Rectifiable and Purely Unrectifiable Measures in the Absence of Absolute Continuity

> Matthew Badger Joint work with Raanan Schul

Department of Mathematics University of Connecticut

January 7, 2016

Joint Mathematics Meetings — Seattle, Washington

Special Session on Analysis and Geometry in Nonsmooth Metric Measure Spaces

Research Partially Supported by NSF DMS 1500382

ロチ 《 御 》 《 君 》 《 君 》 《 君 》

 299

General Definition

Let μ be a Borel measure on \mathbb{R}^n and let $m \geq 0$ be an integer. We say that μ is m-rectifiable if there exist countably many

► Lipschitz maps $f_i: [0,1]^m \to \mathbb{R}^n$ $[0,1]^0 = \{0\}$ such that

$$
\mu\left(\mathbb{R}^n\setminus\bigcup_i f_i([0,1]^m)\right)=0.
$$

(Federer's terminology: \mathbb{R}^n is countably (μ, m) -rectifiable.)

We say that μ is purely m-unrectifiable provided $\mu(f([0,1]^m))=0$ for every Lipschitz map $f:[0,1]^m \to \mathbb{R}^n$

- Every measure μ on \mathbb{R}^n is m-rectifiable for all $m \geq n$
- A measure μ is 0-rectifiable iff $\mu = \sum_{i=1}^{\infty} c_i \delta_{x_i}$
- A measure μ is purely 0-unrectifiable iff μ is atomless.

- **Subsets of Lipschitz Images:** Let $f : [0,1]^m \to \mathbb{R}^n$ be Lipschitz. Then $\mathcal{H}^m \sqcup E$ is m-rectifiable for all $E \subset f([0,1])^m$.
- \blacktriangleright Weighted Sums: Suppose that $\mathcal{H}^m \sqcup E_i$ is *m*-rectifiable and $m_i \geq 0$ for all $i \geq 1$. Then $\sum_{i=1}^{\infty} m_i \mathcal{H}^m \sqcup E_i$ is *m*-rectifiable.
- ► A Locally Infinite Rectifiable Measure: Let $\ell_i \subset \mathbb{R}^2$ be the line through the origin meeting the x-axis at angle $\theta_i \in [0, \pi)$. Assume that $\#\{\theta_i: i\geq 1\} = \infty$. Then $\phi = \mathcal{H}^1 \sqcup \bigcup_{i=1}^{\infty} \ell_i$ is 1-rectifiable and σ -finite, but $\phi(B(0,r)) = \infty$ for all $r > 0$.
- \triangleright A Radon Example with Locally Infinite Support: $\psi=\sum_{i=1}^{\infty}2^{-i}\mathcal{H}^{1}\sqcup\ell_{i}$ is a 1-rectifiable Radon measure, but $\mathcal{H}^1 \sqcup \operatorname{\mathsf{spt}} \psi = \phi$ is locally infinite on neighborhoods of 0.

- **Subsets of Lipschitz Images:** Let $f : [0,1]^m \to \mathbb{R}^n$ be Lipschitz. Then $\mathcal{H}^m \sqcup E$ is m-rectifiable for all $E \subset f([0,1])^m$.
- \blacktriangleright Weighted Sums: Suppose that $\mathcal{H}^m \sqsubset E_i$ is *m*-rectifiable and $m_i \geq 0$ for all $i \geq 1$. Then $\sum_{i=1}^{\infty} m_i \mathcal{H}^m \sqcup E_i$ is m-rectifiable.
- ► A Locally Infinite Rectifiable Measure: Let $\ell_i \subset \mathbb{R}^2$ be the line through the origin meeting the x-axis at angle $\theta_i \in [0, \pi)$. Assume that $\#\{\theta_i: i\geq 1\} = \infty$. Then $\phi = \mathcal{H}^1 \sqcup \bigcup_{i=1}^{\infty} \ell_i$ is 1-rectifiable and σ -finite, but $\phi(B(0,r)) = \infty$ for all $r > 0$.
- \triangleright A Radon Example with Locally Infinite Support: $\psi=\sum_{i=1}^{\infty}2^{-i}\mathcal{H}^{1}\sqcup\ell_{i}$ is a 1-rectifiable Radon measure, but $\mathcal{H}^1 \sqcup \operatorname{\mathsf{spt}} \psi = \phi$ is locally infinite on neighborhoods of 0.

- ▶ Subsets of Lipschitz Images: Let $f : [0,1]^m \to \mathbb{R}^n$ be Lipschitz. Then $\mathcal{H}^m \sqcup E$ is m-rectifiable for all $E \subset f([0,1])^m$.
- \blacktriangleright Weighted Sums: Suppose that $\mathcal{H}^m \sqsubset E_i$ is *m*-rectifiable and $m_i \geq 0$ for all $i \geq 1$. Then $\sum_{i=1}^{\infty} m_i \mathcal{H}^m \sqcup E_i$ is m-rectifiable.
- ▶ A Locally Infinite Rectifiable Measure: Let $\ell_i \subset \mathbb{R}^2$ be the line through the origin meeting the x-axis at angle $\theta_i \in [0, \pi)$. Assume that $\#\{\theta_i: i\geq 1\}=\infty$. Then $\phi=\mathcal{H}^1\sqcup\;\bigcup_{i=1}^\infty \ell_i$ is 1-rectifiable and σ -finite, but $\phi(B(0, r)) = \infty$ for all $r > 0$.
- \triangleright A Radon Example with Locally Infinite Support: $\psi=\sum_{i=1}^{\infty}2^{-i}\mathcal{H}^{1}\sqcup\ell_{i}$ is a 1-rectifiable Radon measure, but $\mathcal{H}^1 \sqcup \operatorname{\mathsf{spt}} \psi = \phi$ is locally infinite on neighborhoods of 0.

- ▶ Subsets of Lipschitz Images: Let $f : [0,1]^m \to \mathbb{R}^n$ be Lipschitz. Then $\mathcal{H}^m \sqcup E$ is m-rectifiable for all $E \subset f([0,1])^m$.
- \blacktriangleright Weighted Sums: Suppose that $\mathcal{H}^m \sqsubset E_i$ is *m*-rectifiable and $m_i \geq 0$ for all $i \geq 1$. Then $\sum_{i=1}^{\infty} m_i \mathcal{H}^m \sqcup E_i$ is m-rectifiable.
- ▶ A Locally Infinite Rectifiable Measure: Let $\ell_i \subset \mathbb{R}^2$ be the line through the origin meeting the x-axis at angle $\theta_i \in [0, \pi)$. Assume that $\#\{\theta_i: i\geq 1\}=\infty$. Then $\phi=\mathcal{H}^1\sqcup\;\bigcup_{i=1}^\infty \ell_i$ is 1-rectifiable and σ -finite, but $\phi(B(0, r)) = \infty$ for all $r > 0$.
- \triangleright A Radon Example with Locally Infinite Support: $\psi=\sum_{i=1}^{\infty}2^{-i}\mathcal{H}^1\sqcup\ell_i$ is a 1-rectifiable Radon measure, but $\mathcal{H}^1 \sqcup \operatorname{\mathsf{spt}} \psi = \phi$ is locally infinite on neighborhoods of 0.

Examples of Purely Unrectifiable Measures

Let $E \subseteq \mathbb{R}^2$ be the "4 corners" Cantor set, $E = \bigcap_{i=0}^\infty E_i$

- ► Every rectifiable curve $\Gamma = f([0,1]) \subset \mathbb{R}^2$ intersects E in a set of zero \mathcal{H}^1 measure.
- $\blacktriangleright \mathcal{H}^1 \sqcup E$ is a purely 1-unrectifiable measure on \mathbb{R}^2 $\mathcal{H}^2 \sqcup (\mathit{E} \times \mathbb{R})$ is a purely 2-unrectifiable measure on \mathbb{R}^3 and so on...

KORKAR KERKER EL POLO

Decomposition Theorem

Proposition Let μ be a Radon measure on \mathbb{R}^n . For each $m \geq 0$, we can write

 $\mu = \mu_{rect}^m + \mu_{pu}^m$

where μ^m_{rect} is *m*-rectifiable and $\mu^m_{\rho\nu}$ is purely *m*-unrectifiable.

► $\mu_{rect}^m \perp \mu_{pu}^m$ and the decomposition is unique for each $m \geq 0$

$$
\blacktriangleright \mu_{rect}^m = \mu \text{ and } \mu_{pu}^m = 0 \text{ when } m \ge n
$$

- \blacktriangleright μ_{rect}^0 measures atoms of μ and $\mu_{\rho u}^0$ is the atomless part of μ
- \triangleright The proof of this fact does not give a method to identify μ^m_{rect} and μ^m_{pu} when $1 \leq m \leq n-1$.

Problem Let $1 \le m \le n-1$. Give geometric, measure-theoretic characterizations of the *m*-rectifiable part μ_{rect}^m and the purely *m*-unrectifiable part $\mu_{\rho\mu}^{m}$ of Radon measures μ on \mathbb{R}^{n} .

KORKAR KERKER EL POLO

Decomposition Theorem

Proposition Let μ be a Radon measure on \mathbb{R}^n . For each $m \geq 0$, we can write

 $\mu = \mu_{rect}^m + \mu_{pu}^m$

where μ^m_{rect} is *m*-rectifiable and $\mu^m_{\rho\nu}$ is purely *m*-unrectifiable.

► $\mu_{rect}^m \perp \mu_{pu}^m$ and the decomposition is unique for each $m \geq 0$

$$
\blacktriangleright \mu_{rect}^m = \mu \text{ and } \mu_{pu}^m = 0 \text{ when } m \ge n
$$

- \blacktriangleright μ_{rect}^0 measures atoms of μ and $\mu_{\rho u}^0$ is the atomless part of μ
- \triangleright The proof of this fact does not give a method to identify μ^m_{rect} and μ^m_{pu} when $1 \leq m \leq n-1$.

Problem Let $1 \le m \le n - 1$. Give geometric, measure-theoretic characterizations of the *m*-rectifiable part μ_{rect}^m and the purely *m*-unrectifiable part $\mu_{\rho\mu}^{m}$ of Radon measures μ on \mathbb{R}^{n} .

Grades of Rectifiable Measures

 $\{ m$ -rectifiable measures μ on \mathbb{R}^n $\}$

 (X)

 $\{ m$ -rectifiable measures μ on \mathbb{R}^n such that $\mu \ll \mathcal{H}^m \}$ \setminus

 $\{ m$ -rectifiable measures μ on \mathbb{R}^n of the form $\mu = \mathcal{H}^m \sqcup E$

"Absolutely continuous" rectifiable measures and rectifiable sets are very well understood

In the absence of an absolute continuity assumption, rectifiable measures are poorly understood

Grades of Rectifiable Measures

 $\{ m$ -rectifiable measures μ on \mathbb{R}^n $\}$

 (X)

 $\{ m$ -rectifiable measures μ on \mathbb{R}^n such that $\mu \ll \mathcal{H}^m \}$

 \setminus

 $\{ m$ -rectifiable measures μ on \mathbb{R}^n of the form $\mu = \mathcal{H}^m \sqcup E$

"Absolutely continuous" rectifiable measures and rectifiable sets are very well understood

In the absence of an absolute continuity assumption, rectifiable measures are poorly understood

Grades of Rectifiable Measures

 $\{ m$ -rectifiable measures μ on \mathbb{R}^n $\}$

 I

 $\{ m$ -rectifiable measures μ on \mathbb{R}^n such that $\mu \ll \mathcal{H}^m \}$

 $\left\langle \right\rangle$

 $\{ m$ -rectifiable measures μ on \mathbb{R}^n of the form $\mu = \mathcal{H}^m \sqcup E$

"Absolutely continuous" rectifiable measures and rectifiable sets are very well understood

In the absence of an absolute continuity assumption, rectifiable measures are poorly understood

Absolutely Continuous Rectifiable Measures $(1 \le m \le n-1)$

The lower and upper (Hausdorff) m-density of a measure μ at x:

$$
\underline{D}^m(\mu, x) = \liminf_{r \downarrow 0} \frac{\mu(B(x, r))}{c_m r^m} \quad \overline{D}^m(\mu, x) = \limsup_{r \downarrow 0} \frac{\mu(B(x, r))}{c_m r^m}.
$$

Write $D^m(\mu, x)$, the *m*-density of μ at x , if $\underline{D}^m(\mu, x) = \overline{D}^{\,m}(\mu, x).$

Theorem (Besicovitch 1928, Marstrand 1961, Mattila 1975) Suppose that $E \subset \mathbb{R}^n$ is Borel and $\mu = \mathcal{H}^m \sqcup E$ is locally finite. Then μ is m-rectifiable if and only if $D^m(\mu, x) = 1$ μ -a.e.

Theorem (Morse & Randolph 1944, Moore 1950, Preiss 1987) Suppose μ is a locally finite Borel measure on \mathbb{R}^n and $\mu \ll \mathcal{H}^m$. Then μ is m-rectifiable if and only if $0 < D^m(\mu, x) < \infty$ μ -a.e.

There are many other characterizations, see e.g. Federer (1947), Preiss (1987), Tolsa-Toro (2014), Tolsa & [Azz](#page-11-0)[am](#page-13-0)[-](#page-11-0)[To](#page-12-0)[l](#page-13-0)[sa](#page-0-0) [\(2](#page-29-0)[01](#page-0-0)[5\)](#page-29-0)

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

KORK STRATER STRACK

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

 $4.11 \times 4.41 \times 4.71 \times 4.$

 $2Q$

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

 299

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.

 4 ロ } 4 6 } 4 3 } 4

 290

Theorem (Garnett-Killip-Schul 2010)

Theorem (Garnett-Killip-Schul 2010)

Theorem (Garnett-Killip-Schul 2010)

Theorem (Garnett-Killip-Schul 2010)

$$
D^{1}(\mu, x) = \infty \ \mu\text{-a.e.}
$$
\n
$$
\sum_{n=0}^{\infty} \left(\frac{\mu(B(x, r))}{2r}\right)^{-1} \frac{dr}{r} < \infty \ \mu\text{-a.e.}
$$
\n(see B-Schul 2015)

- \blacktriangleright $\mu(\Gamma) = 0$ whenever $\Gamma = f([0, 1])$ and $f : [0,1] \to \mathbb{R}^n$ is bi-Lipschitz
- \triangleright Nevertheless there exist Lipschitz maps $f_i : [0,1] \to \mathbb{R}^n$ such that

$$
\mu\left(\mathbb{R}^n\setminus\bigcup_{i=1}^\infty f_i([0,1])\right)=0
$$

General Rectifiable Measures

Partial Results: Necessary/Sufficient Conditions for $\mu=\mu_{rect}^m$

 \blacktriangleright Do not assume that $\mu \ll \mathcal{H}^m$

For 1-rectifiable measures

- \blacktriangleright Lerman (2003) Sufficient conditions
- \triangleright B and Schul (2015) Necessary conditions
- For "badly linearly approximable" 1-rectifiable measures
	- ▶ B and Schul (arXiv 2014) Characterization

For doubling 1-rectifiable measures with connected support

 \triangleright Azzam and Mourgoglou (arXiv 2015) Characterization

For doubling *m*-rectifiable measures

▶ Azzam, David, Toro (arXiv 2014) Sufficient conditions

(a posteriori implies $\mu \ll H^m$)

New Result: Characterization of μ_{rect}^1 and μ_p^1 pu

Theorem (B and Schul)

Let μ be a Radon measure on \mathbb{R}^n and let $1 \leq p \leq 2$. Then:

$$
\mu_{rect}^1 = \mu \sqcup \{x \in \mathbb{R}^n : \underline{D}^1(\mu, x) > 0 \text{ and } J_p^*(\mu, x) < \infty \}
$$

$$
\mu_{pu}^1 = \mu \sqcup \{x \in \mathbb{R}^n : \underline{D}^1(\mu, x) = 0 \text{ or } J_p^*(\mu, x) = \infty \}
$$

 $\blacktriangleright \underline{D}^1(\mu, x) = \liminf_{r \downarrow 0} \frac{\mu(B(x,r))}{2r}$ $\frac{2r(x,1)}{2r}$ is lower 1-density of μ at x

► $J_p^*(\mu, x)$ is a geometric square function (or Jones function),

$$
J_p^*(\mu, x) = \sum_{\substack{Q \in \Delta(\mathbb{R}^n) \\ \text{side } Q \leq 1}} \beta_p^*(\mu, Q)^2 \frac{\text{diam } Q}{\mu(Q)} \chi_Q(x),
$$

where $\beta^*_{\bm p}(\mu, Q) \in [0,1]$ is a measurement of $L^{\bm p}$ approximability of μ by a tangent line in triples of dyadic cubes "nearby" Q . Here $\Delta(\mathbb{R}^n)$ denotes a fixed grid of half-open dyadic cubes in \mathbb{R}^n . **KORK STRATER STRACK**

New Result: Traveling Salesman Theorem for Measures

For lower ADR measures, our methods yield characterization of rectifiability of a measure with respect to a single curve

Theorem (B and Schul)

Let $1 \leq p \leq 2$. Let μ be a finite Borel measure on \mathbb{R}^n with bounded support. Assume that $\mu(B(x,r)) \geq c r$ for all $x \in \text{spt } \mu$ and for all $r <$ diam spt μ . Then there exists a rectifiable curve $\Gamma = f([0,1])$, $f : [0,1] \to \mathbb{R}^n$ Lipschitz, such that $\mu(\mathbb{R}^n \setminus \Gamma) = 0$ if and only if

$$
S^2(\mu)=\sum_{Q\in\Delta(\mathbb{R}^n)}\beta_p^*(\mu,Q)^2\operatorname{diam} Q<\infty.
$$

Moreover, the length of the shortest curve is comparable to diam spt $\mu + \mathcal{S}^2(\mu)$ up to constants depending only on n, c, and p.

 \triangleright Proof builds on the proof of the Traveling Salesman Theorem for Sets by Jones ($n = 2$) and Okikiolu ($n \ge 3$).

K ロ X (日) X 제공 X 제공 X 기능 및 10 이익(예)

Nearby Cubes and β_{p}^{*} $\rho^*_\rho(\mu,\,Q)$

For every dyadic cube $Q \subseteq \mathbb{R}^n$, the set $\Delta^*(Q)$ of nearby cubes are dyadic cubes R such that

- \blacktriangleright 3R ⊆ 2000 $\sqrt{n}Q$
- \triangleright side Q < side R < 2 side Q

Black cube represents cube Q and

Red cube Q^{+1} represents its parent

Yellow cube represents $2000\sqrt{n}Q$ (not to scale)

Cyan and green cubes represent cubes $R \in \Delta^*(Q)$ and their triples 3R

イロト 不優 トメ 君 トメ 君 トー 道

 2990

Let μ be a Radon measure on \mathbb{R}^n , let $Q \subseteq \mathbb{R}^n$ be a dyadic cube, and let $1\leq \rho<\infty.$ The beta number $\beta_{\bm{\rho}}^*(\mu,Q)\in [0,1]$ is given by

$$
\beta^*_\rho(\mu,Q)^p:=\inf_{\text{lines }\ell}\sup_{R\in\Delta^*(Q)}\int_{3R}\left(\frac{\text{dist}(x,\ell)}{\text{diam}\,3R}\right)^p\min\left(\frac{\mu(3R)}{\text{diam}\,3R},1\right)\frac{d\mu(x)}{\mu(3R)}
$$

Remarks

Let
$$
\mu
$$
 be a Radon measure on \mathbb{R}^n and let $1 \leq p \leq 2$
\n
$$
\Delta^*(Q) = \{dyadic cubes R : 3R \subseteq 2000\sqrt{n}Q, side Q \leq side R \leq 2 side Q\}
$$
\n
$$
\beta_p^*(\mu, Q)^p := \inf_{\text{lines } \ell} \sup_{R \in \Delta^*(Q)} \int_{3R} \left(\frac{\text{dist}(x, \ell)}{\text{diam } 3R}\right)^p \min\left(\frac{\mu(3R)}{\text{diam } 3R}, 1\right) \frac{d\mu(x)}{\mu(3R)}
$$
\n
$$
\underline{D}^1(\mu, x) = \lim_{r \downarrow 0} \inf_{r} \frac{\mu(B(x, r))}{r}, \qquad J_p^*(\mu, x) = \sum_{\substack{Q \in \Delta(\mathbb{R}^n) \\ \text{side } Q \leq 1}} \beta_p^*(\mu, Q)^2 \frac{\text{diam } Q}{\mu(Q)} \chi_Q(x)
$$
\n
$$
\mu_{rect}^1 = \mu \bigsqcup_{\{x \in \mathbb{R}^n : \underline{D}^1(\mu, x) > 0 \text{ and } J_p^*(\mu, x) < \infty\}}
$$
\n
$$
\mu_{pu}^1 = \mu \bigsqcup_{\{x \in \mathbb{R}^n : \underline{D}^1(\mu, x) = 0 \text{ or } J_p^*(\mu, x) = \infty\}}
$$

- \triangleright "Sufficient condition for 1-rectifiable" uses new criterion and algorithm for drawing a rectifiable curve through the leaves of an infinite tree, which is inspired by P. Jones' proof of the TST
- \blacktriangleright "Necessary condition for 1-rectifiable" extends B-Schul (2015)
- Simpler formulation available if μ is pointwise doubling (drop lower density condition and replace $\beta_p^*(\mu, Q)$ by $\beta_p(\mu, 3Q)$)
- ► Open: Can we replace $\beta_p^*(\mu, Q)$ with $\beta_p(\mu, 3Q)$ for arbitrary μ ?