Rectifiable and Purely Unrectifiable Measures in the Absence of Absolute Continuity

Matthew Badger Joint work with Raanan Schul

Department of Mathematics University of Connecticut

January 7, 2016

Joint Mathematics Meetings — Seattle, Washington

Special Session on Analysis and Geometry in Nonsmooth Metric Measure Spaces

Research Partially Supported by NSF DMS 1500382

(ロト 4回ト 4回ト 4回ト 三回 めんの

General Definition

Let μ be a Borel measure on \mathbb{R}^n and let $m \ge 0$ be an integer. We say that μ is *m*-rectifiable if there exist countably many

▶ Lipschitz maps $f_i : [0, 1]^m \to \mathbb{R}^n$ $[0, 1]^0 = \{0\}$ such that

$$\mu\left(\mathbb{R}^n\setminus\bigcup_i f_i([0,1]^m)\right)=0.$$

(Federer's terminology: \mathbb{R}^n is countably (μ, m) -rectifiable.)

We say that μ is purely *m*-unrectifiable provided $\mu(f([0,1]^m)) = 0$ for every Lipschitz map $f : [0,1]^m \to \mathbb{R}^n$

- Every measure μ on \mathbb{R}^n is *m*-rectifiable for all $m \ge n$
- A measure μ is 0-rectifiable iff $\mu = \sum_{i=1}^{\infty} c_i \delta_{x_i}$
- A measure μ is purely 0-unrectifiable iff μ is atomless.

- Subsets of Lipschitz Images: Let f : [0,1]^m → ℝⁿ be Lipschitz. Then H^m ⊢ E is m-rectifiable for all E ⊆ f([0,1])^m.
- Weighted Sums: Suppose that H^m ∟ E_i is m-rectifiable and m_i ≥ 0 for all i ≥ 1. Then ∑_{i=1}[∞] m_i H^m ∟ E_i is m-rectifiable.
- A Locally Infinite Rectifiable Measure: Let ℓ_i ⊂ ℝ² be the line through the origin meeting the x-axis at angle θ_i ∈ [0, π). Assume that #{θ_i : i ≥ 1} = ∞. Then φ = H¹ ∟ ⋃_{i=1}[∞] ℓ_i is 1-rectifiable and σ-finite, but φ(B(0, r)) = ∞ for all r > 0.
- A Radon Example with Locally Infinite Support: $\psi = \sum_{i=1}^{\infty} 2^{-i} \mathcal{H}^1 \sqcup \ell_i$ is a 1-rectifiable Radon measure, but $\mathcal{H}^1 \sqcup$ spt $\psi = \phi$ is locally infinite on neighborhoods of 0.

- Subsets of Lipschitz Images: Let f : [0,1]^m → ℝⁿ be Lipschitz. Then H^m ⊢ E is m-rectifiable for all E ⊆ f([0,1])^m.
- ▶ Weighted Sums: Suppose that $\mathcal{H}^m \sqcup E_i$ is *m*-rectifiable and $m_i \ge 0$ for all $i \ge 1$. Then $\sum_{i=1}^{\infty} m_i \mathcal{H}^m \sqcup E_i$ is *m*-rectifiable.
- A Locally Infinite Rectifiable Measure: Let ℓ_i ⊂ ℝ² be the line through the origin meeting the *x*-axis at angle θ_i ∈ [0, π). Assume that #{θ_i : i ≥ 1} = ∞. Then φ = H¹ ∟ ⋃_{i=1}[∞] ℓ_i is 1-rectifiable and σ-finite, but φ(B(0, r)) = ∞ for all r > 0.
- ▶ A Radon Example with Locally Infinite Support: $\psi = \sum_{i=1}^{\infty} 2^{-i} \mathcal{H}^1 \sqcup \ell_i$ is a 1-rectifiable Radon measure, but $\mathcal{H}^1 \sqcup$ spt $\psi = \phi$ is locally infinite on neighborhoods of 0.

- Subsets of Lipschitz Images: Let f : [0,1]^m → ℝⁿ be Lipschitz. Then H^m ⊢ E is m-rectifiable for all E ⊆ f([0,1])^m.
- ▶ Weighted Sums: Suppose that $\mathcal{H}^m \sqcup E_i$ is *m*-rectifiable and $m_i \ge 0$ for all $i \ge 1$. Then $\sum_{i=1}^{\infty} m_i \mathcal{H}^m \sqcup E_i$ is *m*-rectifiable.
- A Locally Infinite Rectifiable Measure: Let ℓ_i ⊂ ℝ² be the line through the origin meeting the *x*-axis at angle θ_i ∈ [0, π). Assume that #{θ_i : i ≥ 1} = ∞. Then φ = H¹ ∟ ⋃_{i=1}[∞] ℓ_i is 1-rectifiable and σ-finite, but φ(B(0, r)) = ∞ for all r > 0.
- ▶ A Radon Example with Locally Infinite Support: $\psi = \sum_{i=1}^{\infty} 2^{-i} \mathcal{H}^1 \sqcup \ell_i$ is a 1-rectifiable Radon measure, but $\mathcal{H}^1 \sqcup$ spt $\psi = \phi$ is locally infinite on neighborhoods of 0.

- Subsets of Lipschitz Images: Let f : [0,1]^m → ℝⁿ be Lipschitz. Then H^m ⊢ E is m-rectifiable for all E ⊆ f([0,1])^m.
- ▶ Weighted Sums: Suppose that $\mathcal{H}^m \sqcup E_i$ is *m*-rectifiable and $m_i \ge 0$ for all $i \ge 1$. Then $\sum_{i=1}^{\infty} m_i \mathcal{H}^m \sqcup E_i$ is *m*-rectifiable.
- A Locally Infinite Rectifiable Measure: Let ℓ_i ⊂ ℝ² be the line through the origin meeting the *x*-axis at angle θ_i ∈ [0, π). Assume that #{θ_i : i ≥ 1} = ∞. Then φ = H¹ ∟ ⋃_{i=1}[∞] ℓ_i is 1-rectifiable and σ-finite, but φ(B(0, r)) = ∞ for all r > 0.
- ▶ A Radon Example with Locally Infinite Support: $\psi = \sum_{i=1}^{\infty} 2^{-i} \mathcal{H}^1 \sqcup \ell_i$ is a 1-rectifiable Radon measure, but $\mathcal{H}^1 \sqcup$ spt $\psi = \phi$ is locally infinite on neighborhoods of 0.

Examples of Purely Unrectifiable Measures

Let $E \subseteq \mathbb{R}^2$ be the "4 corners" Cantor set, $E = \bigcap_{i=0}^{\infty} E_i$

- ► Every rectifiable curve Γ = f([0, 1]) ⊂ ℝ² intersects E in a set of zero H¹ measure.
- *H*¹ ∟ *E* is a purely 1-unrectifiable measure on ℝ²
 *H*² ∟ (*E* × ℝ) is a purely 2-unrectifiable measure on ℝ³ and so on...

Decomposition Theorem

Proposition Let μ be a Radon measure on \mathbb{R}^n . For each $m \ge 0$, we can write

 $\mu = \mu_{rect}^m + \mu_{pu}^m,$

where μ_{rect}^m is *m*-rectifiable and μ_{pu}^m is purely *m*-unrectifiable.

▶ $\mu_{rect}^m \perp \mu_{pu}^m$ and the decomposition is unique for each $m \ge 0$

•
$$\mu_{rect}^m = \mu$$
 and $\mu_{pu}^m = 0$ when $m \ge n$

- $\blacktriangleright~\mu_{\it rect}^{\rm 0}$ measures atoms of μ and $\mu_{\it pu}^{\rm 0}$ is the atomless part of μ
- ► The proof of this fact does not give a method to identify μ_{rect}^m and μ_{pu}^m when $1 \le m \le n-1$.

Problem Let $1 \le m \le n-1$. Give geometric, measure-theoretic characterizations of the *m*-rectifiable part μ_{rect}^m and the purely *m*-unrectifiable part μ_{pu}^m of Radon measures μ on \mathbb{R}^n .

Decomposition Theorem

Proposition Let μ be a Radon measure on \mathbb{R}^n . For each $m \ge 0$, we can write

 $\mu = \mu_{rect}^m + \mu_{pu}^m,$

where μ_{rect}^m is *m*-rectifiable and μ_{pu}^m is purely *m*-unrectifiable.

▶ $\mu^m_{rect} \perp \mu^m_{pu}$ and the decomposition is unique for each $m \ge 0$

•
$$\mu_{rect}^m = \mu$$
 and $\mu_{pu}^m = 0$ when $m \ge n$

- $\blacktriangleright~\mu_{\it rect}^{\rm 0}$ measures atoms of μ and $\mu_{\it pu}^{\rm 0}$ is the atomless part of μ
- ► The proof of this fact does not give a method to identify μ_{rect}^m and μ_{pu}^m when $1 \le m \le n-1$.

Problem Let $1 \le m \le n-1$. Give geometric, measure-theoretic characterizations of the *m*-rectifiable part μ_{rect}^m and the purely *m*-unrectifiable part $\mu_{p\mu}^m$ of Radon measures μ on \mathbb{R}^n .

Grades of Rectifiable Measures

 $\{ m$ -rectifiable measures μ on $\mathbb{R}^n \}$

U١

 $\{ m \text{-rectifiable measures } \mu \text{ on } \mathbb{R}^n \text{ such that } \mu \ll \mathcal{H}^m \}$

U١

 $\{ m \text{-rectifiable measures } \mu \text{ on } \mathbb{R}^n \text{ of the form } \mu = \mathcal{H}^m \sqcup E \}$

"Absolutely continuous" rectifiable measures and rectifiable sets are very well understood

In the absence of an absolute continuity assumption, rectifiable measures are poorly understood

Grades of Rectifiable Measures

 $\{ m$ -rectifiable measures μ on $\mathbb{R}^n \}$

Uł

 $\{ m$ -rectifiable measures μ on \mathbb{R}^n such that $\mu \ll \mathcal{H}^m \}$

U١

 $\{ m \text{-rectifiable measures } \mu \text{ on } \mathbb{R}^n \text{ of the form } \mu = \mathcal{H}^m \sqcup E \}$

"Absolutely continuous" rectifiable measures and rectifiable sets are very well understood

In the absence of an absolute continuity assumption, rectifiable measures are poorly understood

Grades of Rectifiable Measures

 $\{ m$ -rectifiable measures μ on $\mathbb{R}^n \}$

Uł

 $\{ m$ -rectifiable measures μ on \mathbb{R}^n such that $\mu \ll \mathcal{H}^m \}$

U١

 $\{ m \text{-rectifiable measures } \mu \text{ on } \mathbb{R}^n \text{ of the form } \mu = \mathcal{H}^m \sqcup E \}$

"Absolutely continuous" rectifiable measures and rectifiable sets are very well understood

In the absence of an absolute continuity assumption, rectifiable measures are poorly understood

Absolutely Continuous Rectifiable Measures $(1 \le m \le n-1)$

The lower and upper (Hausdorff) *m*-density of a measure μ at *x*:

$$\underline{D}^m(\mu, x) = \liminf_{r \downarrow 0} \frac{\mu(B(x, r))}{c_m r^m} \quad \overline{D}^m(\mu, x) = \limsup_{r \downarrow 0} \frac{\mu(B(x, r))}{c_m r^m}.$$

Write $D^m(\mu, x)$, the *m*-density of μ at *x*, if $\underline{D}^m(\mu, x) = \overline{D}^m(\mu, x)$. Theorem (Besicovitch 1928, Marstrand 1961, Mattila 1975) Suppose that $E \subset \mathbb{R}^n$ is Borel and $\mu = \mathcal{H}^m \sqcup E$ is locally finite. Then μ is *m*-rectifiable if and only if $D^m(\mu, x) = 1 \mu$ -a.e.

Theorem (Morse & Randolph 1944, Moore 1950, Preiss 1987) Suppose μ is a locally finite Borel measure on \mathbb{R}^n and $\mu \ll \mathcal{H}^m$. Then μ is m-rectifiable if and only if $0 < D^m(\mu, x) < \infty \mu$ -a.e.

There are many other characterizations, see e.g. Federer (1947), Preiss (1987), Tolsa-Toro (2014), Tolsa & Azzam-Tolsa (2015)

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \ge 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n $(n \ge 2)$ with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n $(n \ge 2)$ with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → の へ ()

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n $(n \ge 2)$ with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n $(n \ge 2)$ with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n $(n \ge 2)$ with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

イロト イポト イラト イ

э

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n $(n \ge 2)$ with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n $(n \ge 2)$ with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n $(n \ge 2)$ with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

•
$$D^{1}(\mu, x) = \infty \mu$$
-a.e.
• $\int_{0}^{1} \left(\frac{\mu(B(x,r))}{2r}\right)^{-1} \frac{dr}{r} < \infty \mu$ -a.e.
(see B-Schul 2015)

- $\mu(\Gamma) = 0$ whenever $\Gamma = f([0,1])$ and $f: [0,1] \to \mathbb{R}^n$ is bi-Lipschitz
- ▶ Nevertheless there exist Lipschitz maps $f_i : [0, 1] \rightarrow \mathbb{R}^n$ such that

$$\mu\left(\mathbb{R}^n\setminus\bigcup_{i=1}^{\infty}f_i([0,1])\right)=0$$

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n $(n \ge 2)$ with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n $(n \ge 2)$ with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n $(n \ge 2)$ with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

$$D^{1}(\mu, x) = \infty \ \mu\text{-a.e.}$$

$$\int_{0}^{1} \left(\frac{\mu(B(x,r))}{2r}\right)^{-1} \frac{dr}{r} < \infty \ \mu\text{-a.e.}$$
(see B-Schul 2015)

- $\mu(\Gamma) = 0$ whenever $\Gamma = f([0,1])$ and $f : [0,1] \to \mathbb{R}^n$ is bi-Lipschitz
- ▶ Nevertheless there exist Lipschitz maps $f_i : [0, 1] \rightarrow \mathbb{R}^n$ such that

$$\mu\left(\mathbb{R}^n\setminus\bigcup_{i=1}^{\infty}f_i([0,1])\right)=0$$

General Rectifiable Measures

Partial Results: Necessary/Sufficient Conditions for $\mu = \mu_{rect}^m$

• Do not assume that $\mu \ll \mathcal{H}^m$

For 1-rectifiable measures

- Lerman (2003) Sufficient conditions
- B and Schul (2015) Necessary conditions
- For "badly linearly approximable" 1-rectifiable measures
 - B and Schul (arXiv 2014) Characterization

For doubling 1-rectifiable measures with connected support

Azzam and Mourgoglou (arXiv 2015) Characterization

For doubling *m*-rectifiable measures

► Azzam, David, Toro (arXiv 2014) Sufficient conditions

(a posteriori implies $\mu \ll \mathcal{H}^m$)

New Result: Characterization of μ_{rect}^1 and μ_{nu}^1

Theorem (B and Schul)

Let μ be a Radon measure on \mathbb{R}^n and let $1 \leq p \leq 2$. Then:

$$\mu_{rect}^{1} = \mu \sqcup \{ x \in \mathbb{R}^{n} : \underline{D}^{1}(\mu, x) > 0 \text{ and } J_{p}^{*}(\mu, x) < \infty \}$$
$$\mu_{pu}^{1} = \mu \sqcup \{ x \in \mathbb{R}^{n} : \underline{D}^{1}(\mu, x) = 0 \text{ or } J_{p}^{*}(\mu, x) = \infty \}$$

• $\underline{D}^{1}(\mu, x) = \liminf_{r \ge 0} \frac{\mu(B(x, r))}{2r}$ is lower 1-density of μ at x

• $J_p^*(\mu, x)$ is a geometric square function (or Jones function),

$$J_p^*(\mu, x) = \sum_{\substack{Q \in \Delta(\mathbb{R}^n) \\ \text{side } Q \leq 1}} \beta_p^*(\mu, Q)^2 \frac{\operatorname{diam} Q}{\mu(Q)} \chi_Q(x),$$

where $\beta_p^*(\mu, Q) \in [0, 1]$ is a measurement of L^p approximability of μ by a tangent line in triples of dyadic cubes "nearby" Q. Here $\Delta(\mathbb{R}^n)$ denotes a fixed grid of half-open dyadic cubes in \mathbb{R}^n . ・ロト・日本・モート モー うへぐ

New Result: Traveling Salesman Theorem for Measures

For lower ADR measures, our methods yield characterization of **rectifiability of a measure with respect to a single curve**

Theorem (B and Schul)

Let $1 \le p \le 2$. Let μ be a finite Borel measure on \mathbb{R}^n with bounded support. Assume that $\mu(B(x, r)) \ge cr$ for all $x \in \operatorname{spt} \mu$ and for all $r \le \operatorname{diam} \operatorname{spt} \mu$. Then there exists a rectifiable curve $\Gamma = f([0, 1]), f : [0, 1] \to \mathbb{R}^n$ Lipschitz, such that $\mu(\mathbb{R}^n \setminus \Gamma) = 0$ if and only if

$$\mathcal{S}^2(\mu) = \sum_{Q \in \Delta(\mathbb{R}^n)} eta^*_{p}(\mu,Q)^2 \operatorname{diam} Q < \infty.$$

Moreover, the length of the shortest curve is comparable to diam spt $\mu + S^2(\mu)$ up to constants depending only on n, c, and p.

► Proof builds on the proof of the Traveling Salesman Theorem for Sets by Jones (n = 2) and Okikiolu (n ≥ 3).

Nearby Cubes and $\beta_p^*(\mu, Q)$

For every dyadic cube $Q \subseteq \mathbb{R}^n$, the set $\Delta^*(Q)$ of nearby cubes are dyadic cubes R such that

- ► $3R \subseteq 2000\sqrt{n}Q$
- side $Q \leq$ side $R \leq$ 2 side Q

Black cube represents cube Q and

Red cube Q^{+1} represents its parent

Yellow cube represents $2000\sqrt{nQ}$ (not to scale)

Cyan and green cubes represent cubes $R \in \Delta^*(Q)$ and their triples 3R

Let μ be a Radon measure on \mathbb{R}^n , let $Q \subseteq \mathbb{R}^n$ be a dyadic cube, and let $1 \leq p < \infty$. The beta number $\beta_p^*(\mu, Q) \in [0, 1]$ is given by

$$\beta_p^*(\mu, Q)^p := \inf_{\text{lines } \ell} \sup_{R \in \Delta^*(Q)} \int_{3R} \left(\frac{\text{dist}(x, \ell)}{\text{diam } 3R} \right)^p \min\left(\frac{\mu(3R)}{\text{diam } 3R}, 1 \right) \frac{d\mu(x)}{\mu(3R)}$$

◆ロト ◆聞 ト ◆臣 ト ◆臣 ト ─ 臣 ─ のへで

Remarks

Let
$$\mu$$
 be a Radon measure on \mathbb{R}^n and let $1 \le p \le 2$

$$\Delta^*(Q) = \{ dyadic \ cubes \ R : 3R \subseteq 2000\sqrt{n}Q, \text{ side } Q \le \text{ side } R \le 2 \text{ side } Q \}$$

$$\beta_p^*(\mu, Q)^p := \inf_{\substack{lines \ \ell \ R \in \Delta^*(Q)}} \sup_{\substack{R \in \Delta^*(Q) \ r}} \int_{3R}^{} \left(\frac{\operatorname{dist}(x, \ell)}{\operatorname{diam} 3R} \right)^p \min \left(\frac{\mu(3R)}{\operatorname{diam} 3R}, 1 \right) \frac{d\mu(x)}{\mu(3R)}$$

$$\underline{D}^1(\mu, x) = \liminf_{\substack{r \downarrow 0}} \frac{\mu(B(x, r))}{r}, \qquad J_p^*(\mu, x) = \sum_{\substack{Q \in \Delta(\mathbb{R}^n) \\ \operatorname{side } Q \le 1}} \beta_p^*(\mu, Q)^2 \frac{\operatorname{diam} Q}{\mu(Q)} \chi_Q(x)$$

$$\mu_{rect}^1 = \mu \bigsqcup \{ x \in \mathbb{R}^n : \underline{D}^1(\mu, x) > 0 \text{ and } J_p^*(\mu, x) < \infty \}$$

$$\mu_{pu}^1 = \mu \bigsqcup \{ x \in \mathbb{R}^n : \underline{D}^1(\mu, x) = 0 \text{ or } J_p^*(\mu, x) = \infty \}$$

- "Sufficient condition for 1-rectifiable" uses new criterion and algorithm for drawing a rectifiable curve through the leaves of an infinite tree, which is inspired by P. Jones' proof of the TST
- "Necessary condition for 1-rectifiable" extends B-Schul (2015)
- Simpler formulation available if μ is pointwise doubling (drop lower density condition and replace β^{*}_p(μ, Q) by β_p(μ, 3Q))
- Open: Can we replace $\beta_p^*(\mu, Q)$ with $\beta_p(\mu, 3Q)$ for arbitrary μ ?