Tangent Measures and Harmonic Polynomials

Matthew Badger

University of Washington

June 19, 2009

Harmonic Analysis, Geometric Measure Theory and Quasiconformal Mappings

Centre de Recerca Matemàtica, Bellaterra, España

< □ > < @ > < 注 > < 注 > ... 注

- ω^+ harmonic measure of interior $\Omega^+ = \Omega$
- ω^- harmonic measure of exterior $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$

- When are ω⁺ and ω⁻ mutually absolutely continuous?
 (e.g. smooth domains, Lipschitz domains, chord arc domains
- What conditions does ω⁺ ≪ ω[−] ≪ ω⁺ force on ∂Ω?
- When is $\omega^+ \perp \omega^-$?
- What are the possible Hausdorff dimensions of ω^+ and ω^- ?

- ω^+ harmonic measure of interior $\Omega^+ = \Omega$
- ω^- harmonic measure of exterior $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$

- When are ω⁺ and ω⁻ mutually absolutely continuous?
 (e.g. smooth domains, Lipschitz domains, chord arc domains)
- What conditions does $\omega^+ \ll \omega^- \ll \omega^+$ force on $\partial \Omega$?
- When is $\omega^+ \perp \omega^-$?
- What are the possible Hausdorff dimensions of ω^+ and ω^- ?

- ω^+ harmonic measure of interior $\Omega^+ = \Omega$
- ω^- harmonic measure of exterior $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$

- When are ω⁺ and ω⁻ mutually absolutely continuous?
 (e.g. smooth domains, Lipschitz domains, chord arc domains)
- What conditions does $\omega^+ \ll \omega^- \ll \omega^+$ force on $\partial \Omega$?
- When is $\omega^+ \perp \omega^-$?
- What are the possible Hausdorff dimensions of ω^+ and ω^- ?

- ω^+ harmonic measure of interior $\Omega^+ = \Omega$
- ω^- harmonic measure of exterior $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$

- When are ω⁺ and ω⁻ mutually absolutely continuous?
 (e.g. smooth domains, Lipschitz domains, chord arc domains)
- What conditions does $\omega^+ \ll \omega^- \ll \omega^+$ force on $\partial \Omega$?
- When is $\omega^+ \perp \omega^-$?
- What are the possible Hausdorff dimensions of ω^+ and ω^- ?

- ω^+ harmonic measure of interior $\Omega^+ = \Omega$
- ω^- harmonic measure of exterior $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$

- When are ω⁺ and ω⁻ mutually absolutely continuous?
 (e.g. smooth domains, Lipschitz domains, chord arc domains)
- What conditions does $\omega^+ \ll \omega^- \ll \omega^+$ force on $\partial \Omega$?
- When is $\omega^+ \perp \omega^-$?
- What are the possible Hausdorff dimensions of ω^+ and ω^- ?

Definition: The Hausdorff dimension of harmonic measure \mathcal{H} -dim ω = inf{ $s : \exists E \subset \partial \Omega$ with $\mathcal{H}^{s}(E) = 0$ and $\omega(\partial \Omega \setminus E) = 0$ }

- is the smallest dimension of a set with full harmonic measure
 - (Makarov 1985) \mathcal{H} -dim ω = 1 if $\Omega \subset \mathbb{R}^2$ is simply connected
 - (Wolff 1995) There are domains in \mathbb{R}^3 with \mathcal{H} -dim $\omega > 2$ – There are domains in \mathbb{R}^3 with \mathcal{H} -dim $\omega < 2$
 - (Lewis-Verchota-Vogel 2005) Reexamined Wolff's construction: For all $n \ge 3$ there are 2-sided NTA domains in \mathbb{R}^n such that
 - $\mathcal{H}-\dim \omega^+ > n-1, \ \mathcal{H}-\dim \omega^- > n-1$
 - $-\mathcal{H}-\dim \omega^+ > n-1, \mathcal{H}-\dim \omega^- < n-1$
 - \mathcal{H} -dim $\omega^+ < n-1$, \mathcal{H} -dim $\omega^- < n-1$
 - (Kenig-Preiss-Toro 2009) If Ω is 2-sided NTA and $\omega^+ \ll \omega^- \ll \omega^+$, then \mathcal{H} -dim $\omega^+ = \mathcal{H}$ -dim $\omega^- = n-1$

Definition: The Hausdorff dimension of harmonic measure

 $\mathcal{H}\text{-}\dim\omega=\inf\{s:\exists E\subset\partial\Omega\text{ with }\mathcal{H}^{s}(E)=0\text{ and }\omega(\partial\Omega\smallsetminus E)=0\}$

is the smallest dimension of a set with full harmonic measure

• (Makarov 1985) \mathcal{H} -dim ω = 1 if $\Omega \subset \mathbb{R}^2$ is simply connected

- (Wolff 1995) There are domains in \mathbb{R}^3 with \mathcal{H} -dim $\omega > 2$ – There are domains in \mathbb{R}^3 with \mathcal{H} -dim $\omega < 2$
- (Lewis-Verchota-Vogel 2005) Reexamined Wolff's construction: For all $n \ge 3$ there are 2-sided NTA domains in \mathbb{R}^n such that
 - $\mathcal{H}-\dim \omega^+ > n-1, \ \mathcal{H}-\dim \omega^- > n-1$
 - $-\mathcal{H}-\dim \omega^+ > n-1, \mathcal{H}-\dim \omega^- < n-1$
 - \mathcal{H} -dim $\omega^+ < n-1$, \mathcal{H} -dim $\omega^- < n-1$
- (Kenig-Preiss-Toro 2009) If Ω is 2-sided NTA and $\omega^+ \ll \omega^- \ll \omega^+$, then \mathcal{H} -dim $\omega^+ = \mathcal{H}$ -dim $\omega^- = n-1$

Definition: The Hausdorff dimension of harmonic measure

 $\mathcal{H}\text{-}\dim\omega=\inf\{s:\exists E\subset\partial\Omega\text{ with }\mathcal{H}^{s}(E)=0\text{ and }\omega(\partial\Omega\smallsetminus E)=0\}$

- is the smallest dimension of a set with full harmonic measure
 - (Makarov 1985) \mathcal{H} -dim ω = 1 if $\Omega \subset \mathbb{R}^2$ is simply connected
 - (Wolff 1995) There are domains in \mathbb{R}^3 with \mathcal{H} -dim $\omega > 2$ – There are domains in \mathbb{R}^3 with \mathcal{H} -dim $\omega < 2$
 - (Lewis-Verchota-Vogel 2005) Reexamined Wolff's construction:
 For all n ≥ 3 there are 2-sided NTA domains in ℝⁿ such that
 - $\mathcal{H}-\dim \omega^+ > n-1, \ \mathcal{H}-\dim \omega^- > n-1$
 - $-\mathcal{H}-\dim \omega^+ > n-1, \mathcal{H}-\dim \omega^- < n-1$
 - \mathcal{H} -dim $\omega^+ < n-1$, \mathcal{H} -dim $\omega^- < n-1$
 - (Kenig-Preiss-Toro 2009) If Ω is 2-sided NTA and $\omega^+ \ll \omega^- \ll \omega^+$, then \mathcal{H} -dim $\omega^+ = \mathcal{H}$ -dim $\omega^- = n-1$

Definition: The Hausdorff dimension of harmonic measure

 $\mathcal{H}\text{-}\dim\omega=\inf\{s:\exists E\subset\partial\Omega\text{ with }\mathcal{H}^{s}(E)=0\text{ and }\omega(\partial\Omega\smallsetminus E)=0\}$

- is the smallest dimension of a set with full harmonic measure
 - (Makarov 1985) \mathcal{H} -dim ω = 1 if $\Omega \subset \mathbb{R}^2$ is simply connected
 - (Wolff 1995) There are domains in \mathbb{R}^3 with \mathcal{H} -dim $\omega > 2$ – There are domains in \mathbb{R}^3 with \mathcal{H} -dim $\omega < 2$
 - (Lewis-Verchota-Vogel 2005) Reexamined Wolff's construction: For all $n \ge 3$ there are 2-sided NTA domains in \mathbb{R}^n such that
 - \mathcal{H} -dim $\omega^+ > n-1$, \mathcal{H} -dim $\omega^- > n-1$
 - $\mathcal{H}-\dim \omega^+ > n-1$, $\mathcal{H}-\dim \omega^- < n-1$
 - $\mathcal{H}-\dim \omega^+ < n-1$, $\mathcal{H}-\dim \omega^- < n-1$
 - (Kenig-Preiss-Toro 2009) If Ω is 2-sided NTA and $\omega^+ \ll \omega^- \ll \omega^+$, then \mathcal{H} -dim $\omega^+ = \mathcal{H}$ -dim $\omega^- = n 1$

Definition: The Hausdorff dimension of harmonic measure

 $\mathcal{H}\text{-}\dim\omega=\inf\{s:\exists E\subset\partial\Omega\text{ with }\mathcal{H}^{s}(E)=0\text{ and }\omega(\partial\Omega\smallsetminus E)=0\}$

- is the smallest dimension of a set with full harmonic measure
 - (Makarov 1985) \mathcal{H} -dim ω = 1 if $\Omega \subset \mathbb{R}^2$ is simply connected
 - (Wolff 1995) There are domains in \mathbb{R}^3 with \mathcal{H} -dim $\omega > 2$ – There are domains in \mathbb{R}^3 with \mathcal{H} -dim $\omega < 2$
 - (Lewis-Verchota-Vogel 2005) Reexamined Wolff's construction: For all $n \ge 3$ there are 2-sided NTA domains in \mathbb{R}^n such that

- \mathcal{H} -dim $\omega^+ > n-1$, \mathcal{H} -dim $\omega^- > n-1$

- $\mathcal{H}-\dim \omega^+ > n-1$, $\mathcal{H}-\dim \omega^- < n-1$
- $\mathcal{H}-\dim \omega^+ < n-1, \mathcal{H}-\dim \omega^- < n-1$
- (Kenig-Preiss-Toro 2009) If Ω is 2-sided NTA and $\omega^+ \ll \omega^- \ll \omega^+$, then \mathcal{H} -dim $\omega^+ = \mathcal{H}$ -dim $\omega^- = n 1$

Blow-ups of the Boundary are Homogeneous

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided NTA domain.

Theorem (B)

Assume
$$\omega^+ \ll \omega^- \ll \omega^+$$
 and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$. Then:
 $\partial\Omega = \Gamma_1 \cup \cdots \cup \Gamma_d$.

For each $Q \in \Gamma_k$ and sequence $r_i \downarrow 0$, there exist a subsequence and a homogeneous harmonic polynomial $h : \mathbb{R}^n \to \mathbb{R}$ of degree k s.t.

$$\frac{\partial \Omega - Q}{r_i} \rightarrow h^{-1}(0)$$
 (in Hausdorff distance).

Example Polynomials: Linear Polynomials, $X_1^2 + X_2^2 - X_3^2 - X_4^2$

Blow-ups of the Boundary \leftrightarrow Tangent Measures of ω

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided NTA domain, let $Q \in \partial \Omega$ and let $r_i \downarrow 0$.

Theorem: (KT) There is subsequence of r_i (which we relabel) and an unbounded 2-sided NTA domain Ω_{∞} such that

Blow-ups of Boundary at *Q* Converge:

$$\partial \Omega_i = \frac{\partial \Omega - Q}{r_i} \rightarrow \partial \Omega_\infty$$
 in Hausdorff metric

Blow-ups of Harmonic Measure at *Q* Converge:

$$\omega_i^{\pm}(E) = \frac{\omega^{\pm}(Q + r_i E)}{\omega^{\pm}(B(Q, r_i))} \text{ satisfy } \omega_i^{\pm} \rightharpoonup \omega_{\infty}^{\pm}$$

where ω_∞^{\pm} is the harmonic measure of Ω_∞^{\pm} with pole at infinity

Theorem: (KT) Assume $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$. Then $\omega_{\infty}^+ = \omega_{\infty}^-$ and there is a harmonic polynomial $h : \mathbb{R}^n \to \mathbb{R}$ s.t.

$$\partial \Omega_{\infty} = h^{-1}(0)$$
 and $\Omega_{\infty}^{\pm} = \{X : h^{\pm}(X) > 0\}.$

Blow-ups of the Boundary \leftrightarrow Tangent Measures of ω

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided NTA domain, let $Q \in \partial \Omega$ and let $r_i \downarrow 0$.

Theorem: (KT) There is subsequence of r_i (which we relabel) and an unbounded 2-sided NTA domain Ω_{∞} such that

Blow-ups of Boundary at *Q* Converge:

$$\partial \Omega_i = \frac{\partial \Omega - Q}{r_i} \rightarrow \partial \Omega_\infty$$
 in Hausdorff metric

Blow-ups of Harmonic Measure at *Q* Converge:

$$\omega_i^{\pm}(E) = \frac{\omega^{\pm}(Q + r_i E)}{\omega^{\pm}(B(Q, r_i))} \text{ satisfy } \omega_i^{\pm} \rightharpoonup \omega_{\infty}^{\pm}$$

where ω_∞^{\pm} is the harmonic measure of Ω_∞^{\pm} with pole at infinity

Theorem: (KT) Assume $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$. Then $\omega_{\infty}^+ = \omega_{\infty}^-$ and there is a harmonic polynomial $h : \mathbb{R}^n \to \mathbb{R}$ s.t. $\partial\Omega_{\infty} = h^{-1}(0)$ and $\Omega_{\infty}^{\pm} = \{X : h^{\pm}(X) > 0\}.$

Harmonic Measure Associated to a Harmonic Polynomial

 $h: \mathbb{R}^n \to \mathbb{R}$ be a polynomial, $\Delta h = 0$

$$\Omega^{+} = \{X : h(X) > 0\}, \ \Omega^{-} = \{X : h(X) < 0\}$$

(i.e. h^{\pm} is the Green function for Ω^{\pm})

The harmonic measure ω_h associated to h is the harmonic measure of Ω^{\pm} with pole at infinity; i.e., for all $\varphi \in C_c^{\infty}(\mathbb{R}^n)$,

$$\int_{h^{-1}(0)} \varphi d\omega_h = -\int_{\partial\Omega^{\pm}} \varphi \frac{\partial h^{\pm}}{\partial\nu} d\sigma = \int_{\Omega^{\pm}} h^{\pm} \Delta \varphi$$

Two Collections of Measures Associated to Polynomials $\mathcal{P}_d = \{\omega_h : h \text{ harmonic polynomial of degree} \le d\}$ $\mathcal{F}_k = \{\omega_h : h \text{ homogenous harmonic polynomial of degree} = k\}$

Harmonic Measure Associated to a Harmonic Polynomial

 $h: \mathbb{R}^n \to \mathbb{R}$ be a polynomial, $\Delta h = 0$

$$\Omega^{+} = \{X : h(X) > 0\}, \ \Omega^{-} = \{X : h(X) < 0\}$$

(i.e. h^{\pm} is the Green function for Ω^{\pm})

The harmonic measure ω_h associated to h is the harmonic measure of Ω^{\pm} with pole at infinity; i.e., for all $\varphi \in C_c^{\infty}(\mathbb{R}^n)$,

$$\int_{h^{-1}(0)} \varphi d\omega_h = -\int_{\partial\Omega^{\pm}} \varphi \frac{\partial h^{\pm}}{\partial\nu} d\sigma = \int_{\Omega^{\pm}} h^{\pm} \Delta \varphi$$

Two Collections of Measures Associated to Polynomials $\mathcal{P}_d = \{\omega_h : h \text{ harmonic polynomial of degree } \leq d\}$ $\mathcal{F}_k = \{\omega_h : h \text{ homogenous harmonic polynomial of degree } = k\}$

Translation and Dilation of Measures

- For $x \in \mathbb{R}^n$ and r > 0 define $T_{x,r} : \mathbb{R}^n \to \mathbb{R}^n$ by $T_{x,r}(y) = \frac{y-x}{r}$.
- If μ Radon measure on \mathbb{R}^n and $x \in \text{spt } \mu$, the image measure $T_{x,r}[\mu]$ is defined by $T_{x,r}[\mu](E) = \mu(T^{-1}(E)) = \mu(x + rE)$.

Let μ Radon measure on \mathbb{R}^n , $x \in \text{spt } \mu$. We say ν is a tangent measure to μ at x, i.e., $\nu \in \text{Tan}(\mu, x)$ if there exists sequences $r_i \downarrow 0$ and $c_i > 0$ such that

 $c_i T_{x,r_i}[\mu] \rightharpoonup \nu.$

Example ($\Omega \subset \mathbb{R}^n$ 2-sided NTA domain)

– Let $Q \in \partial \Omega$ and $r_i \downarrow 0$. With the constants $c_i = \omega^+ (B(Q, r_i))^{-1}$:

 $c_i T_{Q,r_i}[\omega^+] \rightharpoonup \omega_{\infty}^+$ (along subsequence).

That is, $\omega_{\infty}^+ \in \operatorname{Tan}(\omega^+, Q)$.

- If $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$, then there exists $d \ge 1$ such that $\operatorname{Tan}(\omega^\pm, Q) \subset \mathcal{P}_d$ for all $Q \in \partial\Omega$.

- **Goal:** Tan $(\omega^{\pm}, Q) \subset \mathcal{F}_k$ for some $1 \leq k(Q) \leq d$.

Let μ Radon measure on \mathbb{R}^n , $x \in \operatorname{spt} \mu$. We say ν is a tangent measure to μ at x, i.e., $\nu \in \operatorname{Tan}(\mu, x)$ if there exists sequences $r_i \downarrow 0$ and $c_i > 0$ such that

 $c_i T_{x,r_i}[\mu] \rightharpoonup \nu.$

Example $(\Omega \subset \mathbb{R}^n \text{ 2-sided NTA domain})$ - Let $Q \in \partial \Omega$ and $r_i \downarrow 0$. With the constants $c_i = \omega^+ (B(Q, r_i))^{-1}$: $c_i T_{Q,r_i}[\omega^+] \rightharpoonup \omega_{\infty}^+$ (along subsequence). That is, $\omega_{\infty}^+ \in \text{Tan}(\omega^+, Q)$.

- If $\omega^+ \ll \omega^- \ll \omega^+$ and log $\frac{d\omega}{d\omega^+} \in C(\partial\Omega)$, then there exists $d \ge 1$ such that $\operatorname{Tan}(\omega^\pm, Q) \subset \mathcal{P}_d$ for all $Q \in \partial\Omega$.

- **Goal:** Tan $(\omega^{\pm}, Q) \subset \mathcal{F}_k$ for some $1 \leq k(Q) \leq d$.

Let μ Radon measure on \mathbb{R}^n , $x \in \text{spt } \mu$. We say ν is a tangent measure to μ at x, i.e., $\nu \in \text{Tan}(\mu, x)$ if there exists sequences $r_i \downarrow 0$ and $c_i > 0$ such that

 $c_i T_{x,r_i}[\mu] \rightharpoonup \nu.$

Example $(\Omega \subset \mathbb{R}^n \text{ 2-sided NTA domain})$ - Let $Q \in \partial \Omega$ and $r_i \downarrow 0$. With the constants $c_i = \omega^+ (B(Q, r_i))^{-1}$: $c_i T_{Q,r_i}[\omega^+] \rightharpoonup \omega_{\infty}^+$ (along subsequence). That is, $\omega_{\infty}^+ \in \operatorname{Tan}(\omega^+, Q)$. - If $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial \Omega)$, then there exists $d \ge 1$ such that $\operatorname{Tan}(\omega^{\pm}, Q) \subset \mathcal{P}_d$ for all $Q \in \partial \Omega$.

- **Goal:** Tan $(\omega^{\pm}, Q) \subset \mathcal{F}_k$ for some $1 \leq k(Q) \leq d$.

Let μ Radon measure on \mathbb{R}^n , $x \in \operatorname{spt} \mu$. We say ν is a tangent measure to μ at x, i.e., $\nu \in \operatorname{Tan}(\mu, x)$ if there exists sequences $r_i \downarrow 0$ and $c_i > 0$ such that

 $c_i T_{x,r_i}[\mu] \rightharpoonup \nu.$

Example $(\Omega \subset \mathbb{R}^n \text{ 2-sided NTA domain})$ - Let $Q \in \partial \Omega$ and $r_i \downarrow 0$. With the constants $c_i = \omega^+ (B(Q, r_i))^{-1}$: $c_i T_{Q,r_i}[\omega^+] \rightharpoonup \omega_{\infty}^+$ (along subsequence). That is, $\omega_{\infty}^+ \in \operatorname{Tan}(\omega^+, Q)$. - If $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$, then there exists $d \ge 1$ such that $\operatorname{Tan}(\omega^{\pm}, Q) \in \mathcal{P}_d$ for all $Q \in \partial\Omega$. - **Goal:** $\operatorname{Tan}(\omega^{\pm}, Q) \subset \mathcal{F}_k$ for some $1 \le k(Q) \le d$.

Cones of Measures

A collection \mathcal{M} of non-zero Radon measures is a d-cone if it preserved under scaling and dilation of \mathbb{R}^n :

- 1 If $\nu \in \mathcal{M}$ and c > 0, then $c\nu \in \mathcal{M}$.
- 2 If $\nu \in \mathcal{M}$ and r > 0, then $T_{0,r}[\nu] \in \mathcal{M}$.

Examples

- Tangent Measures: Tan (μ, x)
- Polynomial Harmonic Measures: \mathcal{P}_d and \mathcal{F}_k

Size of a Measure and Distance to a Cone

- Let ψ be Radon measure on \mathbb{R}^n . The "size" of ψ on B(0,r) is $F_r(\psi) = \int_0^r \psi(B(0,s)) ds.$
- Let ψ be a Radon measure on ℝⁿ and M a d-cone. There is a "distance" d_r(ψ, M) from ψ to M on B(0, r) compatible with weak convergence of measures.

Cones of Measures

A collection \mathcal{M} of non-zero Radon measures is a d-cone if it preserved under scaling and dilation of \mathbb{R}^n :

- 1 If $\nu \in \mathcal{M}$ and c > 0, then $c\nu \in \mathcal{M}$.
- 2 If $\nu \in \mathcal{M}$ and r > 0, then $T_{0,r}[\nu] \in \mathcal{M}$.

Examples

- Tangent Measures: Tan (μ, x)
- Polynomial Harmonic Measures: \mathcal{P}_d and \mathcal{F}_k

Size of a Measure and Distance to a Cone

- Let ψ be Radon measure on \mathbb{R}^n . The "size" of ψ on B(0,r) is $F_r(\psi) = \int_0^r \psi(B(0,s)) ds.$
- Let ψ be a Radon measure on \mathbb{R}^n and \mathcal{M} a d-cone. There is a "distance" $d_r(\psi, \mathcal{M})$ from ψ to \mathcal{M} on B(0, r) compatible with weak convergence of measures.

Let \mathcal{F} and \mathcal{M} be d-cones such that $\mathcal{F} \subset \mathcal{M}$. Assume that:

- ${\mathcal F}$ and ${\mathcal M}$ have compact bases $(\{\psi: {\mathcal F}_1(\psi)$ = 1}),
- (Property P) There exists $\epsilon_0 > 0$ such that whenever $\mu \in \mathcal{M}$ and $d_r(\mu, \mathcal{F}) < \epsilon_0$ for all $r \ge r_0$ then $\mu \in \mathcal{F}$.

Theorem

If $\operatorname{Tan}(\nu, x) \subset \mathcal{M}$ and $\operatorname{Tan}(\nu, x) \cap \mathcal{F} \neq \emptyset$, then $\operatorname{Tan}(\nu, x) \subset \mathcal{F}$.

Key Point: (Under technical hypotheses) If one tangent measure at a point belongs to \mathcal{F} then all tangent measures belong to \mathcal{F} .

First proved in [P], the theorem was stated in this form in [KPT].

Checking the Hypotheses: Rate of Doubling

If $\omega \in \mathcal{F}_k$, then $\omega(B(0, r)) = cr^{n+k-2}$ where c depends on n, k and $\|h\|_{L^1(S^{n-1})}$. Thus \mathcal{F}_k is uniformly doubling: if $\omega \in \mathcal{F}_k$ then

$$\frac{\omega(B(0,2r))}{\omega(B(0,r))} = 2^{n+k-2} \text{ for all } r > 0$$

independent of the associated polynomial h. Lemma: \mathcal{F}_k has compact basis for all $k \ge 1$.

If $\omega \in \mathcal{P}_d$ is associated to a polynomial of degree $j \leq d$ (not necessarily homogeneous), then for all $\tau > 1$

$$\frac{\omega(B(0,\tau r))}{\omega(B(0,r))} \sim \tau^{n+j-2} \quad \text{as } r \to \infty.$$

Theorem: The comparison constant depends only on *n* and *j*! **Corollary:** If $d_r(\omega, \mathcal{F}_k) < \varepsilon_0(n, d)$ for all $r \ge r_0(\omega)$, then k = j.

Checking the Hypotheses: Rate of Doubling

If $\omega \in \mathcal{F}_k$, then $\omega(B(0, r)) = cr^{n+k-2}$ where c depends on n, k and $\|h\|_{L^1(S^{n-1})}$. Thus \mathcal{F}_k is uniformly doubling: if $\omega \in \mathcal{F}_k$ then

$$\frac{\omega(B(0,2r))}{\omega(B(0,r))} = 2^{n+k-2} \text{ for all } r > 0$$

independent of the associated polynomial h. Lemma: \mathcal{F}_k has compact basis for all $k \ge 1$.

If $\omega \in \mathcal{P}_d$ is associated to a polynomial of degree $j \leq d$ (not necessarily homogeneous), then for all $\tau > 1$

$$\frac{\omega(B(0,\tau r))}{\omega(B(0,r))} \sim \tau^{n+j-2} \quad \text{as } r \to \infty.$$

Theorem: The comparison constant depends only on *n* and *j*! **Corollary:** If $d_r(\omega, \mathcal{F}_k) < \varepsilon_0(n, d)$ for all $r \ge r_0(\omega)$, then k = j.

Let Ω be a 2-sided NTA domain. If $Tan(\omega^+, Q) \subset \mathcal{P}_d$, then $Tan(\omega^\pm, Q) \subset \mathcal{F}_k$ for some $1 \leq k \leq d$.

Steps in the Proof

- Since $\operatorname{Tan}(\omega^+, Q) \subset \mathcal{P}_d$, there is a smallest degree $k \leq d$ such that $\operatorname{Tan}(\omega^+, Q) \cap \mathcal{P}_k \neq \emptyset$. Show that $\operatorname{Tan}(\omega^+, Q) \cap \mathcal{P}_k \subset \mathcal{F}_k$.
- 2 Let *F* = *F_k* and *M* = Tan(ω⁺, *Q*) ∪ *F_k*. By the previous slide the hypotheses of the connectedness theorem are satisfied. Therefore, Tan(ω⁺, *Q*) ⊂ *F*.

Corollary: Let Ω be a 2-sided NTA domain. Assume $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$. There exists $d \ge 1$ such that

 $\partial \Omega = \Gamma_1 \cup \cdots \cup \Gamma_d$

where $\operatorname{Tan}(\omega^{\pm}, Q) \subset \mathcal{F}_k$ for all $Q \in \Gamma_k$.

Let Ω be a 2-sided NTA domain. If $Tan(\omega^+, Q) \subset \mathcal{P}_d$, then $Tan(\omega^\pm, Q) \subset \mathcal{F}_k$ for some $1 \leq k \leq d$.

Steps in the Proof

- Since $\operatorname{Tan}(\omega^+, Q) \subset \mathcal{P}_d$, there is a smallest degree $k \leq d$ such that $\operatorname{Tan}(\omega^+, Q) \cap \mathcal{P}_k \neq \emptyset$. Show that $\operatorname{Tan}(\omega^+, Q) \cap \mathcal{P}_k \subset \mathcal{F}_k$.
- 2 Let *F* = *F_k* and *M* = Tan(ω⁺, *Q*) ∪ *F_k*. By the previous slide the hypotheses of the connectedness theorem are satisfied. Therefore, Tan(ω⁺, *Q*) ⊂ *F*.

Corollary: Let Ω be a 2-sided NTA domain. Assume $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$. There exists $d \ge 1$ such that

 $\partial \Omega = \Gamma_1 \cup \cdots \cup \Gamma_d$

where $\operatorname{Tan}(\omega^{\pm}, Q) \subset \mathcal{F}_k$ for all $Q \in \Gamma_k$.

Let Ω be a 2-sided NTA domain. If $Tan(\omega^+, Q) \subset \mathcal{P}_d$, then $Tan(\omega^\pm, Q) \subset \mathcal{F}_k$ for some $1 \leq k \leq d$.

Steps in the Proof

- Since $\operatorname{Tan}(\omega^+, Q) \subset \mathcal{P}_d$, there is a smallest degree $k \leq d$ such that $\operatorname{Tan}(\omega^+, Q) \cap \mathcal{P}_k \neq \emptyset$. Show that $\operatorname{Tan}(\omega^+, Q) \cap \mathcal{P}_k \subset \mathcal{F}_k$.
- 2 Let *F* = *F_k* and *M* = Tan(ω⁺, *Q*) ∪ *F_k*. By the previous slide the hypotheses of the connectedness theorem are satisfied. Therefore, Tan(ω⁺, *Q*) ⊂ *F*.

Corollary: Let Ω be a 2-sided NTA domain. Assume $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$. There exists $d \ge 1$ such that

 $\partial \Omega = \Gamma_1 \cup \cdots \cup \Gamma_d$

where $\operatorname{Tan}(\omega^{\pm}, Q) \subset \mathcal{F}_k$ for all $Q \in \Gamma_k$.

Let Ω be a 2-sided NTA domain. If $Tan(\omega^+, Q) \subset \mathcal{P}_d$, then $Tan(\omega^\pm, Q) \subset \mathcal{F}_k$ for some $1 \leq k \leq d$.

Steps in the Proof

- Since $\operatorname{Tan}(\omega^+, Q) \subset \mathcal{P}_d$, there is a smallest degree $k \leq d$ such that $\operatorname{Tan}(\omega^+, Q) \cap \mathcal{P}_k \neq \emptyset$. Show that $\operatorname{Tan}(\omega^+, Q) \cap \mathcal{P}_k \subset \mathcal{F}_k$.
- 2 Let *F* = *F_k* and *M* = Tan(ω⁺, *Q*) ∪ *F_k*. By the previous slide the hypotheses of the connectedness theorem are satisfied. Therefore, Tan(ω⁺, *Q*) ⊂ *F*.

Corollary: Let Ω be a 2-sided NTA domain. Assume $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C(\partial\Omega)$. There exists $d \ge 1$ such that

$$\partial \Omega = \Gamma_1 \cup \cdots \cup \Gamma_d$$

where $\operatorname{Tan}(\omega^{\pm}, Q) \subset \mathcal{F}_k$ for all $Q \in \Gamma_k$.

1 Assume $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$. Is Γ_1 open?

2 Does $\Gamma_1 = G \cup N$ where G is (n-1)-rectifiable and $\omega^{\pm}(N) = 0$?

3 It is not hard to show $\omega(\Gamma_2 \cup \cdots \cup \Gamma_d) = 0$.

(The zero set of a harmonic polynomial is smooth except on a set of dimension $\leq n - 2$; c.f. [HS]. Therefore, Tan $(\omega, Q) \cap \mathcal{F}_1 \neq \emptyset$ at ω -a.e $Q \in \partial \Omega$, since "tangent measures to tangent measures are tangent measures.")

Is dim $\Gamma_k < n-1$ for $k \ge 2$?

What are other applications of the connectedness argument? For example, can it be used to study rectifiability in Carnot groups?

- 4 同 6 4 日 6 4 日 6

- **1** Assume $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$. Is Γ_1 open?
- **2** Does $\Gamma_1 = G \cup N$ where G is (n-1)-rectifiable and $\omega^{\pm}(N) = 0$?

3 It is not hard to show $\omega(\Gamma_2 \cup \cdots \cup \Gamma_d) = 0$.

(The zero set of a harmonic polynomial is smooth except on a set of dimension $\leq n - 2$; c.f. [HS]. Therefore, Tan $(\omega, Q) \cap \mathcal{F}_1 \neq \emptyset$ at ω -a.e $Q \in \partial \Omega$, since "tangent measures to tangent measures are tangent measures.")

Is dim $\Gamma_k < n-1$ for $k \ge 2$?

What are other applications of the connectedness argument? For example, can it be used to study rectifiability in Carnot groups?

- 4 同 6 4 日 6 4 日 6

- **1** Assume $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$. Is Γ_1 open?
- **2** Does $\Gamma_1 = G \cup N$ where G is (n-1)-rectifiable and $\omega^{\pm}(N) = 0$?
- **3** It is not hard to show $\omega(\Gamma_2 \cup \cdots \cup \Gamma_d) = 0$.

(The zero set of a harmonic polynomial is smooth except on a set of dimension $\leq n - 2$; c.f. [HS]. Therefore, Tan $(\omega, Q) \cap \mathcal{F}_1 \neq \emptyset$ at ω -a.e $Q \in \partial \Omega$, since "tangent measures to tangent measures are tangent measures.")

Is dim $\Gamma_k < n-1$ for $k \ge 2$?

What are other applications of the connectedness argument? For example, can it be used to study rectifiability in Carnot groups?

ヘロト 人間ト 人間ト 人間トー

- **1** Assume $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$. Is Γ_1 open?
- **2** Does $\Gamma_1 = G \cup N$ where G is (n-1)-rectifiable and $\omega^{\pm}(N) = 0$?
- **3** It is not hard to show $\omega(\Gamma_2 \cup \cdots \cup \Gamma_d) = 0$.

(The zero set of a harmonic polynomial is smooth except on a set of dimension $\leq n-2$; c.f. [HS]. Therefore, Tan $(\omega, Q) \cap \mathcal{F}_1 \neq \emptyset$ at ω -a.e $Q \in \partial\Omega$, since "tangent measures to tangent measures are tangent measures.")

Is dim $\Gamma_k < n-1$ for $k \ge 2$?

What are other applications of the connectedness argument? For example, can it be used to study rectifiability in Carnot groups?

・ロト ・ 同ト ・ ヨト ・ ヨト …

Distance from Measure to a Cone

Let
$$\mathcal{L}(r) = \{ f : \mathbb{R}^n \to \mathbb{R} \mid f \ge 0, \text{ Lip } f \le 1, \text{ spt } f \subset B(0, r) \}.$$

If μ and ν are two Radon measures in \mathbb{R}^n and r > 0, we set

$$F_r(\mu,\nu) = \sup\left\{\left|\int fd\mu - \int fd\nu\right| : f \in \mathcal{L}(r)\right\}.$$

When $\nu = 0$,

$$F_r(\mu,0) = \int_0^r \mu(B(0,s)) ds =: F_r(\mu).$$

Note that $\mu_i \rightharpoonup \mu$ if and only if $\lim_{i\to\infty} F_r(\mu_i, \mu) = 0$ for all r > 0.

If ψ is a Radon measure and \mathcal{M} is a d-cone, we define a scaled version of F_r as follows:

$$d_r(\psi, \mathcal{M}) = \inf \left\{ F_r\left(\frac{\psi}{F_r(\psi)}, \mu\right) : \mu \in \mathcal{M} \text{ and } F_r(\mu) = 1 \right\},$$

i.e., normalize ψ so $F_r(\psi) = 1$ & then take distance to \mathcal{M} on B_r .

Let $h : \mathbb{R}^n \to \mathbb{R}$ be a homogenous harmonic polynomial of degree k.

Key Lemma: There is a constant $\ell_{n,k} > 0$ s.t. for all $t \in (0,1)$,

$$\mathcal{H}^{n-1}\{\theta \in S^{n-1} : |h(\theta)| \ge t \|h\|_{L^{\infty}(S^{n-1})}\} \ge \ell_{n,k}(1-t)^{n-1}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Interpretation: If h is homogeneous harmonic polynomial, then h takes big values on a big piece of the unit sphere.

Bounds for $\omega(B(0,r))$ as $r \to \infty$

Given $h : \mathbb{R}^n \to \mathbb{R}$ harmonic polynomial of degree d, h(0) = 0, $h = h_d + h_{d-1} + \dots + h_1$

where h_k is homogeneous harmonic polynomial of degree k. In polar coordinates,

$$h(r\theta) = r^d h_d(\theta) + r^{d-1} h_{d-1}(\theta) + \dots + r h_1(\theta),$$

$$\frac{dh}{dr}(r\theta)=dr^{d-1}h_d(\theta)+(d-1)r^{d-2}h_{d-1}(\theta)+\cdots+h_1(\theta).$$

Fact: Recall $\Omega^+ = \{X : h(X) > 0\}$. For all r > 0,

$$\omega(B(0,r)) = \int_{\partial B(0,r) \cap \Omega^+} \frac{dh^+}{dr} d\sigma$$

The $r^{d-1}h_d(\theta)$ term dominates as $r \to \infty$. Upper bounds for $\omega(B_r)$ are easy. Use "Big Piece" lemma to get uniform lower bounds.