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General Definition

Let µ be a Borel measure on Rn and let m ≥ 0 be an integer.
We say that µ is m-rectifiable if there exist countably many

I Lipschitz maps fi : [0, 1]m → Rn [0, 1]0 = {0}
such that

µ

(
Rn \

⋃
i

fi ([0, 1]m)

)
= 0.

(Federer’s terminology: Rn is countably (µ,m)-rectifiable.)

We say that µ is purely m-unrectifiable provided µ(f ([0, 1]m)) = 0
for every Lipschitz map f : [0, 1]m → Rn

I Every measure µ on Rn is m-rectifiable for all m ≥ n

I A measure µ is 0-rectifiable iff µ =
∑∞

i=1 ciδxi
I A measure µ is purely 0-unrectifiable iff µ is atomless.



Examples of Rectifiable Measures

I Subsets of Lipschitz Images: Let f : [0, 1]m → Rn be
Lipschitz. Then Hm E is m-rectifiable for all E ⊆ f ([0, 1])m.

I Weighted Sums: Suppose that Hm Ei is m-rectifiable and
mi ≥ 0 for all i ≥ 1. Then

∑∞
i=1 mi Hm Ei is m-rectifiable.

I A Locally Infinite Rectifiable Measure: Let `i ⊂ R2 be the
line through the origin meeting the x-axis at angle θi ∈ [0, π).
Assume that #{θi : i ≥ 1} =∞. Then φ = H1

⋃∞
i=1 `i is

1-rectifiable and σ-finite, but φ(B(0, r)) =∞ for all r > 0.

I A Radon Example with Locally Infinite Support:
ψ =

∑∞
i=1 2−iH1 `i is a 1-rectifiable Radon measure, but

H1 sptψ = φ is locally infinite on neighborhoods of 0.
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Examples of Purely Unrectifiable Measures

Let E ⊆ R2 be the “4 corners” Cantor set, E =
⋂∞

i=0 Ei

I Every rectifiable curve Γ = f ([0, 1]) ⊂ R2 intersects E
in a set of zero H1 measure.

I H1 E is a purely 1-unrectifiable measure on R2

H2 (E × R) is a purely 2-unrectifiable measure on R3

and so on...



Decomposition Theorem

Proposition Let µ be a Radon measure on Rn. For each m ≥ 0,
we can write

µ = µmrect + µmpu,

where µmrect is m-rectifiable and µmpu is purely m-unrectifiable.

I µmrect ⊥ µmpu and the decomposition is unique for each m ≥ 0

I µmrect = µ and µmpu = 0 when m ≥ n

I µ0
rect measures atoms of µ and µ0

pu is the atomless part of µ

I The proof of this fact does not give a method to identify
µmrect and µmpu when 1 ≤ m ≤ n − 1.

Problem Let 1 ≤ m ≤ n − 1. Give geometric, measure-theoretic
characterizations of the m-rectifiable part µmrect and the
purely m-unrectifiable part µmpu of Radon measures µ on Rn.
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{ m-rectifiable measures µ on Rn }

(

{ m-rectifiable measures µ on Rn such that µ� Hm }

(

{ m-rectifiable measures µ on Rn of the form µ = Hm E }

“Absolutely continuous” rectifiable measures and
rectifiable sets are very well understood

In the absence of an absolute continuity assumption,
rectifiable measures are poorly understood
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Absolutely Continuous Rectifiable Measures
(1 ≤ m ≤ n − 1)

The lower and upper (Hausdorff) m-density of a measure µ at x :

Dm(µ, x) = lim inf
r↓0

µ(B(x , r))

cmrm
D

m
(µ, x) = lim sup

r↓0

µ(B(x , r))

cmrm
.

Write Dm(µ, x), the m-density of µ at x , if Dm(µ, x) = D
m

(µ, x).

Theorem (Besicovitch 1928, Marstrand 1961, Mattila 1975)

Suppose that E ⊂ Rn is Borel and µ = Hm E is locally finite.
Then µ is m-rectifiable if and only if Dm(µ, x) = 1 µ-a.e.

Theorem (Morse & Randolph 1944, Moore 1950, Preiss 1987)

Suppose µ is a locally finite Borel measure on Rn and µ� Hm.
Then µ is m-rectifiable if and only if 0 < Dm(µ, x) <∞ µ-a.e.

There are many other characterizations, see e.g. Federer (1947),
Preiss (1987), Tolsa-Toro (2014), Tolsa & Azzam-Tolsa (2015)



Singular Rectifiable Measures

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure µ on Rn (n ≥ 2) with support Rn

such that µ ⊥ H1, but µ is 1-rectifiable.
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(
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2r
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r
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(see B-Schul 2015)

I µ(Γ) = 0 whenever Γ = f ([0, 1])
and f : [0, 1]→ Rn is bi-Lipschitz

I Nevertheless there exist Lipschitz
maps fi : [0, 1]→ Rn such that

µ
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General Rectifiable Measures

Partial Results: Necessary/Sufficient Conditions for µ = µmrect
I Do not assume that µ� Hm

For 1-rectifiable measures

I Lerman (2003) Sufficient conditions

I B and Schul (2015) Necessary conditions

For “badly linearly approximable” 1-rectifiable measures

I B and Schul (arXiv 2014) Characterization

For doubling 1-rectifiable measures with connected support

I Azzam and Mourgoglou (arXiv 2015) Characterization

For doubling m-rectifiable measures

I Azzam, David, Toro (arXiv 2014) Sufficient conditions
(a posteriori implies µ� Hm)



New Result: Characterization of µ1
rect and µ1

pu

Theorem (B and Schul)

Let µ be a Radon measure on Rn and let 1 ≤ p ≤ 2. Then:

µ1
rect = µ {x ∈ Rn : D1(µ, x) > 0 and J∗p(µ, x) <∞}

µ1
pu = µ {x ∈ Rn : D1(µ, x) = 0 or J∗p(µ, x) =∞}

I D1(µ, x) = lim infr↓0
µ(B(x ,r))

2r is lower 1-density of µ at x

I J∗p(µ, x) is a geometric square function (or Jones function),

J∗p(µ, x) =
∑

Q∈∆(Rn)

sideQ≤1

β∗p(µ,Q)2 diam Q

µ(Q)
χQ(x),

where β∗p(µ,Q) ∈ [0, 1] is a measurement of Lp approximability

of µ by a tangent line in triples of dyadic cubes “nearby” Q.

Here ∆(Rn) denotes a fixed grid of half-open dyadic cubes in Rn.



New Result: Traveling Salesman Theorem for Measures
For lower ADR measures, our methods yield characterization of
rectifiability of a measure with respect to a single curve

Theorem (B and Schul)

Let 1 ≤ p ≤ 2. Let µ be a finite Borel measure on Rn with
bounded support. Assume that µ(B(x , r)) ≥ cr for all x ∈ sptµ
and for all r ≤ diam sptµ. Then there exists a rectifiable curve
Γ = f ([0, 1]), f : [0, 1]→ Rn Lipschitz, such that µ(Rn \ Γ) = 0
if and only if

S2(µ) =
∑

Q∈∆(Rn)

β∗p(µ,Q)2 diam Q <∞.

Moreover, the length of the shortest curve is comparable to
diam sptµ+ S2(µ) up to constants depending only on n, c, and p.

I Proof builds on the proof of the Traveling Salesman Theorem
for Sets by Jones (n = 2) and Okikiolu (n ≥ 3).



Nearby Cubes and β∗p(µ,Q)

For every dyadic cube Q ⊆ Rn,
the set ∆∗(Q) of nearby cubes
are dyadic cubes R such that

I 3R ⊆ 2000
√

nQ

I side Q ≤ side R ≤ 2 side Q

Black cube represents cube Q and

Red cube Q+1 represents its parent

Yellow cube represents 2000
√
nQ (not to scale)

Cyan and green cubes represent cubes R ∈ ∆∗(Q) and
their triples 3R

Let µ be a Radon measure on Rn, let Q ⊆ Rn be a dyadic cube,
and let 1 ≤ p <∞. The beta number β∗p(µ,Q) ∈ [0, 1] is given by

β∗p (µ,Q)p := inf
lines `

sup
R∈∆∗(Q)

∫
3R

(
dist(x , `)

diam 3R

)p

min

(
µ(3R)

diam 3R
, 1

)
dµ(x)

µ(3R)



Remarks

Let µ be a Radon measure on Rn and let 1 ≤ p ≤ 2

∆∗(Q) = {dyadic cubes R : 3R ⊆ 2000
√
nQ, side Q ≤ side R ≤ 2 side Q}

β
∗
p (µ,Q)p := inf

lines `
sup

R∈∆∗(Q)

∫
3R

(
dist(x, `)

diam 3R

)p

min

(
µ(3R)

diam 3R
, 1

)
dµ(x)

µ(3R)

D1(µ, x) = lim inf
r↓0

µ(B(x, r))

r
, J∗p (µ, x) =

∑
Q∈∆(Rn)
side Q≤1

β
∗
p (µ,Q)2 diam Q

µ(Q)
χQ (x)

µ
1
rect = µ {x ∈ Rn : D1(µ, x) > 0 and J∗p (µ, x) <∞}

µ
1
pu = µ {x ∈ Rn : D1(µ, x) = 0 or J∗p (µ, x) =∞}

I “Sufficient condition for 1-rectifiable” uses new criterion and
algorithm for drawing a rectifiable curve through the leaves of an
infinite tree, which is inspired by P. Jones’ proof of the TST

I “Necessary condition for 1-rectifiable” extends B-Schul (2015)

I Simpler formulation available if µ is pointwise doubling
(drop lower density condition and replace β∗p (µ,Q) by βp(µ, 3Q))

I Open: Can we replace β∗p (µ,Q) with βp(µ, 3Q) for arbitrary µ?


