Tangent Measures and Harmonic Polynomials

Matthew Badger

University of Washington

June 19, 2009

∎ ∎ ∎

Harmonic Analysis, Geometric Measure Theory and Quasiconformal Mappings

Centre de Recerca Matemàtica, Bellaterra, España

K ロ K K d K K K X X R X X R H

 298

- ω^+ harmonic measure of interior Ω^+ = Ω
- ω^- harmonic measure of exterior $\Omega^- = \mathbb{R}^n \smallsetminus \overline{\Omega}$

Question: What is the relationship between ω^+ and ω^- ?

-
-
-
-

- ω^+ harmonic measure of interior Ω^+ = Ω
- ω^- harmonic measure of exterior $\Omega^- = \mathbb{R}^n \smallsetminus \overline{\Omega}$

Question: What is the relationship between ω^+ and ω^- ?

When are ω^+ and ω^- mutually absolutely continuous? (e.g. smooth domains, Lipschitz domains, chord arc domains)

Ω

- What conditions does $\omega^+ \ll \omega^- \ll \omega^+$ force on $\partial \Omega$?
- When is $\omega^+ \perp \omega^-$?
- What are the possible Hausdorff dimensions of ω^+ and ω^- ?

- ω^+ harmonic measure of interior Ω^+ = Ω
- ω^- harmonic measure of exterior $\Omega^- = \mathbb{R}^n \smallsetminus \overline{\Omega}$

Question: What is the relationship between ω^+ and ω^- ?

- When are ω^+ and ω^- mutually absolutely continuous? (e.g. smooth domains, Lipschitz domains, chord arc domains)
- What conditions does $\omega^+ \ll \omega^- \ll \omega^+$ force on $\partial \Omega$?
- When is $\omega^+ \perp \omega^-$?
- What are the possible Hausdorff dimensions of ω^+ and ω^- ?

- ω^+ harmonic measure of interior Ω^+ = Ω
- ω^- harmonic measure of exterior $\Omega^- = \mathbb{R}^n \smallsetminus \overline{\Omega}$

Question: What is the relationship between ω^+ and ω^- ?

- When are ω^+ and ω^- mutually absolutely continuous? (e.g. smooth domains, Lipschitz domains, chord arc domains)
- What conditions does $\omega^+ \ll \omega^- \ll \omega^+$ force on $\partial \Omega$?
- When is $\omega^+ \perp \omega^-$?

What are the possible Hausdorff dimensions of ω^+ and ω^- ?

- ω^+ harmonic measure of interior Ω^+ = Ω
- ω^- harmonic measure of exterior $\Omega^- = \mathbb{R}^n \smallsetminus \overline{\Omega}$

Question: What is the relationship between ω^+ and ω^- ?

- When are ω^+ and ω^- mutually absolutely continuous? (e.g. smooth domains, Lipschitz domains, chord arc domains)
- What conditions does $\omega^+ \ll \omega^- \ll \omega^+$ force on $\partial \Omega$?
- When is $\omega^+ \perp \omega^-$?
- What are the possible Hausdorff dimensions of ω^+ and ω^- ?

Definition: The Hausdorff dimension of harmonic measure

 H −dim ω = inf $\{s : \exists E \subset \partial \Omega \text{ with } \mathcal{H}^s(E) = 0 \text{ and } \omega(\partial \Omega \setminus E) = 0\}$

is the smallest dimension of a set with full harmonic measure

(Makarov 1985) \mathcal{H} -dim $\omega = 1$ if $\Omega \subset \mathbb{R}^2$ is simply connected

- (Wolff 1995) There are domains in \mathbb{R}^3 with \mathcal{H} –dim $\omega > 2$ $-$ There are domains in \mathbb{R}^3 with $\mathcal{H}\text{-dim}\,\omega < 2$
- (Lewis-Verchota-Vogel 2005) Reexamined Wolff's construction: For all $n \geq 3$ there are 2-sided NTA domains in \mathbb{R}^n such that
	- $-$ H−dim ω^+ > n − 1, H−dim ω^- > n − 1
	- $-$ H−dim $ω^+ > n 1$, H−dim $ω^- < n 1$
	- $-$ H−dim $ω^+$ < n − 1, H−dim $ω^-$ < n − 1
- \blacksquare (Kenig-Preiss-Toro 2009) If Ω is 2-sided NTA and $\omega^+ \ll \omega^- \ll \omega^+$, then $\mathcal{H}\text{-}\mathsf{dim}\,\omega^+ = \mathcal{H}\text{-}\mathsf{dim}\,\omega^- = n-1$

Definition: The Hausdorff dimension of harmonic measure

 H −dim ω = inf $\{s : \exists E \subset \partial \Omega \text{ with } \mathcal{H}^s(E) = 0 \text{ and } \omega(\partial \Omega \setminus E) = 0\}$

is the smallest dimension of a set with full harmonic measure

(Makarov 1985) $\mathcal{H}\text{-dim}\,\omega$ = 1 if $\Omega \subset \mathbb{R}^2$ is simply connected

- (Wolff 1995) There are domains in \mathbb{R}^3 with \mathcal{H} –dim $\omega > 2$ $-$ There are domains in \mathbb{R}^3 with $\mathcal{H}\text{-dim}\,\omega < 2$
- (Lewis-Verchota-Vogel 2005) Reexamined Wolff's construction: For all $n \geq 3$ there are 2-sided NTA domains in \mathbb{R}^n such that
	- $-$ H−dim ω^+ > n − 1, H−dim ω^- > n − 1
	- $-$ H−dim $ω^+ > n 1$, H−dim $ω^- < n 1$
	- $-$ H−dim $ω^+$ < n − 1, H−dim $ω^-$ < n − 1
- \blacksquare (Kenig-Preiss-Toro 2009) If Ω is 2-sided NTA and $\omega^+ \ll \omega^- \ll \omega^+$, then $\mathcal{H}\text{-}\mathsf{dim}\,\omega^+ = \mathcal{H}\text{-}\mathsf{dim}\,\omega^- = n-1$

Definition: The Hausdorff dimension of harmonic measure

 H −dim ω = inf $\{s : \exists E \subset \partial \Omega \text{ with } \mathcal{H}^s(E) = 0 \text{ and } \omega(\partial \Omega \setminus E) = 0\}$

- is the smallest dimension of a set with full harmonic measure
	- (Makarov 1985) $\mathcal{H}\text{-dim}\,\omega$ = 1 if $\Omega \subset \mathbb{R}^2$ is simply connected
	- (Wolff 1995) There are domains in \mathbb{R}^3 with $\mathcal{H}\text{-dim}\,\omega$ > 2 $-$ There are domains in \mathbb{R}^3 with $\mathcal{H}\text{−dim}\,\omega$ < 2
	- (Lewis-Verchota-Vogel 2005) Reexamined Wolff's construction: For all $n \geq 3$ there are 2-sided NTA domains in \mathbb{R}^n such that
		- $-$ H−dim ω^+ > n − 1, H−dim ω^- > n − 1
		- $-$ H−dim $ω^+ > n 1$, H−dim $ω^- < n 1$
		- $-$ H−dim $ω^+$ < n − 1, H−dim $ω^-$ < n − 1
	- \blacksquare (Kenig-Preiss-Toro 2009) If Ω is 2-sided NTA and $\omega^+ \ll \omega^- \ll \omega^+$, then $\mathcal{H}\text{-}\mathsf{dim}\,\omega^+ = \mathcal{H}\text{-}\mathsf{dim}\,\omega^- = n-1$

Definition: The Hausdorff dimension of harmonic measure

 H −dim ω = inf $\{s : \exists E \subset \partial \Omega \text{ with } \mathcal{H}^s(E) = 0 \text{ and } \omega(\partial \Omega \setminus E) = 0\}$

- is the smallest dimension of a set with full harmonic measure
	- (Makarov 1985) $\mathcal{H}\text{-dim}\,\omega$ = 1 if $\Omega \subset \mathbb{R}^2$ is simply connected
	- (Wolff 1995) There are domains in \mathbb{R}^3 with $\mathcal{H}\text{-dim}\,\omega$ > 2 $-$ There are domains in \mathbb{R}^3 with $\mathcal{H}\text{−dim}\,\omega$ < 2
	- (Lewis-Verchota-Vogel 2005) Reexamined Wolff's construction: For all $n \geq 3$ there are 2-sided NTA domains in \mathbb{R}^n such that
		- $-$ H−dim ω^+ > n − 1, H−dim ω^- > n − 1
		- $-$ H−dim ω^+ > n − 1, H−dim ω^- < n − 1
		- $-$ H−dim ω^+ < n − 1, H−dim ω^- < n − 1

 \blacksquare (Kenig-Preiss-Toro 2009) If Ω is 2-sided NTA and $\omega^+ \ll \omega^- \ll \omega^+$, then $\mathcal{H}\text{-}\mathsf{dim}\,\omega^+ = \mathcal{H}\text{-}\mathsf{dim}\,\omega^- = n-1$

Definition: The Hausdorff dimension of harmonic measure

 H −dim ω = inf $\{s : \exists E \subset \partial \Omega \text{ with } \mathcal{H}^s(E) = 0 \text{ and } \omega(\partial \Omega \setminus E) = 0\}$

- is the smallest dimension of a set with full harmonic measure
	- (Makarov 1985) $\mathcal{H}\text{-dim}\,\omega$ = 1 if $\Omega \subset \mathbb{R}^2$ is simply connected
	- (Wolff 1995) There are domains in \mathbb{R}^3 with $\mathcal{H}\text{-dim}\,\omega$ > 2 $-$ There are domains in \mathbb{R}^3 with $\mathcal{H}\text{−dim}\,\omega$ < 2
	- (Lewis-Verchota-Vogel 2005) Reexamined Wolff's construction: For all $n \geq 3$ there are 2-sided NTA domains in \mathbb{R}^n such that

 $-$ H−dim ω^+ > n − 1, H−dim ω^- > n − 1

- $-$ H−dim ω^+ > n − 1, H−dim ω^- < n − 1
- $-$ H−dim ω^+ < n − 1, H−dim ω^- < n − 1
- \blacksquare (Kenig-Preiss-Toro 2009) If Ω is 2-sided NTA and $\omega^+ \ll \omega^- \ll \omega^+$, then $\mathcal{H}\text{--}\dim \omega^+ = \mathcal{H}\text{--}\dim \omega^- = n-1$

Blow-ups of the Boundary are Homogeneous

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided NTA domain.

Theorem (B)

Assume
$$
\omega^+ \ll \omega^- \ll \omega^+
$$
 and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial \Omega)$. Then:

$$
\partial \Omega = \Gamma_1 \cup \dots \cup \Gamma_d.
$$

For each $Q \in \Gamma_k$ and sequence $r_i \downarrow 0$, there exist a subsequence and a homogeneous harmonic polynomial $h: \mathbb{R}^n \to \mathbb{R}$ of degree k s.t.

$$
\frac{\partial \Omega - Q}{r_i} \to h^{-1}(0) \quad (in Hausdorff distance).
$$

Example Polynomials: Linear Polynomials, $X_1^2 + X_2^2 - X_3^2 - X_4^2$

Blow-ups of the Boundary \longleftrightarrow Tangent Measures of ω

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided NTA domain, let $Q \in \partial \Omega$ and let $r_i \downarrow 0$.

Theorem: (KT) There is subsequence of r_i (which we relabel) and an unbounded 2-sided NTA domain Ω_{∞} such that

Blow-ups of Boundary at Q Converge:

$$
\partial \Omega_i = \frac{\partial \Omega - Q}{r_i} \rightarrow \partial \Omega_{\infty}
$$
 in Hausdorff metric

Blow-ups of Harmonic Measure at Q Converge:

$$
\omega_i^{\pm}(E) = \frac{\omega^{\pm}(Q + r_i E)}{\omega^{\pm}(B(Q, r_i))}
$$
 satisfy $\omega_i^{\pm} \to \omega_{\infty}^{\pm}$

where ω_{∞}^{\pm} is the harmonic measure of Ω_{∞}^{\pm} with pole at infinity

Theorem: (KT) Assume $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$. Then $\omega_{\infty}^{+} = \omega_{\infty}^{-}$ and there is a harmonic polynomial $h : \mathbb{R}^{n} \to \mathbb{R}$ s.t.

 $\partial \Omega_{\infty} = h^{-1}(0)$ and $\Omega_{\infty}^{\pm} = \{X : h^{\pm}(X) > 0\}.$

Blow-ups of the Boundary \longleftrightarrow Tangent Measures of ω

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided NTA domain, let $Q \in \partial \Omega$ and let $r_i \downarrow 0$.

Theorem: (KT) There is subsequence of r_i (which we relabel) and an unbounded 2-sided NTA domain Ω_{∞} such that

Blow-ups of Boundary at Q Converge:

$$
\partial \Omega_i = \frac{\partial \Omega - Q}{r_i} \to \partial \Omega_{\infty}
$$
 in Hausdorff metric

Blow-ups of Harmonic Measure at Q Converge:

$$
\omega_i^{\pm}(E) = \frac{\omega^{\pm}(Q + r_i E)}{\omega^{\pm}(B(Q, r_i))}
$$
 satisfy $\omega_i^{\pm} \to \omega_{\infty}^{\pm}$

where ω_{∞}^{\pm} is the harmonic measure of Ω_{∞}^{\pm} with pole at infinity

Theorem: (KT) Assume $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$. Then $\omega_{\infty}^{+} = \omega_{\infty}^{-}$ and there is a harmonic polynomial $h : \mathbb{R}^{n} \to \mathbb{R}$ s.t. $\partial\Omega_{\infty} = h^{-1}(0)$ and $\Omega_{\infty}^{\pm} = \{X : h^{\pm}(X) > 0\}.$

Harmonic Measure Associated to a Harmonic Polynomial

 $h:\mathbb{R}^n\to\mathbb{R}$ be a polynomial, $\Delta h=0$

$$
\Omega^+ = \{X : h(X) > 0\}, \ \Omega^- = \{X : h(X) < 0\}
$$

(i.e. h^{\pm} is the Green function for Ω^{\pm})

The harmonic measure ω_h associated to h is the harmonic measure of Ω^{\pm} with pole at infinity; i.e., for all $\varphi \in C^{\infty}_c(\mathbb{R}^n)$,

$$
\int_{h^{-1}(0)}\varphi d\omega_h=-\int_{\partial\Omega^\pm}\varphi\frac{\partial h^\pm}{\partial\nu}d\sigma=\int_{\Omega^\pm}h^\pm\Delta\varphi
$$

Two Collections of Measures Associated to Polynomials $P_d = \{\omega_h : h \text{ harmonic polynomial of degree } \leq d\}$ $\mathcal{F}_k = \{\omega_h : h \text{ homogeneous harmonic polynomial of degree } = k\}$

Harmonic Measure Associated to a Harmonic Polynomial

$$
h: \mathbb{R}^n \to \mathbb{R}
$$
 be a polynomial, $\Delta h = 0$

$$
\Omega^+ = \{X : h(X) > 0\}, \ \Omega^- = \{X : h(X) < 0\}
$$

(i.e. h^{\pm} is the Green function for Ω^{\pm})

The harmonic measure ω_h associated to h is the harmonic measure of Ω^{\pm} with pole at infinity; i.e., for all $\varphi \in C^{\infty}_c(\mathbb{R}^n)$,

$$
\int_{h^{-1}(0)}\varphi d\omega_h=-\int_{\partial\Omega^\pm}\varphi\frac{\partial h^\pm}{\partial\nu}d\sigma=\int_{\Omega^\pm}h^\pm\Delta\varphi
$$

Two Collections of Measures Associated to Polynomials $P_d = \{\omega_h : h \text{ harmonic polynomial of degree } \leq d\}$ $\mathcal{F}_k = \{\omega_h : h \text{ homogeneous harmonic polynomial of degree } = k\}$

Translation and Dilation of Measures

- For $x \in \mathbb{R}^n$ and $r > 0$ define $T_{x,r} : \mathbb{R}^n \to \mathbb{R}^n$ by $T_{x,r}(y) = \frac{y-x}{r}$ $\frac{-x}{r}$.
- If μ Radon measure on \mathbb{R}^n and $x\in \mathsf{spt}\, \mu$, the image measure $T_{x,r}[\mu]$ is defined by $T_{x,r}[\mu](E) = \mu(T^{-1}(E)) = \mu(x + rE)$.

Let μ Radon measure on \mathbb{R}^n , $x \in \operatorname{spt} \mu$. We say ν is a tangent measure to μ at x, i.e., $\nu \in \text{Tan}(\mu, x)$ if there exists sequences $r_i \downarrow 0$ and $c_i > 0$ such that

 $c_i T_{x,r_i}[\mu] \rightarrow \nu.$

Example $(\Omega \subset \mathbb{R}^n$ 2-sided NTA domain)

 $-$ Let $Q ∈ ∂Ω$ and $r_i ∖ 0$. With the constants $c_i = ω^+(B(Q, r_i))^{-1}$:

 $c_i T_{Q,r_i}[\omega^+] \rightarrow \omega_\infty^+$ (along subsequence).

That is, $\omega_{\infty}^{+} \in \text{Tan}(\omega^{+},Q)$.

 $-$ If $\omega^+ \ll \omega^- \ll \omega^+$ and log $\frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$, then there exists $d \geq 1$ such that $\mathsf{Tan}(\omega^\pm,Q)\in \mathcal{P}_\mathsf{d}$ for all $Q\in \partial \Omega.$

 $-$ Goal: $\text{Tan}(\omega^{\pm},Q) \in \mathcal{F}_k$ for some $1 \leq k(Q) \leq d$.

Let μ Radon measure on \mathbb{R}^n , $x \in \operatorname{spt} \mu$. We say ν is a tangent measure to μ at x, i.e., $\nu \in \text{Tan}(\mu, x)$ if there exists sequences $r_i \downarrow 0$ and $c_i > 0$ such that

 $c_i T_{x,r_i}[\mu] \rightarrow \nu.$

Example $(\Omega \subset \mathbb{R}^n$ 2-sided NTA domain) $-$ Let $Q ∈ ∂Ω$ and $r_i ∖ 0$. With the constants $c_i = ω^+(B(Q, r_i))^{-1}$: $c_i T_{Q,r_i}[\omega^+] \to \omega^+_{\infty}$ (along subsequence). That is, $\omega_{\infty}^+ \in \text{Tan}(\omega^+, Q)$.

 $-$ If $\omega^+ \ll \omega^- \ll \omega^+$ and log $\frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$, then there exists $d \geq 1$ such that $\mathsf{Tan}(\omega^\pm,Q)\in \mathcal{P}_\mathsf{d}$ for all $Q\in \partial \Omega.$

 $-$ Goal: $\text{Tan}(\omega^{\pm},Q) \in \mathcal{F}_k$ for some $1 \leq k(Q) \leq d$.

Let μ Radon measure on \mathbb{R}^n , $x \in \operatorname{spt} \mu$. We say ν is a tangent measure to μ at x, i.e., $\nu \in \text{Tan}(\mu, x)$ if there exists sequences $r_i \downarrow 0$ and $c_i > 0$ such that

 $c_i T_{x,r_i}[\mu] \rightarrow \nu.$

Example $(\Omega \subset \mathbb{R}^n$ 2-sided NTA domain) $-$ Let $Q ∈ ∂Ω$ and $r_i ∖ 0$. With the constants $c_i = ω^+(B(Q, r_i))^{-1}$: $c_i T_{Q,r_i}[\omega^+] \to \omega^+_{\infty}$ (along subsequence). That is, $\omega_{\infty}^+ \in \text{Tan}(\omega^+, Q)$. $-$ If $\omega^+ \ll \omega^- \ll \omega^+$ and log $\frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$, then there exists $d \ge 1$ such that $\mathsf{Tan}(\omega^\pm,Q)\in \mathcal{P}_d$ for all $Q\in \partial \Omega$.

Let μ Radon measure on \mathbb{R}^n , $x \in \operatorname{spt} \mu$. We say ν is a tangent measure to μ at x, i.e., $\nu \in \text{Tan}(\mu, x)$ if there exists sequences $r_i \downarrow 0$ and $c_i > 0$ such that

 $c_i T_{x,r_i}[\mu] \rightarrow \nu.$

Example $(\Omega \subset \mathbb{R}^n$ 2-sided NTA domain) $-$ Let $Q ∈ ∂Ω$ and $r_i ∖ 0$. With the constants $c_i = ω^+(B(Q, r_i))^{-1}$: $c_i T_{Q,r_i}[\omega^+] \to \omega^+_{\infty}$ (along subsequence). That is, $\omega_{\infty}^+ \in \text{Tan}(\omega^+, Q)$. $-$ If $\omega^+ \ll \omega^- \ll \omega^+$ and log $\frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$, then there exists $d \ge 1$ such that $\text{\sf Tan}(\omega^\pm,Q)\in \mathcal{P}_d$ for all $Q\in \partial \Omega$. **– Goal:** $\text{Tan}(\omega^{\pm}, Q) \subset \mathcal{F}_k$ for some $1 \leq k(Q) \leq d$.

Cones of Measures

A collection M of non-zero Radon measures is a d-cone if it preserved under scaling and dilation of \mathbb{R}^n :

- **1** If $\nu \in \mathcal{M}$ and $c > 0$, then $c\nu \in \mathcal{M}$.
- 2 If $\nu \in \mathcal{M}$ and $r > 0$, then $T_{0,r}[\nu] \in \mathcal{M}$.

Examples

- Tangent Measures: $Tan(\mu, x)$
- Polynomial Harmonic Measures: P_d and \mathcal{F}_k

Size of a Measure and Distance to a Cone

Cones of Measures

A collection M of non-zero Radon measures is a d-cone if it preserved under scaling and dilation of \mathbb{R}^n :

- **1** If $\nu \in M$ and $c > 0$, then $c\nu \in M$.
- 2 If $\nu \in \mathcal{M}$ and $r > 0$, then $T_{0,r}[\nu] \in \mathcal{M}$.

Examples

- Tangent Measures: $Tan(\mu, x)$
- Polynomial Harmonic Measures: P_d and \mathcal{F}_k

Size of a Measure and Distance to a Cone

- $-$ Let ψ be Radon measure on \mathbb{R}^n . The "size" of ψ on $B(0,r)$ is $F_r(\psi) = \int_0^r \psi(B(0, s)) ds.$
- $-$ Let ψ be a Radon measure on \mathbb{R}^n and $\mathcal M$ a d-cone. There is a ["distance"](#page-34-0) $d_r(\psi, \mathcal{M})$ from ψ to $\mathcal M$ on $B(0, r)$ compatible with weak convergence of measures.

Let F and M be d-cones such that $\mathcal{F} \subset \mathcal{M}$. Assume that:

- $-$ F and M have compact bases $({\psi : F_1(\psi) = 1})$,
- − (Property P) There exists $\epsilon_0 > 0$ such that whenever $\mu \in \mathcal{M}$ and $d_r(\mu, \mathcal{F}) < \epsilon_0$ for all $r \ge r_0$ then $\mu \in \mathcal{F}$.

Theorem

If $\text{Tan}(\nu, x) \subset \mathcal{M}$ and $\text{Tan}(\nu, x) \cap \mathcal{F} \neq \emptyset$, then $\text{Tan}(\nu, x) \subset \mathcal{F}$.

Key Point: (Under technical hypotheses) If one tangent measure at a point belongs to F then all tangent measures belong to F.

First proved in [P], the theorem was stated in this form in [KPT].

Checking the Hypotheses: Rate of Doubling

If $\omega \in \mathcal{F}_k$, then $\omega(B(0,r)) = cr^{n+k-2}$ where c depends on n, k and $\|h\|_{L^1(S^{n-1})}.$ Thus \mathcal{F}_k is uniformly doubling: if $\omega\in \mathcal{F}_k$ then

$$
\frac{\omega(B(0,2r))}{\omega(B(0,r))} = 2^{n+k-2} \quad \text{for all } r > 0
$$

independent of the associated polynomial h. **Lemma:** \mathcal{F}_k has compact basis for all $k \geq 1$.

If $\omega \in \mathcal{P}_d$ is associated to a polynomial of degree $j \leq d$ (not necessarily homogeneous), then for all $\tau > 1$

$$
\frac{\omega(B(0,\tau r))}{\omega(B(0,r))} \sim \tau^{n+j-2} \quad \text{as } r \to \infty.
$$

[Theorem:](#page-35-0) The comparison constant depends only on *n* and *i*! **Corollary:** If $d_r(\omega, \mathcal{F}_k) < \varepsilon_0(n, d)$ for all $r \ge r_0(\omega)$, then $k = j$.

Checking the Hypotheses: Rate of Doubling

If $\omega \in \mathcal{F}_k$, then $\omega(B(0,r)) = cr^{n+k-2}$ where c depends on n, k and $\|h\|_{L^1(S^{n-1})}.$ Thus \mathcal{F}_k is uniformly doubling: if $\omega\in \mathcal{F}_k$ then

$$
\frac{\omega(B(0,2r))}{\omega(B(0,r))} = 2^{n+k-2} \quad \text{for all } r > 0
$$

independent of the associated polynomial h. **Lemma:** \mathcal{F}_k has compact basis for all $k \geq 1$.

If $\omega \in \mathcal{P}_d$ is associated to a polynomial of degree $j \leq d$ (not necessarily homogeneous), then for all $\tau > 1$

$$
\frac{\omega(B(0,\tau r))}{\omega(B(0,r))} \sim \tau^{n+j-2} \quad \text{as } r \to \infty.
$$

[Theorem:](#page-35-0) The comparison constant depends only on *n* and *i*! **Corollary:** If $d_r(\omega, \mathcal{F}_k) < \varepsilon_0(n, d)$ for all $r \ge r_0(\omega)$, then $k = j$.

Let Ω be a 2-sided NTA domain. If $\textsf{Tan}(\omega^+,Q) \subset \mathcal{P}_d$, then $\textsf{Tan}(\omega^{\pm},Q)\subset \mathcal{F}_k$ for some $1\leq k\leq d$.

Steps in the Proof

- \blacksquare Since Tan $(\omega^+,Q)\in\mathcal{P}_d$, there is a smallest degree $k\leq d$ such that $\operatorname{{\sf Tan}}(\omega^+,\overline{Q})\cap \mathcal P_k\neq\varnothing$. Show that $\operatorname{{\sf Tan}}(\omega^+,\overline{Q})\cap \mathcal P_k\subseteq \mathcal F_k$.
- 2∣ Let \mathcal{F} = \mathcal{F}_k and \mathcal{M} = Tan (ω^+,Q) ∪ $\mathcal{F}_k.$ By the previous slide the hypotheses of the connectedness theorem are satisfied. Therefore, Tan $(\omega^+, Q) \subset \mathcal{F}$.

Corollary: Let Ω be a 2-sided NTA domain. Assume $\omega^+ \ll \omega^- \ll \omega^+$ and log $\frac{d\omega^-}{d\omega^+} \in C(\partial\Omega).$ There exists $d\geq 1$ such that

 $\partial\Omega = \Gamma_1 \cup \cdots \cup \Gamma_d$

where $\textsf{Tan}(\omega^\pm,\overline{Q})\in\mathcal{F}_k$ for all $\overline{Q}\in\Gamma_k$. **K ロ ▶ | K 母 ▶ | K ヨ ▶ | K ヨ ▶ |**

Let Ω be a 2-sided NTA domain. If $\textsf{Tan}(\omega^+,Q) \subset \mathcal{P}_d$, then $\textsf{Tan}(\omega^{\pm},Q)\subset \mathcal{F}_k$ for some $1\leq k\leq d$.

Steps in the Proof

- \blacksquare Since Tan $(\omega^+,Q)\in\mathcal{P}_d$, there is a smallest degree $k\leq d$ such that $\textsf{Tan}(\omega^+,\textsf{Q})\cap \mathcal{P}_k \neq \varnothing$. Show that $\textsf{Tan}(\omega^+,\textsf{Q})\cap \mathcal{P}_k \in \mathcal{F}_k$.
- 2∣ Let \mathcal{F} = \mathcal{F}_k and \mathcal{M} = Tan (ω^+,Q) ∪ $\mathcal{F}_k.$ By the previous slide the hypotheses of the connectedness theorem are satisfied. Therefore, Tan $(\omega^+, Q) \subset \mathcal{F}$.

Corollary: Let $Ω$ be a 2-sided NTA domain. Assume $\omega^+ \ll \omega^- \ll \omega^+$ and log $\frac{d\omega^-}{d\omega^+} \in \mathcal{C}(\partial \Omega).$ There exists $d \geq 1$ such that

 $\partial\Omega = \Gamma_1 \cup \cdots \cup \Gamma_d$

where $\textsf{Tan}(\omega^\pm,\overline{Q})\in\mathcal{F}_k$ for all $\overline{Q}\in\Gamma_k$. K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

Let Ω be a 2-sided NTA domain. If $\textsf{Tan}(\omega^+,Q) \subset \mathcal{P}_d$, then $\textsf{Tan}(\omega^{\pm},Q)\subset \mathcal{F}_k$ for some $1\leq k\leq d$.

Steps in the Proof

- \blacksquare Since Tan $(\omega^+,Q)\in\mathcal{P}_d$, there is a smallest degree $k\leq d$ such that $\textsf{Tan}(\omega^+,\textsf{Q})\cap \mathcal{P}_k \neq \varnothing$. Show that $\textsf{Tan}(\omega^+,\textsf{Q})\cap \mathcal{P}_k \in \mathcal{F}_k$.
- 2 Let \mathcal{F} = \mathcal{F}_k and \mathcal{M} = Tan (ω^+,Q) \cup \mathcal{F}_k . By the previous slide the hypotheses of the connectedness theorem are satisfied. Therefore, $\textsf{Tan}(\omega^+,Q) \subset \mathcal{F}.$

Corollary: Let $Ω$ be a 2-sided NTA domain. Assume $\omega^+ \ll \omega^- \ll \omega^+$ and log $\frac{d\omega^-}{d\omega^+} \in \mathcal{C}(\partial \Omega).$ There exists $d \geq 1$ such that

 $\partial\Omega$ = $\Gamma_1 \cup \cdots \cup \Gamma_d$

where $\textsf{Tan}(\omega^\pm,\overline{Q})\in\mathcal{F}_k$ for all $\overline{Q}\in\Gamma_k$. KONKAPIK KENYEN E

Let Ω be a 2-sided NTA domain. If $\textsf{Tan}(\omega^+,Q) \subset \mathcal{P}_d$, then $\textsf{Tan}(\omega^{\pm},Q)\subset \mathcal{F}_k$ for some $1\leq k\leq d$.

Steps in the Proof

- \blacksquare Since Tan $(\omega^+,Q)\in\mathcal{P}_d$, there is a smallest degree $k\leq d$ such that $\textsf{Tan}(\omega^+,\textsf{Q})\cap \mathcal{P}_k \neq \varnothing$. Show that $\textsf{Tan}(\omega^+,\textsf{Q})\cap \mathcal{P}_k \in \mathcal{F}_k$.
- 2 Let \mathcal{F} = \mathcal{F}_k and \mathcal{M} = Tan (ω^+,Q) \cup \mathcal{F}_k . By the previous slide the hypotheses of the connectedness theorem are satisfied. Therefore, $\textsf{Tan}(\omega^+,Q) \subset \mathcal{F}.$

Corollary: Let Ω be a 2-sided NTA domain. Assume $\omega^+\ll\omega^-\ll\omega^+$ and log $\frac{d\omega^-}{d\omega^+}\in\mathcal{C}(\partial\Omega).$ There exists $d\geq 1$ such that

 $\partial\Omega$ = $\Gamma_1 \cup \cdots \cup \Gamma_d$

where $\textsf{Tan}(\omega^\pm,Q)\in \mathcal{F}_k$ for all $Q\in \Gamma_k$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할

1 Assume $\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$. Is Γ_1 open?

2 Does Γ_1 = G \cup N where G is $(n-1)$ -rectifiable and $\omega^{\pm}(N)$ = 0?

3 It is not hard to show $\omega(\Gamma_2 \cup \cdots \cup \Gamma_d) = 0$.

(The zero set of a harmonic polynomial is smooth except on a set of dimension $≤$ n – 2; c.f. [HS]. Therefore, $Tan(\omega, Q) \cap \mathcal{F}_1 \neq \emptyset$ at ω -a.e $Q \in \partial \Omega$, since "tangent measures" to tangent measures are tangent measures.")

Is dim Γ_k < n – 1 for $k \ge 2$?

4 What are other applications of the connectedness argument? For example, can it be used to study rectifiability in Carnot groups?

医毛囊 医牙骨下的

- **1** Assume $\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$. Is Γ_1 open?
- 2 Does $\Gamma_1 = G \cup N$ where G is $(n-1)$ -rectifiable and $\omega^{\pm}(N) = 0$?

3 It is not hard to show $\omega(\Gamma_2 \cup \cdots \cup \Gamma_d) = 0$.

(The zero set of a harmonic polynomial is smooth except on a set of dimension $≤$ n – 2; c.f. [HS]. Therefore, $Tan(\omega, Q) \cap \mathcal{F}_1 \neq \emptyset$ at ω -a.e $Q \in \partial \Omega$, since "tangent measures" to tangent measures are tangent measures.")

Is dim Γ_k < n – 1 for $k \ge 2$?

4 What are other applications of the connectedness argument? For example, can it be used to study rectifiability in Carnot groups?

医阿雷氏阿雷氏征

- **1** Assume $\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$. Is Γ_1 open?
- 2 Does $\Gamma_1 = G \cup N$ where G is $(n-1)$ -rectifiable and $\omega^{\pm}(N) = 0$?
- 3 It is not hard to show $\omega(\Gamma_2 \cup \cdots \cup \Gamma_d) = 0$.

(The zero set of a harmonic polynomial is smooth except on a set of dimension $≤$ n – 2; c.f. [HS]. Therefore, Tan(ω , Q) ∩ $\mathcal{F}_1 \neq \emptyset$ at ω -a.e $Q \in \partial\Omega$, since "tangent measures to tangent measures are tangent measures.")

Is dim Γ_k < n – 1 for $k \geq 2$?

4 What are other applications of the connectedness argument? For example, can it be used to study rectifiability in Carnot groups?

イロメ イ母メ イヨメ イヨメー

- **1** Assume $\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$. Is Γ_1 open?
- 2 Does $\Gamma_1 = G \cup N$ where G is $(n-1)$ -rectifiable and $\omega^{\pm}(N) = 0$?
- 3 It is not hard to show $\omega(\Gamma_2 \cup \cdots \cup \Gamma_d) = 0$.

(The zero set of a harmonic polynomial is smooth except on a set of dimension $≤$ n − 2; c.f. [HS]. Therefore, Tan(ω , Q) ∩ $\mathcal{F}_1 \neq \emptyset$ at ω -a.e $\mathcal{Q} \in \partial \Omega$, since "tangent measures to tangent measures are tangent measures.")

Is dim Γ_k < n – 1 for $k \geq 2$?

4 What are other applications of the connectedness argument? For example, can it be used to study rectifiability in Carnot groups?

 $\mathcal{A}(\overline{\mathcal{A}}) \rightarrow \mathcal{A}(\mathbb{B}) \rightarrow \mathcal{A}(\mathbb{B}) \rightarrow \mathbb{B}$

Distance from Measure to a Cone

Let
$$
\mathcal{L}(r) = \{f : \mathbb{R}^n \to \mathbb{R} \mid f \ge 0, \text{ Lip } f \le 1, \text{ spt } f \subset B(0,r)\}.
$$

If μ and ν are two Radon measures in \mathbb{R}^n and $r > 0$, we set

$$
F_r(\mu,\nu)=\sup\left\{\left|\int fd\mu-\int fd\nu\right|:f\in\mathcal{L}(r)\right\}.
$$

When $\nu = 0$, $F_r(\mu,0) = \int_0^R$ $\mu(B(0, s))ds = F_r(\mu).$

Note that $\mu_i \rightharpoonup \mu$ if and only if $\lim_{i\to\infty} F_r(\mu_i,\mu) = 0$ for all $r > 0$.

If ψ is a Radon measure and $\mathcal M$ is a d-cone, we define a scaled version of F_r as follows:

$$
d_r(\psi, \mathcal{M}) = \inf \left\{ F_r\left(\frac{\psi}{F_r(\psi)}, \mu\right) : \mu \in \mathcal{M} \text{ and } F_r(\mu) = 1 \right\},\
$$

i.e., n[o](#page-0-0)[r](#page-0-0)malize ψ so $\mathcal{F}_r(\psi)$ = 1 & then tak[e d](#page-33-0)i[st](#page-35-1)[an](#page-33-0)[ce](#page-34-1) [to](#page-0-0) $\mathcal M$ $\mathcal M$ o[n](#page-36-0) $\mathcal B_r.$ $\mathcal B_r.$ $\mathcal B_r.$ $\mathcal B_r.$ 2980 Let $h: \mathbb{R}^n \to \mathbb{R}$ be a homogenous harmonic polynomial of degree k.

Key Lemma: There is a constant $\ell_{n,k} > 0$ s.t. for all $t \in (0, 1)$,

$$
\mathcal{H}^{n-1}\{\theta \in S^{n-1}: |h(\theta)| \geq t \|h\|_{L^{\infty}(S^{n-1})}\} \geq \ell_{n,k}(1-t)^{n-1}.
$$

K ロ ▶ (K@) ▶ (대 결 > (대 결 >) : 결

 299

Interpretation: If h is homogeneous harmonic polynomial, then h takes big values on a big piece of the unit sphere.

Bounds for $\omega(B(0,r))$ as $r \to \infty$

Given $h: \mathbb{R}^n \to \mathbb{R}$ harmonic polynomial of degree d, $h(0) = 0$, $h = h_d + h_{d-1} + \cdots + h_1$

where h_k is homogeneous harmonic polynomial of degree k . In polar coordinates,

$$
h(r\theta)=r^dh_d(\theta)+r^{d-1}h_{d-1}(\theta)+\cdots+rh_1(\theta),
$$

$$
\frac{dh}{dr}(r\theta) = dr^{d-1}h_d(\theta) + (d-1)r^{d-2}h_{d-1}(\theta) + \cdots + h_1(\theta).
$$

Fact: Recall $\Omega^+ = \{X : h(X) > 0\}$. For all $r > 0$,

$$
\omega(B(0,r))=\int_{\partial B(0,r)\cap\Omega^+}\frac{dh^+}{dr}d\sigma
$$

The $r^{d-1}h_d(\theta)$ term dominates as $r\to\infty$. Upper bounds for $\omega(B_r)$ are easy. Use "Big Piece" lemma to get uniform lower bounds.