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Part 1 — Motivation



Dirichlet Problem and Harmonic Measure

Let n > 2 and let Q C R” be a regular domain for (D).
Dirichlet Problem

wx( E) E u=f

Given f € C.(09),
find u € C?(Q) N C(Q):

Au=0inQ
(D) u=fonoQ

A= axlxl + axsz + -+ ax,,x,7
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Dirichlet Problem and Harmonic Measure

Let n > 2 and let Q C R” be a regular domain for (D).
Dirichlet Problem

wx( E) E u=f

Given f € C.(09),
find u € C?(Q) N C(Q):

Au=0inQ
(D) u=fonoQ

A= axlxl + axsz + -+ axnx,7

3! family of probability measures {w*X}xcq on the boundary 8Q
called harmonic measure of Q with pole at X € Q such that

u(X) = /GQ f(Q)dwX(Q)  solves (D)

For unbounded domains, we may also consider harmonic measure
with pole at infinity.



Examples of Regular Domains

NTA domains introduced by Jerison and Kenig 1982:
Quantitative Openness + Quantitative Path Connectedness

Smooth Domains Lipschitz Domains Quasispheres

(e.g. snowflake)



Two-Phase Free Boundary Regularity Problem

Q C R"is a 2-sided domain if:
1. QFf = Qis open and connected
2. Q~ =R"\ Qis open and connected
3. 00T =90~




Two-Phase Free Boundary Regularity Problem

Q C R"is a 2-sided domain if:
1. QFf = Qis open and connected
2. Q~ =R"\ Qis open and connected
3. 00T =90~

Let Q C R” be a 2-sided domain, equipped with harmonic
measures w™ on QT andw on Q.

d .
fwt €« w™ K wh, then f = dZ_Jr exists, f € L}(dw™).

Determine the extent to which existence or regularity of f
controls the geometry or regularity of the boundary 8.



Regularity of a boundary can be expressed in terms of
geometric blowups of the boundary



Measure-Theoretic Tangents Exist at Typical Points

Theorem (Azzam-Mourgoglou-Tolsa-Volberg 2016)

Let Q C R"” be a 2-sided domain with harmonic measures w* on Q. If
wh K w” < w', thendQ = GU N, where

1. w*(N) = 0and #" ' L Gis locally finite,
2w LGKHTTLGKw LG,

3. uptoaw*-null set, G is contained in a countable union of graphs of
Lipschitz functions f; : V; — Vi*, V € G(n, n—1).
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Measure-Theoretic Tangents Exist at Typical Points

Theorem (Azzam-Mourgoglou-Tolsa-Volberg 2016)

Let Q C R"” be a 2-sided domain with harmonic measures w* on Q. If
wh K w” < w', thendQ = GU N, where

1. w*(N) = 0and #" ' L Gis locally finite,
2. wrLGKHTILGKw LG,
3. uptoaw*-null set, G is contained in a countable union of graphs of
Lipschitz functions f; : Vi — Vi*, V € G(n, n— 1).
In contemporary Geometric Measure Theory, we express (3) by saying
w* are (n — 1)-dimensional Lipschitz graph rectifiable.

In particular, if w* €« w™ <« wt, then atw®-a.e. x € 89,
there is a unique w*-approximate tangent plane V € G(n, n —1):
w*(B(x,r))

lim sup o >0 and limsup
rl0 r ri0

w*(B(x,r) \ Cone(x + V,a)) _

pn—1

0

for every cone around the (n — 1)-plane x + V.



Example: Polynomial Singularity
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Figure: The zero set of Szulkin's (1978) degree 3 homogeneous harmonic
polynomial p(x, y, z) = x> — 3xy* + 2° — 1.5(x*> + y*)z
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Figure: The zero set of Szulkin's (1978) degree 3 homogeneous harmonic
polynomial p(x, y, z) = x> — 3xy* + 2° — 1.5(x*> + y*)z
QF = {p* > 0} is a 2-sided NTA domain, w* = w™ (pole at infinity),
log 9~ = 0 but 8Q* = {p = 0} is not smooth at the origin.



Example: Polynomial Singularity

-2.0

Figure: The zero set of Szulkin's (1978) degree 3 homogeneous harmonic
polynomial p(x, y, z) = x> — 3xy* + 2° — 1.5(x*> + y*)z

Ot = {pi > 0} is a 2-sided NTA domain, w* = w™ (pole at infinity),
log 9~ = 0 but 8Q* = {p = 0} is not smooth at the origin.

log 4 is smooth # 8Q is smooth
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Useful Terminology: Local Set Approximation
(B-Lewis 2015)

Let AC R"beclosed, let x; € A, let x; — x € A, andletr; | 0.
A—x

i

> Attouch-Wets topology: ¥; — ¥ if and only if for every r > 0,
limisoo (supxeszr dist(x, X) + SUP,esna, dist(y, ):,-)) =0

If — T,we say that T is a tangent set of A at x.

> There is at least one tangent set at each x € A.
» There could be more than one tangent set at each x € A.

A—X,'

fi

> Every tangent set of A at x is a pseudotangent set of A at x.

If — S, we say that S is a pseudotangent set of A at x.

» There could be pseudotangent sets that are not tangent sets.

We say that A is locally bilaterally well approximated by S if
every pseudotangent set of A belongsto S.



Tangents under Weak Regularity

Theorem (Kenig—Toro 2006, B 2011, B-Engelstein-Toro 2017)

Let Q C R” be a 2-sided NTA domain equipped with harmonic measures

wrtonQ*f fw" <w <whandf = ZZ—; has log f € VMO(dw™) , then
> Qs locally bilaterally well approximated by zero sets of

harmonic polynomials p : R” — R of degree at most dy such that
QF = {x : £p(x) > 0} are NTA domains and dimy dQ = n — 1.



Tangents under Weak Regularity

Theorem (Kenig-Toro 2006, B 2011, B-Engelstein-Toro 2017)
Let Q C R” be a 2-sided NTA domain equipped with harmonic measures
wrtonQ*f fw" <w <whandf = ZZ—Jr has log f € VMO(dw™) , then
> Qs locally bilaterally well approximated by zero sets of
harmonic polynomials p : R” — R of degree at most dy such that
QF = {x : £p(x) > 0} are NTA domains and dimy dQ = n — 1.
Moreover, we can partition9Q =T, US =T UL U---UTlg,.
» I is relatively open in 8Q, I1is locally bilaterally well approximated by
(n—1)-planes,and dimy i =n—1
> Sisclosed, w*(S) =0anddimyS<n-3
> S=T,U--UTlg4,where x € [, < every tangent set of 0Q at x is the

zero set of a homogeneous harmonic polynomial g of degree d such
that Qz are NTA domains.
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Zero Sets of HHP in R? and R3 of Degrees 1, 2, 3, 4, 5

Admissible Tangents

> In first row, only the first example (degree 1) separates the plane
into 2-sided NTA domains

> In second row, only the first, third, and fifth examples (odd degrees)
separate space into 2-sided NTA domains (Lewy 1977)

» InR* or higher dimensions, there are examples of all degrees that
separate space into 2-sided NTA domains (B-Engelstein-Toro 2017)



Theorem (Engelstein 2016 + B-Engelstein-Toro 2020)

Assume that QF are NTAand log f € C%%(0Q) (Holder continuous) .
Then 69 has a unique tangent set at every x € 99.

Theorem (B-Engelstein-Toro 2023)

Forany d > 1, there exist examples where Q* are NTA, 'y # 0,
log f € C(0R2) \ Uqso C%%(89) (continuous, but not Holder) and
99 has continuum of distinct tangent sets at some x € I',.

PREN

Figure: Blow-ups ¥/r of the interface ¥ = 8Q* of the graph domains

associated to v(x, y) = xlog | log(y/x2 + y2)| sin(log | log(y/x2 + y2)|) ata
flatpointo e r;.  Left: r = 1 Center: r = 107° Right: r = 107"



We want to carry out the same sort of investigation in
the context of the heat equation



Heat Dirichlet Problem and Caloric Measure

Let n > 1andletQ c R"! = R" x R be a regular domain for (HD).
The essential boundary 5.9 includes the part of 8Q that is accessible by
paths in Q moving backwards-in-time.

31 family of probability measures
X0 {w* "} (x r)ea ON 8. called caloric measure
A of Q with pole at (X, t) € Q such that

Future

u(X, t) = /6 AV (Y )

solves heat Dirichlet problem with

boundary data f € C.(6.Q): u € C*(Q),

dwu—Axu=0inQand u = f ond.Q
*requires interpretation on 8ssQ C 8.0

Theorem
Caloric measure of present & future is zero:
WX {(Y,s)€dQ:s>1t}) =0




Two-Phase Caloric Free Boundary Regularity
Caloric Analogue of Kenig-Toro (2006) + B (2011):
Theorem (Mourgoglou-Puliatti 2021)

Let Qt = R\ Q- and Q~ = R" \ QF be complimentary domains
with “nice” (for heat potential theory) common boundary.
Let w* be caloric measures on Q* with poles at (X5, to).

Ifwh <« w™ < w*and f = 9% has log f € VMO(dw*) , then

» 9Q is locally bilaterally well approximated by zero sets of
caloric polynomials p : R™! — R of degree at most dj
such that Qf = {x : £p(x) > 0} are connected.

Twhere pseudotangent sets are defined using parabolic dilations



Two-Phase Caloric Free Boundary Regularity
Caloric Analogue of Kenig-Toro (2006) + B (2011):

Theorem (Mourgoglou-Puliatti 2021)

Let Qt = R\ Q- and Q~ = R" \ QF be complimentary domains
with “nice” (for heat potential theory) common boundary.

Let w* be caloric measures on Q* with poles at (X5, to).

Ifwh <« w™ < w*and f = 9% has log f € VMO(dw*) , then

» 9Q is locally bilaterally well approximated by zero sets of
caloric polynomials p : R™! — R of degree at most dj
such that Qf = {x : £p(x) > 0} are connected.

Moreover, we can partitiondQ =T, U, U -- U4 where

> (X, t) € 4 < everytangent set of 9Q at (X, t) is the zero set of
a parabolically homogeneous caloric polynomial g of degree d
such that QF are connected.

Twhere pseudotangent sets are defined using parabolic dilations
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time-dependent homogeneous caloric polynomials
whose zero set separates R™*! into two components
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Mourgoglou and Puliatti did not give any examples of
time-dependent homogeneous caloric polynomials
whose zero set separates R™*! into two components

To validate their theory, we need examples to verify
that time-dependent blow-ups exist

Examples exist, but not for all pairs of nand d!
This is the content of B-Jeznach (2024)



Part 2 — Nodal Domains
of Caloric Polynomials



Nodal Domains

Let v : R™! — R be continuous.

» The nodal set of uis {u = 0} (possibly empty).

» A nodal domain of v is a connected component of {u # 0}.
N(u) € {0,1,2,...}U {oo} denotes number of nodal domains of u

A polynomial p : R™! — R invariables (X, t) = (X1, ..., X, t) with
real coefficients is caloric if p solves heat equation: 9,p — Axp = 0.

Lemma

If p: R™! — R is a non-constant caloric polynomial of degree d,
then2 < N (p) < (d +1)"(d + 2).

Proof: There is a point (X, t) € R™™ with ¢t < 0 at which p(X,t) =0
(orthogonality of negative-time slices). Applying the mean value property
for heat balls, there are (X*, t*) near (X, t) with t* < t at which

+p(X*, t*) > 0. Hence M(p) > 2. The upper bound holds for arbitrary
polynomials in R™™ of degree d by Milnor (1964).



Time Coefficients of Caloric Polynomials
Suppose that we have a polynomial solution of the heat equation:

p(X. t) = t9pg(X) + t¥ s 1 (X) 4+ -+ tpr(X) + po(X),  pa(X) 0
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Time Coefficients of Caloric Polynomials
Suppose that we have a polynomial solution of the heat equation:

P(X, 1) = t9pu(X) + 197 py 1 (X) + -+ tpr(X) + po(X),  pa(X) £ 0

Applying the heat opeartor 8; — Ax we get:

t9(=Bxpa(X)) + t7H(dpa(X) = Axps—1(X))
+ o+ 1(2p2(X) = Axpi(X)) + (pr(X) = Axpo(X)) =0

Axpy(X)=0 p4(X) is harmonic
Axpy 1(X) =dpy(X): pg1(X) is bi-harmonic
Axpi(X) =2ps(X) : p1(X) is d-harmonic

2
Axpo(X) = pi(X) : po(X)is (d + 1)-harmonic
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Homogeneous Caloric Polynomials

If u(X, t) solves the heat equation X > 0, then v(X, t) = u(AX, \t) solves
the heat equation.

A homogeneous caloric polynomial (HCP) of degree d is a caloric
polynomial p on R"! that is parabolically homogeneous:

p(AX, X’t) = A9p(X, t)

» Forany exponent k € N and multi-index o € N”, the monomial t* x>
is parabolically homogeneous of degree 2k + |a.

» Parabolic and algebraic homogeneity are distinct notions:
p(x, t) = t* + tx° + x*/12

is an HCP of degree 4 in R**?, but p is not algebraically homogeneous.
Nevertheless, the parabolic degree and the algebraic degree of an
HCP always coincide.

» Any time-dependent HCP has degree at least 2.



HCP in R}
Fact: In R?, harmonic functions linear: v"(x) = 0 = u(x) = mx + b.

Corollary: Up to scaling by a constant, there is a unique HCP in
R!*! of each degree d > 1: po(x,t) =1
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Fact: In R?, harmonic functions linear: v"(x) = 0 = u(x) = mx + b.

Corollary: Up to scaling by a constant, there is a unique HCP in
R!*! of each degree d > 1: po(x,t) =1 pi(x, t) =
po(x, t) =t + ix2 = tx + 3x°
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HCP in R}
Fact: In R?, harmonic functions linear: v"(x) = 0 = u(x) = mx + b.

Corollary: Up to scaling by a constant, there is a unique HCP in
R!*! of each degree d > 1: po(x.t) =1 pi(x.t)=
po(x, t) =t + ix2 = tx + 3x°

=tk ¢ Ktkflx2 + k(k*l)tk72x4 4ot (2kkl)|X2k

k 1
Paksi(x, t) = thJr tk 1,3 4 K )tk 2,5 4 ... 4 (2/<J:1)!X2k+1

Theorem: For each multi-index a € N”, define
Pa(X. t) = Poy (X1, t) - -+ pa, (Xn, t). Then {py(x.s) : la| = d} is a basis
for the vector space of all HCPs in R"*+! of degree d (and zero).

Examples: xy = p;(x, t)pi1(y, t)
X* = y? =2t + 5x%) = 2(t + 3¥%) = 2pa(x. 1) = 2pa(y. 1)



Theorem (Factorization Lemma)
Forall d > 2, the "basic hcp” ps(x, t) in R*™ assumes the form

(x. ) (t +ag1x?) - (t + agxx?) when d = 2k is even,
X, = .
P x(t+ ag1x?) - (t+ agxx®) whend =2k + 1is odd,

for some distinct numbers 0 < a;1 < -+« < ag-
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Theorem (Factorization Lemma)
Forall d > 2, the "basic hcp” ps(x, t) in R*™ assumes the form

(x. ) (t +ag1x?) - (t + agxx?) when d = 2k is even,
X, = .
P x(t+ ag1x?) - (t+ agxx®) whend =2k + 1is odd,

for some distinct numbers 0 < ay1 < --- < aqx. Moreover,

par—1(x, t) = x(t + 31X2) e (t 4 2k—1X2), pakt1(x, t) = x(t + c1x2) e (t CkXZ),

pak(x, t) = (t + b1x2) S (t+ bkx2),
with the ajs, b/s, and ¢/s each listed in increasing order, then the
coefficients associated with consecutive polynomials are interlaced:

b <ar< b <a<--<ae < by,
a< b <o<b<-:--<br <c< bg.

Why? p,(x, —1) = 2 H,(x/2), where Hy(x) is the so-called Hermite
orthogonal polynomial. Use facts about these and parabolic scaling.



A NS

> The nodal set of a degree d hcp in R is a union of | d/2] nested,
downward-opening parabolas with a common turning point at the
origin, and when d is odd, an additional vertical line (the t-axis).

» From left to right, we illustrate the cases d = 2, .., d = 5.

» Inside the nodal set of pspy.1, the “nodal parabolas” of consecutive
hcps ps and pgy. 1 are intertwined:

> “widest"” parabola of p4: sits above “widest” parabola of p4;
> “widest"” parabola of ps above “second widest” parabola of py.1;
» andsoon..

Corollary

Any hep p(x, t) in R**! of degree d > 1 has exactly 2[d/2] nodal domains.



Consequence:

In the n = 1 case of Mourgoglou and Puliatti's theorem,
log ¢4 € VMO(dw™) implies that 6Q = U T,.

The only tangent sets of the boundary are:

/N

Remark: So far this improvement only uses classical
results



Part 3 — New Results



Minimum and Maximum Number of Nodal Domains

Let m, 4 and M, 4 denote the minimum and maximum number of
nodal domains among time-dependent HCP in R"*! of degree d.
Recall that my 4 = My 4 = 2[d/2].

Theorem (B-Jeznach 2024: minimum number m,, 4)
When n =2,

2, whend#0 (mod 4),
myq =
3, whend=0 (mod 4).
When n > 3, we have m, 4 = 2forall d > 2.
Theorem (B-Jeznach 2024: maximum number M, 4)
Foralln > 2, M, 4 = ©(d") as d — oo. More precisely,

d|" d
LJ gMn,d§<"ﬁ ) foralln>2,d> 2.



The method of proof is constructive and gives examples acheiving m,, 4.
Example 1: The polynomial
p(x,y. t) = 150t(3x + y) + 27x° + 267x°y + 144xy* — 64y°
is an hcp of degree 3in R*** and NV (p) = 2.
Example 2: The polynomial

p(x,y, t) = 7500¢> + 150t(37x” — 7xy + 13y°)
+192x* +176x°y + 1623x%y* — 351xy° — 108y*

is an hcp of degree 4 in R**! and V(p) = 3.
Example 3: The polynomial

p(x.y, z, t) = 128° + 12tx° + x* + y* — 6y°2* + 2*
is an hep of degree 4 in R*™* and V'(p) = 2.

The zero set in each example is smooth outside of the origin.



Figure: Gallery of nodal sets of homogeneous caloric polynomials in R*+*
achieving the minimum number m;, 4 of nodal domains

From lefttoright,d = 4,d =5,and d = 6

For increased visibility, we show the intersection of the full nodal set with a
spherical annulus



Consequence:

Corollary
Let Q* c R"*! be as in Mourgoglou and Puliatti's theorem.

Assume that log 94 € VMO(dw™)

When n =2,

0N = U M ak1 U Tapgo U T apqs;
k>0

forevery d Z 0 (mod 4), the stratum Iy is nonempty for some pair
of domains satisfying the free boundary condition.

When n = 3, the stratum 'y can be nonempty for every d > 1.



Part 4 — Some Proofldeas



Let's focus on the problem of finding HCP in R2*! that
realize the minimal number of nodal domains.

Counting the nodal domains of an HCP p is equivalent to counting
the nodal domains of p|s.. We can attempt to implement Lewy's
method for spherical harmonics (1977) in the parabolic context:

1. Begin with an HCP ¢, of degree d whose nodal set can be
described explicitly.

2. Find another HCP ¢, of degree d so that the nodal set of the
perturbation u = ¢; — e¢, in S? is a single Jordan curve.

The key difficulty in this strategy is finding certain compatibility
conditions between ¢, ¢».



Lemma (Lewy 1977, B-Jeznach 2024)

Suppose that G : B,(0) C R? — R takes the form of a product
G(x,y) =17, g(x, y) forsome m > 2, where gy, .. ., gm: B:(0) = Rare
real-analytic functions satisfying

> gi(0,0) =0and d,g;(0,0) # 0forall j,

> {g=0}n{g =0} ={(0,0)}forall i # .
If F: B,(0) = Ris C' and F(0,0) > 0, then there exists 7 € (0, r) and ¢; > 0
such that forall € € (0, &), the nodal set of G — ¢F in B;(0) consists of m
pairwise disjoint simple curves, one inside each of the m connected

components of {G > 0}. The same conclusion holds when F(0,0) < 0
except that then the nodal set of the perturbation G — ¢F liesin {G < 0}.
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Figure: Zero setof G(x, y) = (x* —y — y*)(x*(x* — 1) + 1y)(3x* — y) and its
perturbation G — ¢F: € = 107°, F(x, y) = 1 (left), F(x, y) = —1 (right).



The Case d > 3is Odd

Let pq(x, t) denote the basic HCP in R1*1.

Theorem (B-Jeznach 2024)
Assume d > 3 is odd. For all sufficiently small e > 0 and a > 0,

Ueo(X,y, t) := ypa—1(x, t) — €pg(x cosa — ysina, t)

is a time-dependent hcp in R?*! of degree d and Ny, o = 2

Figure: Nodal setwhend = 5,¢ = 0.3, a = 7/10



Rewrite u, 4|s2(x, y, t) in spherical coordinates
Fixe > 0and a > 0 (small) and write u = v, o, p = p4_1, 9 = pg, and
ga(x,y, t) = pg(xcosa — ysina, t).

Consider the standard spherical coordinates on S? given by
x = cosfcos¢, y =sinfcos¢p, t =sing, —nm <0<, —7/2<p<7/2

and write p, g, g,,, and @ for the functions corresponding to
ypa(x, t), q(x, t), ga(x, ¥, t), and ue o (x, y, t) on S? written in spherical
coordinates. Hence

K
(0, ¢) = sin 9cos¢H (sin¢ + b; cos? 0 cos? d)) ,

i=1

K
q(6, ¢) = cos@cosd)H (sin + c; cos® 6 cos® ) ,

i=1

Gs(6,9) =90+, ¢). U6 .¢) =p(6¢) —€qu(0. §).
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Figure: Proof of Theorem (1/2): Nodal set of 5 (top/left), g (top/right), and @
(bottom) when k = 3 and € and « are sufficiently small.



Figure: Proof of Theorem (2/2): Nodal sets of 5 (top) and @ (bottom) near
6 = 0 (left) and 6 = /2 (right) when k = 3. Sign of g, at singular points in
nodal set of p determines local configuration of nodal domains of z.



The Other Cases

Theorem (cf. Theorem 1in Lewy (1977))

Assume d = 4k + 2 for some k > 0. Let ¢(x, y) = Im((x + iy)?) and
let pg(x, t) be the basic hcp in R, For all sufficiently small e > 0,

ue(x, v, t) = P(x, ) — epalx. t)
is a time-dependent hcp in R?*! of degree d and NV (u.) = 2

Theorem (B-Jeznach 2024)
Assume d = 4k for some k > 1. For small enough e > 0and a > 0,

Ue (X, y. t) i =pak(x, t)pax(y. t)

+ epakr1(xcosa — ysina, t)pak—1(xsina + y cosa, t)

is a time-dependent hcp in R?>*! of degree d and V(ueo) = 3



Connecticut, Two Weeks Ago

«A0» 4F>r «E»



