth at the origin.

A DIA K F A A B A B A A A A A A A B A A A A A

Example: Polynomial Singularity

Figure: The zero set of Szulkin's (1978) degree 3 homogeneous harmonic polynomial $p(x, y, z) = x^3 - 3xy^2 + z^3 - 1.5(x^2 + y^2)z$

 $\Omega^{\pm}=\{p^{\pm}>0\}$ is a 2-sided NTA domain, $\omega^{+}=\omega^{-}$ (pole at infinity), $\log \frac{d\omega^-}{d\omega^+}\equiv 0$ but $\partial \Omega^\pm=\{p=0\}$ is not smooth at the origin.

log $\frac{d\omega^-}{d\omega^+}$ is smooth $\not\Rightarrow$ $\partial\Omega$ is smooth

A DIA K F A A B A B A A A A A A A B A A A A A

Let $A \subset \mathbb{R}^n$ be closed, let $x_i \in A$, let $x_i \to x \in A$, and let $r_i \downarrow 0$.

- If $\displaystyle \frac{A-x}{r_i}\rightarrow\,$ $\displaystyle {\cal T}$, we say that $\displaystyle {\cal T}$ is a $\displaystyle {\rm tangent \, set}$ of A at $\displaystyle {\rm x}.$
	- \triangleright Attouch-Wets topology: $\Sigma_i \rightarrow \Sigma$ if and only if for every $r > 0$, $\textsf{lim}_{i\to\infty} \left(\textsf{sup}_{\mathsf{x}\in \Sigma_{i}\cap B_{r}} \textsf{dist}(\mathsf{x}, \Sigma) + \textsf{sup}_{\mathsf{y}\in \Sigma\cap B_{r}} \textsf{dist}(\mathsf{y}, \Sigma_{i})\right) = 0$
	- \blacktriangleright There is at least one tangent set at each $x \in A$.
	- In There could be more than one tangent set at each $x \in A$.
- If $\frac{A-x_i}{r_i}\rightarrow S$, we say that *S* is a **pseudotangent set** of *A* at *x*.
	- Every tangent set of A at x is a pseudotangent set of A at x .
	- \triangleright There could be pseudotangent sets that are not tangent sets.

We say that A is **locally bilaterally well approximated by** S if every pseudotangent set of A belongs to \overline{S} .

K ロ K K 레 K K ミ K K E K X H X K K X H Z H X A C Y C K

Let $A \subset \mathbb{R}^n$ be closed, let $x_i \in A$, let $x_i \to x \in A$, and let $r_i \downarrow 0$.

- If $\displaystyle{\frac{A-x}{r_i}\rightarrow\,7}$, we say that τ is a $\bf tangent\,set$ of A at $x.$
	- **I** Attouch-Wets topology: $\Sigma_i \rightarrow \Sigma$ if and only if for every $r > 0$, $\textsf{lim}_{i\to\infty} \left(\textsf{sup}_{\mathsf{x}\in \Sigma_{i}\cap B_{r}} \textsf{dist}(\mathsf{x}, \Sigma) + \textsf{sup}_{\mathsf{y}\in \Sigma\cap B_{r}} \textsf{dist}(\mathsf{y}, \Sigma_{i})\right) = 0$
	- \blacktriangleright There is at least one tangent set at each $x \in A$.
	- In There could be more than one tangent set at each $x \in A$.
- If $\frac{A-x_i}{r_i}\rightarrow S$, we say that *S* is a **pseudotangent set** of *A* at *x*.
	- Every tangent set of A at x is a pseudotangent set of A at x .
	- \triangleright There could be pseudotangent sets that are not tangent sets.

We say that A is **locally bilaterally well approximated by** S if every pseudotangent set of A belongs to \overline{S} .

K ロ K K 레 K K ミ K K E K X H X K K X H Z H X A C Y C K

Let $A \subset \mathbb{R}^n$ be closed, let $x_i \in A$, let $x_i \to x \in A$, and let $r_i \downarrow 0$.

- If $\displaystyle{\frac{A-x}{r_i}\rightarrow\,7}$, we say that τ is a $\bf tangent\,set$ of A at $x.$
	- \blacktriangleright Attouch-Wets topology: Σ_i \rightarrow Σ if and only if for every *r* > 0, $\textsf{lim}_{i\to\infty}\left(\textsf{sup}_{\mathsf{x}\in \Sigma_{i}\cap B_{\mathrm{f}}} \textsf{dist}(\mathsf{x}, \Sigma) + \textsf{sup}_{\mathsf{y}\in \Sigma\cap B_{\mathrm{f}}} \textsf{dist}(\mathsf{y}, \Sigma_{i})\right) = 0$
	- \blacktriangleright There is at least one tangent set at each $x \in A$.
	- In There could be more than one tangent set at each $x \in A$.
- If $\frac{A-x_i}{r_i}\rightarrow S$, we say that *S* is a **pseudotangent set** of *A* at *x*.
	- Every tangent set of A at x is a pseudotangent set of A at x .
	- \triangleright There could be pseudotangent sets that are not tangent sets.

We say that A is **locally bilaterally well approximated by** S if every pseudotangent set of A belongs to \overline{S} .

Let $A \subset \mathbb{R}^n$ be closed, let $x_i \in A$, let $x_i \to x \in A$, and let $r_i \downarrow 0$.

- If $\displaystyle{\frac{A-x}{r_i}\rightarrow\,7}$, we say that τ is a $\bf tangent\,set$ of A at $x.$
	- \blacktriangleright Attouch-Wets topology: Σ_i \rightarrow Σ if and only if for every *r* > 0, $\textsf{lim}_{i\to\infty}\left(\textsf{sup}_{\mathsf{x}\in \Sigma_{i}\cap B_{\mathrm{f}}} \textsf{dist}(\mathsf{x}, \Sigma) + \textsf{sup}_{\mathsf{y}\in \Sigma\cap B_{\mathrm{f}}} \textsf{dist}(\mathsf{y}, \Sigma_{i})\right) = 0$
	- \blacktriangleright There is at least one tangent set at each $x \in A$.
	- In There could be more than one tangent set at each $x \in A$.
- If $\frac{A-x_i}{r_i}\rightarrow S$, we say that *S* is a **pseudotangent set** of *A* at *x*.
	- Every tangent set of A at x is a pseudotangent set of A at x.
	- \triangleright There could be pseudotangent sets that are not tangent sets.

We say that A is **locally bilaterally well approximated by** S if every pseudotangent set of A belongs to \overline{S} .

Let $A \subset \mathbb{R}^n$ be closed, let $x_i \in A$, let $x_i \to x \in A$, and let $r_i \downarrow 0$.

- If $\displaystyle{\frac{A-x}{r_i}\rightarrow\,7}$, we say that τ is a $\bf tangent\,set$ of A at $x.$
	- \blacktriangleright Attouch-Wets topology: Σ_i \rightarrow Σ if and only if for every *r* > 0, $\textsf{lim}_{i\to\infty}\left(\textsf{sup}_{\mathsf{x}\in \Sigma_{i}\cap B_{\mathrm{f}}} \textsf{dist}(\mathsf{x}, \Sigma) + \textsf{sup}_{\mathsf{y}\in \Sigma\cap B_{\mathrm{f}}} \textsf{dist}(\mathsf{y}, \Sigma_{i})\right) = 0$
	- \blacktriangleright There is at least one tangent set at each $x \in A$.
	- In There could be more than one tangent set at each $x \in A$.
- If $\frac{A-x_i}{r_i}\rightarrow S$, we say that *S* is a **pseudotangent set** of *A* at *x*.
	- Every tangent set of A at x is a pseudotangent set of A at x.
	- \triangleright There could be pseudotangent sets that are not tangent sets.

We say that A is **locally bilaterally well approximated by** S if every pseudotangent set of A belongs to \overline{S} .

Let $A \subset \mathbb{R}^n$ be closed, let $x_i \in A$, let $x_i \to x \in A$, and let $r_i \downarrow 0$.

- If $\displaystyle{\frac{A-x}{r_i}\rightarrow\,7}$, we say that τ is a $\bf tangent\,set$ of A at $x.$
	- \triangleright Attouch-Wets topology: Σ_i \rightarrow Σ if and only if for every *r* > 0, $\textsf{lim}_{i\to\infty}\left(\textsf{sup}_{\mathsf{x}\in \Sigma_{i}\cap B_{\mathrm{f}}} \textsf{dist}(\mathsf{x}, \Sigma) + \textsf{sup}_{\mathsf{y}\in \Sigma\cap B_{\mathrm{f}}} \textsf{dist}(\mathsf{y}, \Sigma_{i})\right) = 0$
	- \blacktriangleright There is at least one tangent set at each $x \in A$.
	- In There could be more than one tangent set at each $x \in A$.
- If $\frac{A-x_i}{r_i} \rightarrow S$, we say that *S* is a **pseudotangent set** of *A* at *x*.
	- Every tangent set of A at x is a pseudotangent set of A at x.
	- \blacktriangleright There could be pseudotangent sets that are not tangent sets.

We say that A is **locally bilaterally well approximated by** S if every pseudotangent set of A belongs to \overline{S} .

Let $A \subset \mathbb{R}^n$ be closed, let $x_i \in A$, let $x_i \to x \in A$, and let $r_i \downarrow 0$.

- If $\displaystyle{\frac{A-x}{r_i}\rightarrow\,7}$, we say that τ is a $\bf tangent\,set$ of A at $x.$
	- \triangleright Attouch-Wets topology: Σ_i \rightarrow Σ if and only if for every *r* > 0, $\textsf{lim}_{i\to\infty}\left(\textsf{sup}_{\mathsf{x}\in \Sigma_{i}\cap B_{\mathrm{f}}} \textsf{dist}(\mathsf{x}, \Sigma) + \textsf{sup}_{\mathsf{y}\in \Sigma\cap B_{\mathrm{f}}} \textsf{dist}(\mathsf{y}, \Sigma_{i})\right) = 0$
	- \blacktriangleright There is at least one tangent set at each $x \in A$.
	- In There could be more than one tangent set at each $x \in A$.
- If $\frac{A-x_i}{r_i} \rightarrow S$, we say that *S* is a **pseudotangent set** of *A* at *x*.
	- Every tangent set of A at x is a pseudotangent set of A at x .
	- \blacktriangleright There could be pseudotangent sets that are not tangent sets.

We say that A is **locally bilaterally well approximated by** S if every pseudotangent set of A belongs to \overline{S} .

Tangents under Weak Regularity

Theorem (Kenig-Toro 2006, B 2011, B-Engelstein-Toro 2017) Let $\Omega \subset \mathbb{R}^n$ be a 2-sided NTA domain equipped with harmonic measures ω^{\pm} on Ω^{\pm} . If $\omega^+ \ll \omega^- \ll \omega^+$ and $f = \frac{d\omega^-}{d\omega^+}$ $\frac{d\omega}{d\omega^+}$ has $\log f \in \text{VMO}(d\omega^+)$, then

 \triangleright $\partial\Omega$ is locally bilaterally well approximated by zero sets of harmonic polynomials $\rho:\mathbb{R}^n\to\mathbb{R}$ of degree at most d_0 such that $\Omega^{\pm}_{\rho}=\{ \chi:\pm \rho(\chi)>0\}$ are NTA domains and dim $_M\,\partial\Omega=n-1.$

Moreover, we can partition $\partial \Omega = \Gamma_1 \cup S = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_{d_0}$.

-
-
-

Tangents under Weak Regularity

Theorem (Kenig-Toro 2006, B 2011, B-Engelstein-Toro 2017) Let $\Omega \subset \mathbb{R}^n$ be a 2-sided NTA domain equipped with harmonic measures ω^{\pm} on Ω^{\pm} . If $\omega^+ \ll \omega^- \ll \omega^+$ and $f = \frac{d\omega^-}{d\omega^+}$ $\frac{d\omega}{d\omega^+}$ has $\log f \in \text{VMO}(d\omega^+)$, then

 \triangleright $\partial\Omega$ is locally bilaterally well approximated by zero sets of harmonic polynomials $\rho:\mathbb{R}^n\to\mathbb{R}$ of degree at most d_0 such that $\Omega^{\pm}_{\rho}=\{ \chi:\pm \rho(\chi)>0\}$ are NTA domains and dim $_M\,\partial\Omega=n-1.$

Moreover, we can partition $\partial \Omega = \Gamma_1 \cup S = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_{d_0}$.

- \blacktriangleright Γ₁ is relatively open in $\partial\Omega$, Γ₁ is locally bilaterally well approximated by $(n - 1)$ -planes, and dim_M $\Gamma_1 = n - 1$
- **S** is closed, $\omega^{\pm}(S) = 0$ and dim_M $S \le n 3$
- \triangleright $S = \Gamma_2 \cup \cdots \cup \Gamma_{d_0}$, where $x \in \Gamma_d \Leftrightarrow$ every tangent set of $\partial \Omega$ at x is the zero set of a homogeneous harmonic polynomial q of degree d such that Ω_q^{\pm} are NTA domains.

Admissible Tangents

- In first row, only the first example (degree 1) separates the plane into 2-sided NTA domains
- In second row, only the first, third, and fifth examples (odd degrees) separate space into 2-sided NTA domains (Lewy 1977)
- In \mathbb{R}^4 or higher dimensions, there are examples of all degrees that separate space into 2-sided NTA domains (B-Engelstein-Toro 2017)

◆ ロ → イラ → イヨ → イヨ → ニヨ →

Admissible Tangents

- In first row, only the first example (degree 1) separates the plane into 2-sided NTA domains
- In second row, only the first, third, and fifth examples (odd degrees) separate space into 2-sided NTA domains (Lewy 1977)
- In \mathbb{R}^4 or higher dimensions, there are examples of all degrees that separate space into 2-sided NTA domains (B-Engelstein-Toro 2017)

4 0 > 4 4 9 + 4 5 + 4 5 + 5

Admissible Tangents

- In first row, only the first example (degree 1) separates the plane into 2-sided NTA domains
- In second row, only the first, third, and fifth examples (odd degrees) separate space into 2-sided NTA domains (Lewy 1977)
- In \mathbb{R}^4 or higher dimensions, there are examples of all degrees that separate space into 2-sided NTA domains (B-Engelstein-Toro 2017)

4 0 > 4 4 9 + 4 5 + 4 5 + 5

Admissible Tangents

- In first row, only the first example (degree 1) separates the plane into 2-sided NTA domains
- In second row, only the first, third, and fifth examples (odd degrees) separate space into 2-sided NTA domains (Lewy 1977)
- In \mathbb{R}^4 or higher dimensions, there are examples of all degrees that separate space into 2-sided NTA domains (B-Engelstein-Toro 2017)

Theorem (Engelstein 2016 + B-Engelstein-Toro 2020) Assume that Ω^{\pm} are NTA and \vert log $f\in C^{0,\alpha}(\partial\Omega)$ (Hölder continuous) . Then $\partial\Omega$ has a **unique tangent set** at every $x \in \partial\Omega$.

Theorem (B-Engelstein-Toro 2023)

For any $d\geq 1$, there exist examples where Ω^\pm are NTA, Г $_d\neq \emptyset$, log $f\in\mathcal{C}(\partial\Omega)\setminus\bigcup_{\alpha>0}\mathcal{C}^{0,\alpha}(\partial\Omega)$ (continuous, but not Hölder) and $\partial\Omega$ has **continuum of distinct tangent sets** at some $x \in \Gamma_d$.

Figure: Blow-ups Σ/r of the interface $\Sigma = \partial \Omega^{\pm}$ of the graph domains associated to $v(x, y) = x \log |\log(\sqrt{x^2 + y^2})| \sin(\log|\log(\sqrt{x^2 + y^2})|)$ at a flat point $0 \in \Gamma_1$. **Left:** $r = 1$ **Center:** $r = 10^{-6}$ **Right:** $r = 10^{-12}$

We want to carry out the same sort of investigation in the context of the heat equation

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Heat Dirichlet Problem and Caloric Measure

Let $n\geq 1$ and let $\Omega\subset \mathbb{R}^{n+1}=\mathbb{R}^{n}\times \mathbb{R}$ be a regular domain for (HD). The **essential boundary** $\partial_e \Omega$ includes the part of $\partial \Omega$ that is accessible by paths in Ω moving backwards-in-time.

9! family of probability measures $\{\omega^{X,\,t}\}_{(X,\,t)\in\Omega}$ on $\partial_e\Omega$ called **caloric measure** of Ω with pole at $(X, t) \in \Omega$ such that

$$
u(X,t)=\int_{\partial_e\Omega}f(Y,s)d\omega^{X,t}(Y,s)
$$

solves **heat Dirichlet problem** with boundary data $f \in C_c(\partial_e \Omega)$: $u \in C^2(\Omega)$, $\partial_t u - \Delta_X u = 0$ in Ω and $u \stackrel{*}{=} f$ on $\partial_e \Omega$

*requires interpretation on $\partial_{ss}\Omega\subset\partial_e\Omega$

Theorem

Caloric measure of present & future is zero: $\omega^{X_\cdot t}(\{ (Y,\mathfrak s)\in\partial\Omega: \mathfrak s\geq t\})=0$

Two-Phase Caloric Free Boundary Regularity

Caloric Analogue of Kenig-Toro (2006) + B (2011):

Theorem (Mourgoglou-Puliatti 2021)

Let $\Omega^+=\mathbb{R}^{n+1}\setminus\overline{\Omega^-}$ and $\Omega^-=\mathbb{R}^{n+1}\setminus\overline{\Omega^+}$ be complimentary domains with "nice" (for heat potential theory) common boundary. Let ω^{\pm} be caloric measures on Ω^{\pm} with poles at (X_0^{\pm}, t_0) .

If
$$
\omega^+ \ll \omega^- \ll \omega^+
$$
 and $f = \frac{d\omega^-}{d\omega^+}$ has $\log f \in \text{VMO}(d\omega^+)$, then

 \triangleright $\partial\Omega$ is locally bilaterally well approximated¹ by zero sets of caloric polynomials $\rho:\mathbb{R}^{n+1}\to\mathbb{R}$ of degree at most d_0 such that $\Omega^{\pm}_{\rho}=\{x:\pm \rho(x)>0\}$ are connected.

Moreover, we can partition $\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_{d_0}$ where

¹where pseudotangent sets are defined using parabo[lic](#page-30-0)d[ila](#page-32-0)[ti](#page-30-0)[o](#page-31-0)[n](#page-32-0)[s](#page-33-0) \longleftrightarrow and \longleftrightarrow and \longleftrightarrow

Two-Phase Caloric Free Boundary Regularity

Caloric Analogue of Kenig-Toro (2006) + B (2011):

Theorem (Mourgoglou-Puliatti 2021)

Let $\Omega^+=\mathbb{R}^{n+1}\setminus\overline{\Omega^-}$ and $\Omega^-=\mathbb{R}^{n+1}\setminus\overline{\Omega^+}$ be complimentary domains with "nice" (for heat potential theory) common boundary. Let ω^{\pm} be caloric measures on Ω^{\pm} with poles at $(X_{0}^{\pm}, t_{0}).$

If
$$
\omega^+ \ll \omega^- \ll \omega^+
$$
 and $f = \frac{d\omega^-}{d\omega^+}$ has $\log f \in \text{VMO}(d\omega^+)$, then

 \triangleright $\partial\Omega$ is locally bilaterally well approximated¹ by zero sets of caloric polynomials $\rho:\mathbb{R}^{n+1}\to\mathbb{R}$ of degree at most d_0 such that $\Omega^{\pm}_{\rho}=\{x:\pm \rho(x)>0\}$ are connected.

Moreover, we can partition $\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_{d_0}$ where

 \triangleright (X, t) ∈ Γ_d \Leftrightarrow every tangent set of $\partial\Omega$ at (X, t) is the zero set of a parabolically homogeneous caloric polynomial q of degree d such that Ω^{\pm}_q are connected.

¹where pseudotangent sets are defined using parabo[lic](#page-31-0)d[ila](#page-33-0)[ti](#page-30-0)[o](#page-31-0)[n](#page-32-0)[s](#page-33-0) \longleftrightarrow and \longleftrightarrow and \longleftrightarrow

Mourgoglou and Puliatti **did not give any examples** of time-dependent homogeneous caloric polynomials whose zero set separates \mathbb{R}^{n+1} into two components

To **validate their theory**, we need examples to verify that time-dependent blow-ups exist

Examples exist, but not for all pairs of n **and** d**!** This is the content of B-Jeznach (2024)

A DIA K F A A B A B A A A A A A A B A A A A A

Mourgoglou and Puliatti **did not give any examples** of time-dependent homogeneous caloric polynomials whose zero set separates \mathbb{R}^{n+1} into two components

To **validate their theory**, we need examples to verify that time-dependent blow-ups exist

Examples exist, but not for all pairs of n **and** d**!** This is the content of B-Jeznach (2024)

K ロ ▶ K 個 ▶ K ミ K K E X → E → Y Q Q O

Mourgoglou and Puliatti **did not give any examples** of time-dependent homogeneous caloric polynomials whose zero set separates \mathbb{R}^{n+1} into two components

To **validate their theory**, we need examples to verify that time-dependent blow-ups exist

Examples exist, but not for all pairs of n **and** d**!** This is the content of B-Jeznach (2024)

KORK ERKEY EL YOUR
Part 2 — Nodal Domains of Caloric Polynomials

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Nodal Domains

Let $u:\mathbb{R}^{n+1}\to\mathbb{R}$ be continuous.

- **If** The **nodal set** of u is $\{u = 0\}$ (possibly empty).
- A **nodal domain** of u is a connected component of $\{u \neq 0\}$.

 $\mathcal{N}(u) \in \{0, 1, 2, \dots\} \cup \{\infty\}$ denotes number of nodal domains of u

A polynomial $\rho:\mathbb{R}^{n+1}\to\mathbb{R}$ in variables $(X,\,t)=(X_1,\ldots,X_n,\,t)$ with real coefficients is **caloric** if p solves heat equation: $\partial_t p - \Delta_x p \equiv 0$.

Lemma

If $p: \mathbb{R}^{n+1} \to \mathbb{R}$ is a non-constant caloric polynomial of degree d , then $2 \le \mathcal{N}(p) \le (d+1)^n (d+2)$.

Proof: There is a point $(X, t) \in \mathbb{R}^{n+1}$ with $t < 0$ at which $p(X, t) = 0$ (orthogonality of negative-time slices). Applying the mean value property for heat balls, there are (X^{\pm},t^{\pm}) near (X,t) with $t^{\pm} < t$ at which $\pm \rho(X^{\pm}, t^{\pm}) > 0$. Hence $\mathcal{N}(\rho) \geq 2$. The upper bound holds for arbitrary polynomials in \mathbb{R}^{n+1} of degree d by Milnor (1964).

Time Coefficients of Caloric Polynomials

Suppose that we have a polynomial solution of the heat equation:

 $p(X, t) = t^d p_d(X) + t^{d-1} p_{d-1}(X) + \cdots + t p_1(X) + p_0(X)$, $p_d(X) \not\equiv 0$

Applying the heat opeartor $\partial_t - \Delta_X$ we get: $t^d(-\Delta_X p_d(X))+t^{d-1}(dp_d(X)-\Delta_X p_{d-1}(X))$ $+ \cdots + t(2p_2(X) - \Delta_X p_1(X)) + (p_1(X) - \Delta_X p_0(X)) = 0$

 $\Delta_X p_d(X) = 0$: $p_d(X)$ is harmonic $\Delta_X p_{d-1}(X) = dp_d(X)$: $p_{d-1}(X)$ is bi-harmonic $\Delta_X p_1(X) = 2p_2(X)$: $p_1(X)$ is d-harmonic $\Delta_X p_0(X) = p_1(X)$: $p_0(X)$ is $(d+1)$ -harmonic **KORK ERKERY ADAMS**

Time Coefficients of Caloric Polynomials

Suppose that we have a polynomial solution of the heat equation:

 $p(X, t) = t^d p_d(X) + t^{d-1} p_{d-1}(X) + \cdots + t p_1(X) + p_0(X)$, $p_d(X) \not\equiv 0$

Applying the heat opeartor $\partial_t - \Delta_X$ we get:

 $t^d(-\Delta_X p_d(X)) + t^{d-1}(dp_d(X) - \Delta_X p_{d-1}(X))$ $+$ + t(2p₂(X) – $\Delta_X p_1(X)$) + ($p_1(X)$ – $\Delta_X p_0(X)$) = 0

 $\Delta_X p_d(X) = 0$: $p_d(X)$ is harmonic $\Delta_X p_{d-1}(X) = dp_d(X)$: $p_{d-1}(X)$ is bi-harmonic $\Delta_X p_1(X) = 2p_2(X)$: $p_1(X)$ is d-harmonic $\Delta_X p_0(X) = p_1(X)$: $p_0(X)$ is $(d+1)$ -harmonic **A DIA K F A A B A B A A A A A A A B A A A A A**

Time Coefficients of Caloric Polynomials

Suppose that we have a polynomial solution of the heat equation:

 $p(X, t) = t^d p_d(X) + t^{d-1} p_{d-1}(X) + \cdots + t p_1(X) + p_0(X)$, $p_d(X) \not\equiv 0$

Applying the heat opeartor $\partial_t - \Delta_X$ we get:

 $t^d(-\Delta_X p_d(X)) + t^{d-1}(dp_d(X) - \Delta_X p_{d-1}(X))$ $+$ + t(2p₂(X) – $\Delta_X p_1(X)$) + ($p_1(X)$ – $\Delta_X p_0(X)$) = 0

 $\Delta_X p_d(X) = 0$: $p_d(X)$ is harmonic $\Delta_{X} p_{d-1}(X) = dp_d(X)$: $p_{d-1}(X)$ is bi-harmonic $\Delta_X p_1(X) = 2p_2(X)$: $p_1(X)$ is d-harmonic $\Delta_X p_0(X) = p_1(X)$: $p_0(X)$ is $(d+1)$ -harmonic **A DIA K F A A B A B A A A A A A A B A A A A A**

If $u(X,\,t)$ solves the heat equation $\lambda>0$, then $v(X,\,t)\equiv\,u(\lambda X,\,\lambda^2t)$ solves the heat equation.

A **homogeneous caloric polynomial (HCP) of degree** d is a caloric polynomial ρ on \mathbb{R}^{n+1} that is **parabolically homogeneous**:

$$
p(\lambda X, \lambda^2 t) \equiv \lambda^d p(X, t)
$$

- For any exponent $k \in \mathbb{N}$ and multi-index $\alpha \in \mathbb{N}^n$, the monomial $t^k X^{\alpha}$ is parabolically homogeneous of degree $2k + |\alpha|$.
- \blacktriangleright Parabolic and algebraic homogeneity are distinct notions:

$$
p(x, t) = t^2 + tx^2 + x^4/12
$$

is an HCP of degree 4 in \mathbb{R}^{1+1} , but p is not algebraically homogeneous. Nevertheless, the parabolic degree and the algebraic degree of an HCP always coincide.

If $u(X,\,t)$ solves the heat equation $\lambda>0$, then $v(X,\,t)\equiv\,u(\lambda X,\,\lambda^2t)$ solves the heat equation.

A **homogeneous caloric polynomial (HCP) of degree** d is a caloric polynomial ρ on \mathbb{R}^{n+1} that is **parabolically homogeneous**:

$$
p(\lambda X, \lambda^2 t) \equiv \lambda^d p(X, t)
$$

- For any exponent $k \in \mathbb{N}$ and multi-index $\alpha \in \mathbb{N}^n$, the monomial $t^k X^{\alpha}$ is parabolically homogeneous of degree $2k + |\alpha|$.
- \blacktriangleright Parabolic and algebraic homogeneity are distinct notions:

$$
p(x,t) = t^2 + tx^2 + x^4/12
$$

is an HCP of degree 4 in \mathbb{R}^{1+1} , but p is not algebraically homogeneous. Nevertheless, the parabolic degree and the algebraic degree of an HCP always coincide.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q Q*

If $u(X,\,t)$ solves the heat equation $\lambda>0$, then $v(X,\,t)\equiv\,u(\lambda X,\,\lambda^2t)$ solves the heat equation.

A **homogeneous caloric polynomial (HCP) of degree** d is a caloric polynomial ρ on \mathbb{R}^{n+1} that is **parabolically homogeneous**:

$$
p(\lambda X, \lambda^2 t) \equiv \lambda^d p(X, t)
$$

For any exponent $k \in \mathbb{N}$ and multi-index $\alpha \in \mathbb{N}^n$, the monomial $t^k X^{\alpha}$ is parabolically homogeneous of degree $2k + |\alpha|$.

 \blacktriangleright Parabolic and algebraic homogeneity are distinct notions:

$$
p(x, t) = t^2 + tx^2 + x^4/12
$$

is an HCP of degree 4 in \mathbb{R}^{1+1} , but p is not algebraically homogeneous. Nevertheless, the parabolic degree and the algebraic degree of an HCP always coincide.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q Q*

If $u(X,\,t)$ solves the heat equation $\lambda>0$, then $v(X,\,t)\equiv\,u(\lambda X,\,\lambda^2t)$ solves the heat equation.

A **homogeneous caloric polynomial (HCP) of degree** d is a caloric polynomial ρ on \mathbb{R}^{n+1} that is **parabolically homogeneous**:

$$
p(\lambda X, \lambda^2 t) \equiv \lambda^d p(X, t)
$$

- For any exponent $k \in \mathbb{N}$ and multi-index $\alpha \in \mathbb{N}^n$, the monomial $t^k X^{\alpha}$ is parabolically homogeneous of degree $2k + |\alpha|$.
- \blacktriangleright Parabolic and algebraic homogeneity are distinct notions:

$$
p(x, t) = t^2 + tx^2 + x^4/12
$$

is an HCP of degree 4 in \mathbb{R}^{1+1} , but ρ is not algebraically homogeneous. Nevertheless, the parabolic degree and the algebraic degree of an HCP always coincide.

If $u(X,\,t)$ solves the heat equation $\lambda>0$, then $v(X,\,t)\equiv\,u(\lambda X,\,\lambda^2t)$ solves the heat equation.

A **homogeneous caloric polynomial (HCP) of degree** d is a caloric polynomial ρ on \mathbb{R}^{n+1} that is **parabolically homogeneous**:

$$
p(\lambda X, \lambda^2 t) \equiv \lambda^d p(X, t)
$$

- For any exponent $k \in \mathbb{N}$ and multi-index $\alpha \in \mathbb{N}^n$, the monomial $t^k X^{\alpha}$ is parabolically homogeneous of degree $2k + |\alpha|$.
- \blacktriangleright Parabolic and algebraic homogeneity are distinct notions:

$$
p(x, t) = t^2 + tx^2 + x^4/12
$$

is an HCP of degree 4 in \mathbb{R}^{1+1} , but ρ is not algebraically homogeneous. Nevertheless, the parabolic degree and the algebraic degree of an HCP always coincide.

K ロ ▶ K 個 ▶ K ミ K K E X → E → Y Q Q O

Fact: In \mathbb{R}^1 , harmonic functions linear: $u''(x) = 0 \Rightarrow u(x) = mx + b$.

Corollary: Up to scaling by a constant, there is a unique HCP in \mathbb{R}^{1+1} of each degree $d\geq 1$: $\rho_0(x,t)=1$ $\rho_1(x,t)=x$ $p_2(x,t) = t + \frac{1}{2}x^2$ $p_3(x,t) = tx + \frac{1}{3}x^3$ $p_{2k}(x,t) = t^k + \frac{k}{2!}t^{k-1}x^2 + \frac{k(k-1)}{4!}$ $\frac{k-1)}{4!}t^{k-2}x^4 + \cdots + \frac{k!}{(2k)!}x^{2k}$ $p_{2k+1}(x, t) = t^k x + \frac{k}{3!} t^{k-1} x^3 + \frac{k(k-1)}{5!}$ $\frac{k-1)}{5!}t^{k-2}x^5 + \cdots + \frac{k!}{(2k+1)!}x^{2k+1}$

Theorem: For each multi-index $\alpha \in \mathbb{N}^n$, define $\rho_\alpha(X,\,t)=\rho_{\alpha_1}(X_1,\,t)\cdots\rho_{\alpha_n}(X_n,\,t).$ Then $\{\rho_{\alpha(X,\,t)}:|\alpha|=d\}$ is a basis for the vector space of all HCPs in \mathbb{R}^{n+1} of degree d (and zero).

Examples: $xy = p_1(x, t)p_1(y, t)$ **Examples:** x $2^2 - y^2 = 2(t + \frac{1}{2}x^2) - 2(t + \frac{1}{2}y^2) = 2p_2(x, t) - 2p_2(y, t)$

Fact: In \mathbb{R}^1 , harmonic functions linear: $u''(x) = 0 \Rightarrow u(x) = mx + b$.

Corollary: Up to scaling by a constant, there is a unique HCP in \mathbb{R}^{1+1} of each degree $d\geq 1$: $\rho_0(x,t)=1$ $\rho_1(x,t)=x$ $p_2(x,t) = t + \frac{1}{2}x^2$ $p_3(x,t) = tx + \frac{1}{3}x^3$ $p_{2k}(x,t) = t^k + \frac{k}{2!}t^{k-1}x^2 + \frac{k(k-1)}{4!}$ $\frac{k-1)}{4!}t^{k-2}x^4 + \cdots + \frac{k!}{(2k)!}x^{2k}$ $p_{2k+1}(x, t) = t^k x + \frac{k}{3!} t^{k-1} x^3 + \frac{k(k-1)}{5!}$ $\frac{k-1)}{5!}t^{k-2}x^5 + \cdots + \frac{k!}{(2k+1)!}x^{2k+1}$

Theorem: For each multi-index $\alpha \in \mathbb{N}^n$, define $\rho_\alpha(X,\,t)=\rho_{\alpha_1}(X_1,\,t)\cdots\rho_{\alpha_n}(X_n,\,t).$ Then $\{\rho_{\alpha(X,\,t)}:|\alpha|=d\}$ is a basis for the vector space of all HCPs in \mathbb{R}^{n+1} of degree d (and zero).

Examples: $xy = p_1(x, t)p_1(y, t)$ **Examples:** x $2^2 - y^2 = 2(t + \frac{1}{2}x^2) - 2(t + \frac{1}{2}y^2) = 2p_2(x, t) - 2p_2(y, t)$

Fact: In \mathbb{R}^1 , harmonic functions linear: $u''(x) = 0 \Rightarrow u(x) = mx + b$.

Corollary: Up to scaling by a constant, there is a unique HCP in \mathbb{R}^{1+1} of each degree $d\geq 1$: $\rho_0(x,t)=1$ $\rho_1(x,t)=x$ $p_2(x,t) = t + \frac{1}{2}x^2$ $p_3(x,t) = tx + \frac{1}{3}x^3$ $p_{2k}(x,t) = t^k + \frac{k}{2!}t^{k-1}x^2 + \frac{k(k-1)}{4!}$ $\frac{k-1)}{4!}t^{k-2}x^4 + \cdots + \frac{k!}{(2k)!}x^{2k}$ $p_{2k+1}(x, t) = t^k x + \frac{k}{3!} t^{k-1} x^3 + \frac{k(k-1)}{5!}$ $\frac{k-1)}{5!}t^{k-2}x^5 + \cdots + \frac{k!}{(2k+1)!}x^{2k+1}$

Theorem: For each multi-index $\alpha \in \mathbb{N}^n$, define $\rho_\alpha(X,\,t)=\rho_{\alpha_1}(X_1,\,t)\cdots\rho_{\alpha_n}(X_n,\,t).$ Then $\{\rho_{\alpha(X,\,t)}:|\alpha|=d\}$ is a basis for the vector space of all HCPs in \mathbb{R}^{n+1} of degree d (and zero).

Examples: $xy = p_1(x, t)p_1(y, t)$ **Examples:** x $2^2 - y^2 = 2(t + \frac{1}{2}x^2) - 2(t + \frac{1}{2}y^2) = 2p_2(x, t) - 2p_2(y, t)$

Fact: In \mathbb{R}^1 , harmonic functions linear: $u''(x) = 0 \Rightarrow u(x) = mx + b$.

Corollary: Up to scaling by a constant, there is a unique HCP in \mathbb{R}^{1+1} of each degree $d\geq 1$: $\rho_0(x,t)=1$ $\rho_1(x,t)=x$ $p_2(x,t) = t + \frac{1}{2}x^2$ $p_3(x,t) = tx + \frac{1}{3}x^3$ $p_{2k}(x,t) = t^k + \frac{k}{2!}t^{k-1}x^2 + \frac{k(k-1)}{4!}$ $\frac{k-1)}{4!}t^{k-2}x^4 + \cdots + \frac{k!}{(2k)!}x^{2k}$ $p_{2k+1}(x, t) = t^k x + \frac{k}{3!} t^{k-1} x^3 + \frac{k(k-1)}{5!}$ $\frac{k-1)}{5!}t^{k-2}x^5 + \cdots + \frac{k!}{(2k+1)!}x^{2k+1}$

Theorem: For each multi-index $\alpha \in \mathbb{N}^n$, define $\rho_\alpha(X,\,t)=\rho_{\alpha_1}(X_1,\,t)\cdots\rho_{\alpha_n}(X_n,\,t).$ Then $\{\rho_{\alpha(X,\,t)}:|\alpha|=d\}$ is a basis for the vector space of all HCPs in \mathbb{R}^{n+1} of degree d (and zero).

Examples: $xy = p_1(x, t)p_1(y, t)$ **Examples:** x $2^2 - y^2 = 2(t + \frac{1}{2}x^2) - 2(t + \frac{1}{2}y^2) = 2p_2(x, t) - 2p_2(y, t)$

Fact: In \mathbb{R}^1 , harmonic functions linear: $u''(x) = 0 \Rightarrow u(x) = mx + b$.

Corollary: Up to scaling by a constant, there is a unique HCP in \mathbb{R}^{1+1} of each degree $d\geq 1$: $\rho_0(x,t)=1$ $\rho_1(x,t)=x$ $p_2(x,t) = t + \frac{1}{2}x^2$ $p_3(x,t) = tx + \frac{1}{3}x^3$ $p_{2k}(x, t) = t^k + \frac{k}{2!}t^{k-1}x^2 + \frac{k(k-1)}{4!}$ $\frac{k-1}{4!}t^{k-2}x^4 + \cdots + \frac{k!}{(2k)!}x^{2k}$ $p_{2k+1}(x, t) = t^k x + \frac{k}{3!} t^{k-1} x^3 + \frac{k(k-1)}{5!}$ $\frac{k-1)}{5!}t^{k-2}x^5 + \cdots + \frac{k!}{(2k+1)!}x^{2k+1}$

Theorem: For each multi-index $\alpha \in \mathbb{N}^n$, define $\rho_\alpha(X,\,t)=\rho_{\alpha_1}(X_1,\,t)\cdots\rho_{\alpha_n}(X_n,\,t).$ Then $\{\rho_{\alpha(X,\,t)}:|\alpha|=d\}$ is a basis for the vector space of all HCPs in \mathbb{R}^{n+1} of degree d (and zero).

Examples: $xy = p_1(x, t)p_1(y, t)$ **Examples:** x $2^2 - y^2 = 2(t + \frac{1}{2}x^2) - 2(t + \frac{1}{2}y^2) = 2p_2(x, t) - 2p_2(y, t)$

Fact: In \mathbb{R}^1 , harmonic functions linear: $u''(x) = 0 \Rightarrow u(x) = mx + b$.

Corollary: Up to scaling by a constant, there is a unique HCP in \mathbb{R}^{1+1} of each degree $d\geq 1$: $\rho_0(x,t)=1$ $\rho_1(x,t)=x$ $p_2(x,t) = t + \frac{1}{2}x^2$ $p_3(x,t) = tx + \frac{1}{3}x^3$ $p_{2k}(x, t) = t^k + \frac{k}{2!}t^{k-1}x^2 + \frac{k(k-1)}{4!}$ $\frac{k-1}{4!}t^{k-2}x^4 + \cdots + \frac{k!}{(2k)!}x^{2k}$ $p_{2k+1}(x, t) = t^k x + \frac{k}{3!} t^{k-1} x^3 + \frac{k(k-1)}{5!}$ $\frac{k-1}{5!}t^{k-2}x^5 + \cdots + \frac{k!}{(2k+1)!}x^{2k+1}$

Theorem: For each multi-index $\alpha \in \mathbb{N}^n$, define $\rho_\alpha(X,\,t)=\rho_{\alpha_1}(X_1,\,t)\cdots\rho_{\alpha_n}(X_n,\,t).$ Then $\{\rho_{\alpha(X,\,t)}:|\alpha|=d\}$ is a basis for the vector space of all HCPs in \mathbb{R}^{n+1} of degree d (and zero).

Examples: $xy = p_1(x, t)p_1(y, t)$ **Examples:** x $2^2 - y^2 = 2(t + \frac{1}{2}x^2) - 2(t + \frac{1}{2}y^2) = 2p_2(x, t) - 2p_2(y, t)$

Fact: In \mathbb{R}^1 , harmonic functions linear: $u''(x) = 0 \Rightarrow u(x) = mx + b$.

Corollary: Up to scaling by a constant, there is a unique HCP in \mathbb{R}^{1+1} of each degree $d\geq 1$: $\rho_0(x,t)=1$ $\rho_1(x,t)=x$ $p_2(x,t) = t + \frac{1}{2}x^2$ $p_3(x,t) = tx + \frac{1}{3}x^3$ $p_{2k}(x, t) = t^k + \frac{k}{2!}t^{k-1}x^2 + \frac{k(k-1)}{4!}$ $\frac{k-1}{4!}t^{k-2}x^4 + \cdots + \frac{k!}{(2k)!}x^{2k}$ $p_{2k+1}(x, t) = t^k x + \frac{k}{3!} t^{k-1} x^3 + \frac{k(k-1)}{5!}$ $\frac{k-1}{5!}t^{k-2}x^5 + \cdots + \frac{k!}{(2k+1)!}x^{2k+1}$

Theorem: For each multi-index $\alpha \in \mathbb{N}^n$, define $\rho_\alpha(X,\,t)=\rho_{\alpha_1}(X_1,\,t)\qquad \rho_{\alpha_n}(X_n,\,t).$ Then $\{\rho_{\alpha(X,\,t)}:|\alpha|=d\}$ is a basis for the vector space of all HCPs in \mathbb{R}^{n+1} of degree d (and zero).

Examples: $xy = p_1(x, t)p_1(y, t)$ **Examples:** x $2^2 - y^2 = 2(t + \frac{1}{2}x^2) - 2(t + \frac{1}{2}y^2) = 2p_2(x, t) - 2p_2(y, t)$

Fact: In \mathbb{R}^1 , harmonic functions linear: $u''(x) = 0 \Rightarrow u(x) = mx + b$.

Corollary: Up to scaling by a constant, there is a unique HCP in \mathbb{R}^{1+1} of each degree $d\geq 1$: $\rho_0(x,t)=1$ $\rho_1(x,t)=x$ $p_2(x,t) = t + \frac{1}{2}x^2$ $p_3(x,t) = tx + \frac{1}{3}x^3$ $p_{2k}(x, t) = t^k + \frac{k}{2!}t^{k-1}x^2 + \frac{k(k-1)}{4!}$ $\frac{k-1}{4!}t^{k-2}x^4 + \cdots + \frac{k!}{(2k)!}x^{2k}$ $p_{2k+1}(x, t) = t^k x + \frac{k}{3!} t^{k-1} x^3 + \frac{k(k-1)}{5!}$ $\frac{k-1}{5!}t^{k-2}x^5 + \cdots + \frac{k!}{(2k+1)!}x^{2k+1}$

Theorem: For each multi-index $\alpha \in \mathbb{N}^n$, define $\rho_\alpha(X,\,t)=\rho_{\alpha_1}(X_1,\,t)\qquad \rho_{\alpha_n}(X_n,\,t).$ Then $\{\rho_{\alpha(X,\,t)}:|\alpha|=d\}$ is a basis for the vector space of all HCPs in \mathbb{R}^{n+1} of degree d (and zero).

Examples: $xy = p_1(x, t)p_1(y, t)$ **Examples:** x $2^2 - y^2 = 2(t + \frac{1}{2}x^2) - 2(t + \frac{1}{2}y^2) = 2p_2(x, t) - 2p_2(y, t)$

Theorem (Factorization Lemma)

For all $d\geq$ 2, the ''basic hcp'' $p_d({\mathsf x},t)$ in \mathbb{R}^{1+1} assumes the form

$$
p_d(x, t) = \begin{cases} (t + a_{d,1}x^2) \cdots (t + a_{d,k}x^2) & \text{when } d = 2k \text{ is even,} \\ x(t + a_{d,1}x^2) \cdots (t + a_{d,k}x^2) & \text{when } d = 2k + 1 \text{ is odd,} \end{cases}
$$

for some distinct numbers $0 < a_{d,1} < \cdots < a_{d,k}$. Moreover,

 $p_{2k-1}(x,t) = x(t + a_1 x^2) \cdots (t + a_{k-1} x^2), \quad p_{2k+1}(x,t) = x(t + c_1 x^2) \cdots (t + c_k x^2),$

with the a_i 's, b_i 's, and c_i 's each listed in increasing order, then the coefficients associated with consecutive polynomials are interlaced:

 $\int b_1 < a_1 < b_2 < a_2 < \cdots < a_{k-1} < b_k,$

Why? $p_d(x, -1) = \frac{[d/2]!}{d!} H_d(x/2)$, where $H_d(x)$ is the so-called **Hermite orthogonal polynomial**. Use facts about these and parabolic scaling.

KORKAR KERKER E VOOR

Theorem (Factorization Lemma)

For all $d\geq$ 2, the ''basic hcp'' $p_d({\mathsf x},t)$ in \mathbb{R}^{1+1} assumes the form

$$
p_d(x, t) = \begin{cases} (t + a_{d,1}x^2) \cdots (t + a_{d,k}x^2) & \text{when } d = 2k \text{ is even,} \\ x(t + a_{d,1}x^2) \cdots (t + a_{d,k}x^2) & \text{when } d = 2k + 1 \text{ is odd,} \end{cases}
$$

for some distinct numbers $0 < a_{d,1} < \cdots < a_{d,k}$. Moreover,

$$
p_{2k-1}(x, t) = x(t + a_1x^2) \cdots (t + a_{k-1}x^2), \quad p_{2k+1}(x, t) = x(t + c_1x^2) \cdots (t + c_kx^2).
$$

 $p_{2k}(x, t) = (t + b_1x^2) \cdots (t + b_kx^2),$

with the a_i 's, b_i 's, and c_i 's each listed in increasing order, then the coefficients associated with consecutive polynomials are interlaced:

$$
\begin{cases} b_1 < a_1 < b_2 < a_2 < \cdots < a_{k-1} < b_k, \\ c_1 < b_1 < c_2 < b_2 < \cdots < b_{k-1} < c_k < b_k \end{cases}
$$

Why? $p_d(x, -1) = \frac{[d/2]!}{d!} H_d(x/2)$, where $H_d(x)$ is the so-called **Hermite orthogonal polynomial**. Use facts about these and parabolic scaling.

Theorem (Factorization Lemma)

For all $d\geq$ 2, the ''basic hcp'' $p_d({\mathsf x},t)$ in \mathbb{R}^{1+1} assumes the form

$$
p_d(x, t) = \begin{cases} (t + a_{d,1}x^2) \cdots (t + a_{d,k}x^2) & \text{when } d = 2k \text{ is even,} \\ x(t + a_{d,1}x^2) \cdots (t + a_{d,k}x^2) & \text{when } d = 2k + 1 \text{ is odd,} \end{cases}
$$

for some distinct numbers $0 < a_{d,1} < a_{d,k}$. Moreover,

$$
p_{2k-1}(x, t) = x(t + a_1x^2) \cdots (t + a_{k-1}x^2), \quad p_{2k+1}(x, t) = x(t + c_1x^2) \cdots (t + c_kx^2).
$$

 $p_{2k}(x, t) = (t + b_1x^2) \cdots (t + b_kx^2),$

with the a_i 's, b_i 's, and c_i 's each listed in increasing order, then the coefficients associated with consecutive polynomials are interlaced:

$$
\begin{cases} b_1 < a_1 < b_2 < a_2 < \cdots < a_{k-1} < b_k, \\ c_1 < b_1 < c_2 < b_2 < \cdots < b_{k-1} < c_k < b_k. \end{cases}
$$

Why? $p_d(x, -1) = \frac{[d/2]!}{d!} H_d(x/2)$, where $H_d(x)$ is the so-called **Hermite orthogonal polynomial**. Use facts about these and parabolic scaling.

- The nodal set of a degree d hcp in \mathbb{R}^{1+1} is a union of $\lfloor d/2 \rfloor$ nested, downward-opening parabolas with a common turning point at the origin, and when d is odd, an additional vertical line (the t -axis).
- From left to right, we illustrate the cases $d = 2, ..., d = 5$.
- Inside the nodal set of $p_d p_{d+1}$, the "nodal parabolas" of consecutive hcps p_d and p_{d+1} are intertwined:
	- ▶ "widest" parabola of p_{d+1} sits above "widest" parabola of p_d ;
	- ► "widest" parabola of p_d above "second widest" parabola of p_{d+1} ;

 2990

and so on...

Corollary

A[n](#page-57-0)y hcp $p(x, t)$ in \mathbb{R}^{1+1} of d[e](#page-56-0)gree $d \geq 1$ has exactly [2](#page-56-0) $\lceil d/2 \rceil$ $\lceil d/2 \rceil$ $\lceil d/2 \rceil$ n[o](#page-58-0)[da](#page-0-0)l d[om](#page-0-0)[ai](#page-73-0)[ns.](#page-0-0)

Consequence:

In the $n = 1$ case of Mourgoglou and Puliatti's theorem, $\log \frac{d\omega^-}{d\omega^+}\in {\rm VMO}(\textstyle d\omega^+)$ implies that $\partial\Omega=\Gamma_1\cup\Gamma_2.$

The only tangent sets of the boundary are:

Remark: So far this improvement only uses classical results

Part 3 — New Results

K ロ > K 레 > K 로 > K 로 > - 로 - K 9 Q @

Minimum and Maximum Number of Nodal Domains

Let $m_{n,d}$ and $M_{n,d}$ denote the minimum and maximum number of nodal domains among time-dependent HCP in \mathbb{R}^{n+1} of degree $d.$ Recall that $m_1_{d} = M_1_{d} = 2 \lceil d/2 \rceil$.

Theorem (B-Jeznach 2024: minimum number $m_{n,d}$) When $n = 2$, $m_{2,d} =$ $\sqrt{ }$ $\left\langle \right\rangle$ \mathcal{L} 2, when $d \not\equiv 0 \pmod{4}$, 3, when $d \equiv 0 \pmod{4}$

When $n \geq 3$, we have $m_{n,d} = 2$ for all $d \geq 2$.

Theorem (B-Jeznach 2024: maximum number $M_{n,d}$) For all $n \geq 2$, $M_{n,d} = \Theta(d^n)$ as $d \to \infty$. More precisely,

$$
\left\lfloor \frac{d}{n} \right\rfloor^n \leq M_{n,d} \leq \binom{n+d}{n} \quad \text{for all } n \geq 2, d \geq 2.
$$

.
◆ ロ ▶ ◆ *団* ▶ ◆ ミ ▶ → ミ ▶ │ ミ │ ◆ 9 Q (°

The method of proof is constructive and gives examples acheiving $m_{n,d}$.

Example 1: The polynomial

$$
p(x, y, t) = 150t(3x + y) + 27x^3 + 267x^2y + 144xy^2 - 64y^3
$$

is an hcp of degree 3 in \mathbb{R}^{2+1} and $\mathcal{N}(\rho)=2.$

Example 2: The polynomial

$$
p(x, y, t) = 7500t2 + 150t(37x2 – 7xy + 13y2) + 192x4 + 176x3y + 1623x2y2 – 351xy3 – 108y4
$$

is an hcp of degree 4 in \mathbb{R}^{2+1} and $\mathcal{N}(\rho)=3.$

Example 3: The polynomial

$$
p(x, y, z, t) = 12t^2 + 12tx^2 + x^4 + y^4 - 6y^2z^2 + z^4
$$

K ロ ▶ K 個 ▶ K ミ K K E X → E → Y Q Q O

is an hcp of degree 4 in \mathbb{R}^{3+1} and $\mathcal{N}(p)=2.$

The zero set in each example is smooth outside of the origin.

Figure: Gallery of nodal sets of homogeneous caloric polynomials in \mathbb{R}^{2+1} achieving the minimum number $m_{2,d}$ of nodal domains

From left to right, $d = 4$, $d = 5$, and $d = 6$

For increased visibility, we show the intersection of the full nodal set with a spherical annulus

KORKARA SERKER OQO

Consequence:

Corollary

Let $\Omega^\pm \subset \mathbb{R}^{n+1}$ be as in Mourgoglou and Puliatti's theorem.

Assume that $\log \frac{d\omega^-}{d\omega^+} \in {\rm VMO}(d\omega^+)$

When
$$
n = 2
$$
,
\n
$$
\partial \Omega = \bigcup_{k \geq 0} \Gamma_{4k+1} \cup \Gamma_{4k+2} \cup \Gamma_{4k+3};
$$

for every $d \not\equiv 0 \pmod{4}$, the stratum Γ_d is nonempty for some pair of domains satisfying the free boundary condition.

KORK ERKEY EL YOUR

When $n = 3$, the stratum Γ_d can be nonempty for every $d \geq 1$.

Part 4 — Some Proof Ideas

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Let's focus on the problem of finding HCP in \mathbb{R}^{2+1} that realize the minimal number of nodal domains.

Counting the nodal domains of an HCP p is equivalent to counting the nodal domains of $\rho|_{\mathbb{S}^2}$. We can attempt to implement Lewy's method for spherical harmonics (1977) in the parabolic context:

- 1. Begin with an HCP ϕ_1 of degree d whose nodal set can be **described explicitly**.
- 2. Find another HCP ϕ_2 of degree d so that the nodal set of the perturbation $u = \phi_1 - \epsilon \phi_2$ in \mathbb{S}^2 is a single Jordan curve.

The key difficulty in this strategy is finding certain compatibility conditions between ϕ_1 , ϕ_2 .

KORK ERKEY EL YOUR

Lemma (Lewy 1977, B-Jeznach 2024)

Suppose that $G: B_r(0) \subset \mathbb{R}^2 \to \mathbb{R}$ takes the form of a product $G(x, y) = \prod_{i=1}^{m} g_i(x, y)$ for some $m \ge 2$, where $g_1, \ldots, g_m : B_r(0) \to \mathbb{R}$ are real-analytic functions satisfying

 \blacktriangleright g_i(0, 0) = 0 and $\partial_{\gamma}g_i(0, 0) \neq 0$ for all *i*,

► {
$$
g_i = 0
$$
} \cap { $g_j = 0$ } = {(0, 0)} for all $i \neq j$.

If $F: B_r(0) \to \mathbb{R}$ is C^1 and $F(0,0) > 0$, then there exists $\tau \in (0,r)$ and $\epsilon_0 > 0$ such that for all $\epsilon \in (0, \epsilon_0)$, the nodal set of $G - \epsilon F$ in $B_{\tau}(0)$ consists of m pairwise disjoint simple curves, one inside each of the m connected components of $\{G > 0\}$. The same conclusion holds when $F(0, 0) < 0$ except that then the nodal set of the perturbation $G - \epsilon F$ lies in $\{G < 0\}$.

KORKAR KERKER E VOOR

Figure: Zero set of $G(x, y) = (x^4 - y - y^2)(x^2(x^2 - 1) + \frac{1}{2}y)(3x^3 - y)$ and its perturbation $G - \epsilon F$: $\epsilon = 10^{-5}$, $F(x, y) = 1$ (left), $F(x, y) = -1$ (right).

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0$

 $2Q$

ă

The Case $d > 3$ is Odd

Let $p_d(x,t)$ denote the basic HCP in $\mathbb{R}^{1+1}.$

Theorem (B-Jeznach 2024)

Assume $d > 3$ is odd. For all sufficiently small $\epsilon > 0$ and $\alpha > 0$,

$$
u_{\epsilon,\alpha}(x,y,t) := yp_{d-1}(x,t) - \epsilon p_d(x\cos\alpha - y\sin\alpha,t)
$$

is a time-dependent hcp in \mathbb{R}^{2+1} of degree d and \mathcal{N} $\mu_{\epsilon,\alpha}=2$

Figure: Nodal set when $d = 5$, $\epsilon = 0.3$, $\alpha = \pi/10$

KORKARA SERKER OQO

Rewrite $u_{\epsilon,\alpha}|_{\mathbb{S}^2}(x,y,t)$ in spherical coordinates

Fix $\varepsilon > 0$ and $\alpha > 0$ (small) and write $u = u_{\varepsilon, \alpha}, p = p_{d-1}, q = p_d$, and $q_{\alpha}(x, y, t) = p_{d}(x \cos \alpha - y \sin \alpha, t).$

Consider the standard spherical coordinates on \mathbb{S}^2 given by

 $x = \cos \theta \cos \phi$, $y = \sin \theta \cos \phi$, $t = \sin \phi$, $-\pi < \theta < \pi$, $-\pi/2 < \phi < \pi/2$

and write \bar{p} , \bar{q} , \bar{q} , and \bar{u} for the functions corresponding to $y p_d(x,t)$, $q(x,t)$, $q_\alpha(x,y,t)$, and $u_{\epsilon,\alpha}(x,y,t)$ on \mathbb{S}^2 written in spherical coordinates. Hence

$$
\overline{\rho}(\theta,\phi) = \sin\theta\cos\phi \prod_{i=1}^{k} (\sin\phi + b_i\cos^2\theta\cos^2\phi),
$$

$$
\overline{q}(\theta,\phi) = \cos\theta\cos\phi \prod_{i=1}^{k} (\sin\phi + c_i\cos^2\theta\cos^2\phi),
$$

$$
\overline{q}_{\alpha}(\theta,\phi) = \overline{q}(\theta + \alpha,\phi), \quad \overline{u}(\theta,\phi) = \overline{p}(\theta,\phi) - \epsilon \overline{q}_{\alpha}(\theta,\phi).
$$

Figure: Proof of Theorem (1/2): Nodal set of \bar{p} (top/left), \bar{q} (top/right), and \bar{u} (bottom) when $k = 3$ and ϵ and α are sufficiently small.

K ロ > K @ ▶ K 할 > K 할 > → 할 → 9 Q @

Figure: Proof of Theorem (2/2): Nodal sets of \bar{p} (top) and \bar{u} (bottom) near $\theta = 0$ (left) and $\theta = \pi/2$ (right) when $k = 3$. Sign of \overline{q}_{α} at singular points in nodal set of \bar{p} determines local configuration of nodal domains of \bar{u} .
The Other Cases

Theorem (cf. Theorem 1 in Lewy (1977))

Assume $d = 4k + 2$ for some $k \geq 0.$ Let $\psi(x, y) = \mathrm{Im}((x + iy)^d)$ and let $p_d({\sf x},t)$ be the basic hcp in $\mathbb{R}^{1+1}.$ For all sufficiently small $\epsilon>0,$

$$
u_{\epsilon}(x, y, t) := \psi(x, y) - \epsilon p_d(x, t)
$$

is a time-dependent hcp in \mathbb{R}^{2+1} of degree d and $\mathcal{N}(u_\epsilon)=2$

Theorem (B-Jeznach 2024)

Assume $d = 4k$ for some $k \geq 1$. For small enough $\epsilon > 0$ and $\alpha > 0$,

$$
u_{\epsilon,\alpha}(x,y,t) := p_{2k}(x,t)p_{2k}(y,t) + \epsilon p_{2k+1}(x\cos\alpha - y\sin\alpha,t)p_{2k-1}(x\sin\alpha + y\cos\alpha,t)
$$

is a time-dependent hcp in \mathbb{R}^{2+1} of degree d and $\mathcal{N}(u_{\epsilon,\alpha})=3$

Thank you for your attention!

Connecticut, Two Weeks Ago

 \blacksquare

 Ω

The Theat