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Some Open Ended Questions

1. How can you describe a measure beyond talking

about its null sets?

2. What does a generic measure look like?

3. Can you decompose a complicated measure into

simpler measures? Are there canonical ways to do it?



Preview: Three Measures
Let ai > 0 be weights with

∑∞
i=1 ai = 1.

Let {xi : i ≥ 1}, {`i : i ≥ 1}, {Si : i ≥ 1} be a dense set of points,

unit line segments, unit squares in the plane.

µ0 =
∑∞

i=1 ai δxi µ1 =
∑∞

i=1 ai L1|`i µ2 =
∑∞

i=1 ai L2|Si

I µ0, µ1, µ2 are probability measures on R2

I The support of µ is the smallest closed set F carrying µ in the

sense that µ(R2 \ F ) = 0; thus, sptµ0 = sptµ1 = sptµ2 = R2

I µi is carried by i -dimensional sets (points, lines, squares)

I The support of a measure is a rough approximation that hides

the underlying structure of a measure



Part I. Decomposition of Measures

Part II. Lipschitz Image Rectifiability

Part III. Fractional Rectifiability and Other Frontiers



Some Terminology (Missing from Standard Lexicon)

Let (X ,M) be a measurable space and let N ⊂M be non-empty.

Let µ :M→ [0,∞] be a measure.

I We say that µ is carried by N if there exists a sequence

N1,N2, . . . of sets in N such that µ(X \
⋃∞

i=1 Ni) = 0.
I We say that µ is singular to N if µ(N) = 0 for every N ∈ N .

Lemma (decomposition)

If µ is σ-finite, then ∃! σ-finite measures µN and µ⊥N such that

µ = µN + µ⊥N ,

where µN is carried byN and µ⊥N is singular toN .

I This is an exercise in basic measure theory. The proof is sometimes

embedded inside proofs of the Lebesgue-Radon-Nikodym theorem.

I The proof does not tell you how to find sets N1,N2, . . . that carry µN !!!
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The Identification Problem

For each

I measurable space (X ,M)

I family N ⊂M of distinguished sets, and

I family F of σ-finite measures defined onM,

the associated identification problem is to find pointwise properties

that identify the part of µ carried byN and the part of µ singular toN .

That is, find properties P(µ, x) and Q(µ, x) defined for all measures

µ ∈ F and all points x ∈ X such that

I µN = µ {x ∈ X : P(µ, x) holds} µ A (B) = µ(A ∩ B)

I µ⊥N = µ {x ∈ X : Q(µ, x) holds}

As in the Painlevé problem, the properties P and Q should depend on

the geometry of the space X and the sets in N .
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Interlude: How do you measure size of a set in Rn?

Hausdorff measure and Hausdorff dimension

E ⊂ Rn, s ∈ [0, n]

Hs(E) = lim
δ↓0

inf

{
∞∑

i=1
(diam Ei)

s : E ⊆
∞⋃

i=1
Ei , where diam Ei ≤ δ

}

dimH(E) = s if and only ifHt(E) =

{
∞ when t < s
0 when t > s

Packing measure and packing dimension

P s(E) = inf

{
∞∑

i=1
P s(Ei) : E ⊆

∞⋃
i=1

Ei

}
,

P s(E) = lim
δ↓0

sup

{
∞∑

i=1
(diam Bi)

s : Bi disjoint balls centered on E , diam Bi ≤ δ

}

dimP(E) = s if and only if P t(E) =

{
∞ when t < s
0 when t > s

Hs(E) ≤ P s(E), dimH(E) ≤ dimP(E)



Example: Measures Carried by / Singular to Zero(Hs)

Let Zero(Hs) denote Borel sets in Rn of zero Hausdorff measureHs .

Decomposition Lemma: If µ is a σ-finite Borel measure on Rn , then

there exists a unique decomposition

µ = µZero(Hs) + µ
⊥
Zero(Hs).

I µZero(Hs) is carried by Zero(Hs), i.e. µZero(Hs) ⊥ Hs

I µ⊥Zero(Hs) is singular to Zero(Hs), i.e. µ⊥Zero(Hs) � H
s

Identification for Radon measures: If µ is locally finite, then

I µZero(Hs) = µ
{

x ∈ Rn : lim supr↓0
µ(B(x ,r))

r s =∞
}

I µ⊥Zero(Hs) = µ
{

x ∈ Rn : lim supr↓0
µ(B(x ,r))

r s <∞
}
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Theorem (Stratification by Upper and Lower Densities)

Let Zero(Hs), Finite(Hs), Zero(Ps), Finite(Ps) denote Borel sets in Rn

of zero and finite Hausdorff measureHs and packing measure Ps .

Identification: If µ is a Radon measure on Rn and s ∈ [0, n], then
I µZero(Hs) = µ

{
x ∈ Rn : lim supr↓0

µ(B(x ,r))
r s =∞

}
I µ⊥Zero(Hs) = µ

{
x ∈ Rn : lim supr↓0

µ(B(x ,r))
r s <∞

}
I µFinite(Hs) = µ

{
x ∈ Rn : lim supr↓0

µ(B(x ,r))
r s > 0

}
I µ⊥Finite(Hs) = µ

{
x ∈ Rn : lim supr↓0

µ(B(x ,r))
r s = 0

}
Recall that

I µZero(Ps) = µ
{

x ∈ Rn : lim infr↓0
µ(B(x ,r))

r s =∞
}

Hs ≤ P s

I µ⊥Zero(Ps) = µ
{

x ∈ Rn : lim infr↓0
µ(B(x ,r))

r s <∞
}

I µFinite(Ps) = µ
{

x ∈ Rn : lim infr↓0
µ(B(x ,r))

r s > 0
}

I µ⊥Finite(Ps) = µ
{

x ∈ Rn : lim infr↓0
µ(B(x ,r))

r s = 0
}



Corollary (Stratification by Dimension)

Let µ be a non-zero σ-finite Borel measure on Rn. There exists a countable

set S = SH(µ) ⊂ [0, n] of dimensions, and for every s ∈ S , there exists a

unique non-zero σ-finite Borel measure µs such that

µ =
∑
s∈S

µs

and for each s ∈ S the measure µs is carried by Borel sets of Hausdorff

dimension s and singular to Borel sets of Hausdorff dimension t < s.
Identification: Moreover, if µ is locally finite, then for each s ∈ S ,

µs = µ

{
x ∈ Rn : lim sup

r↓0

µ(B(x , r))
r s−ε = 0 ∧ lim sup

r↓0

µ(B(x , r))
r s+ε =∞ ∀ε > 0

}
.

I We may call SH(µ) the Hausdorff dimension spectrum of µ.

I The lower/upper Hausdorff dimension of µ is inf SH(µ) / supSH(µ).

I For every countable S ⊂ [0, n], we can build µ with SH(µ) = S.

I Similar statements for packing dimension with lim inf instead of lim sup
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Lipschitz Images

A map f : E ⊂ Rm → Rn is Lipschitz if there exists a constant

0 ≤ L <∞ such that |f (x)− f (y)| ≤ L|x − y | for all x , y ∈ E .
The infimal value of L in the inequality is attained and is called the

Lipschitz constant of f , denoted by Lip f .
I Kirzbraun’s Theorem: There is a Lipschitz extension F : Rm → Rn of f

with Lip F = Lip f .

I For any F ⊂ E , the restriction g = f |F of f to F ⊂ E is Lipschitz with

Lip g ≤ Lip f .

I Rademacher’s Theorem: f is differentiable at Lebesgue a.e. x ∈ E

I We may think of the image f (E) as a “measure-theoretic” manifold,

which admits tangent planesHm-a.e.

Exercise
If E is bounded, thenHm(f (E)) ≤ Pm(f (E)) ≤ (Lip f )mPm(E) <∞.

In particular, if E is bounded, then µ = Hm f (E) and ν = Pm f (E) are

finite measures on Rn.
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Self-similar Cantor Sets

Let 1 ≤ m ≤ n − 1 be integers.

Let C ⊂ Rn be a self-similar Cantor set of Hausdorff dimension m.

Theorem (Hutchinson 1981)

I The measure µ = Hm C is finite and Ahlfors m-regular,

i.e. µ(B(x , r)) ≈ rm for all x ∈ C and 0 < r ≤ diam C .

I The measure µ is singular to the set of Lipschitz images of Rm ,

i.e. µ(f (Rm)) = 0 whenever f : Rm → Rn is Lipschitz
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Rectifiable curves and Cantor sets do not meet

in a set of positive length



Rectifiable Measures (see Federer 1947 / 1969)

Let Lip(m, n) denote the set of images of Lipschitz maps

f : [0, 1]m → Rn. A Borel measure µ on Rn is called

I (countably) m-rectifiable if µ is carried by Lip(m, n)
I purely m-unrectifiable if µ is singular to Lip(m, n)

If µ is σ-finite, then there is a unique decomposition µ = µm
rect + µ

m
pu,

where µm
rect is m-rectifiable and µm

pu is purely m-unrectifiable.

Identification Problem: Find properties P(µ, x) and Q(µ, x) defined
for all Radon measures µ on Rn and x ∈ Rn such that

I µm
rect = µ {x ∈ X : P(µ, x) holds}

I µm
pu = µ {x ∈ X : Q(µ, x) holds}

Trivial when m = n. Solved when m = 1 and n ≥ 2 (B-Schul 2017).

All other cases are open! (Do not assume µ� Hm)
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Reminder: Rectifiability is NOT about the Support
Let ai > 0 be weights with

∑∞
i=1 ai = 1.

Let {xi : i ≥ 1}, {`i : i ≥ 1}, {Si : i ≥ 1} be a dense set of points,

unit line segments, unit squares in the plane.

µ0 =
∑∞

i=1 ai δxi µ1 =
∑∞

i=1 ai L1|`i µ2 =
∑∞

i=1 ai L2|Si

I Supports are the same: sptµ0 = sptµ1 = sptµ2 = R2

I µ0 is 1-rectifiable and µ0 ⊥ H1

I µ1 is 1-rectifiable and µ1 � H1

I µ2 is purely 1-unrectifiable and µ2 ⊥ H1

I The support of a measure is a rough approximation that hides

the underlying structure of a measure



Exercise: Rectifiable Measures and Lower Density

Every set Σ ∈ Lip(m, n) has Pm(Σ) <∞. Since µm
rect is carried by sets

of finite packing measure, it follows that for locally finite µ,

µm
rect ≤ µFinite(Pm) = µ

{
x ∈ Rn : lim infr↓0

µ(B(x ,r))
rm > 0

}
.

Thus, if µ is m-rectifiable, then lim infr↓0
µ(B(x ,r))

rm > 0 µ-a.e.
(The converse is false; think µ = Hm C for self-similar Cantor sets)

Similarly,

µ
{

x ∈ Rn : lim infr↓0
µ(B(x ,r))

rm = 0
}
= µ⊥Finite(Ps) ≤ µ

m
pu.

Thus, if lim infr↓0
µ(B(x ,r))

rm = 0 µ-a.e., then µ is purely m-unrectifiable.

(The converse is false; think µ = Hm C for self-similar Cantor sets)
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Thus, if µ is m-rectifiable, then lim infr↓0
µ(B(x ,r))

rm > 0 µ-a.e.
(The converse is false; think µ = Hm C for self-similar Cantor sets)

Similarly,

µ
{

x ∈ Rn : lim infr↓0
µ(B(x ,r))

rm = 0
}
= µ⊥Finite(Ps) ≤ µ

m
pu.

Thus, if lim infr↓0
µ(B(x ,r))

rm = 0 µ-a.e., then µ is purely m-unrectifiable.

(The converse is false; think µ = Hm C for self-similar Cantor sets)



Preiss’ Theorem (Annals of Mathematics 1987)

Identification of m-rectifiable and purely m-unrectifiable parts of a

Radon measure with finite upper density, i.e. singular to Zero(Hm):

For all integers 1 ≤ m ≤ n − 1, there exists c = c(m, n) < 1 such that

if µ is a Radon measure on Rn and lim supr↓0
µ(B(x ,r))

rm <∞ µ-a.e., then

µm
rect = µ

{
x ∈ Rn : 0 < lim inf

r↓0
µ(B(x ,r))

rm = lim supr↓0
µ(B(x ,r))

rm

}
.

µm
pu = µ

{
x ∈ Rn : lim inf

r↓0
µ(B(x ,r))

rm ≤ c lim supr↓0
µ(B(x ,r))

rm

}
.

When m = 1, c = 100
101 [Morse-Randolph 1944, Moore 1950]

Proof Ingredients: tangent measures, uniform measures, moments,

weak approximate tangent planes, Lipschitz graphs

Corollary: Let µ be a Radon measure on Rn. Then µ is m-rectifiable

and µ� Hm iff limr↓0
µ(B(x ,r))

rm exists and is > 0 and <∞ µ-a.e.



Further Work on Absolutely Continuous Measures

Tolsa-Toro 2015: sufficient conditions for measures µ� Hm to be

m-rectifiable in terms of doubling defect

Tolsa 2015: necessary conditions for measures µ� Hm to be m-rectifiable

expressed in terms of Jones’ beta numbers

Azzam-Tolsa 2015: sufficient conditions for measures µ� Hm to be

m-rectifiable in terms of Jones’ beta numbers

Edelen-Naber-Valtorta arXiv 2016: sufficient conditions for measures

µ� Pm to be m-rectifiable in terms of Jones’ beta numbers

Goering arXiv 2018: sufficient conditions for measures µ� Hm to be

m-rectifiable in terms of Menger type curvatures (cf.Meurer 2018)

Azzam-Tolsa-Toro arXiv 2018: sufficient conditions for pointwise doubling µ

to be m-rectifiable and µ� Hm in terms of Tolsa’s alpha numbers

Dabrowski arXiv 2019: necessary and sufficient conditions for measures

µ� Hm to be m-rectifiable in terms of L2 Wasserstein distances



Unilateral Linear Approximation Numbers

Let µ be a Radon measure on Rn , let Q ⊂ Rn be a window, i.e. a

bounded set of positive diameter, and let L be a m-dimensional plane.

The (non-homogeneous) L2 Jones beta numbers are

β
(m)
2 (µ,Q, L) :=

(∫
Q

(
dist(x , L)
diam Q

)2 dµ(x)
µ(Q)

)1/2

∈ [0, 1]

β
(m)
2 (µ,Q) := inf

L
β2(µ,Q, L) ∈ [0, 1]

I Jones 1990, David-Semmes 1991, 1993, Bishop-Jones 1994

I Non-homogeneous refers to scaling by µ(Q) to integrate against

a probability measure

I β(m)
2 (µ,Q) = 0 if and only if µ Q is carried by a m-plane

I Lebesgue measure Ln has β
(m)
2 (Ln,B(x , r)) ≈ 1 for every ball
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Unilateral Linear Approximation Numbers

Example Γ is a curve (black), measure µ = H1 Γ, dimension m = 1,
window Q is a square (yellow)



Theorem (Tolsa 2015+Azzam-Tolsa 2015)

Let µ be a Radon measure on Rn and let 1 ≤ m ≤ n − 1. Assume that

0 < lim supr↓0
µ(B(x ,r))

rm <∞ µ-a.e. Then

µm
rect = µ

{
x :

∫ 1

0
β
(m)
2 (µ,B(x , r))2µ(B(x , r))

rm
dr
r <∞

}
Theorem (B-Schul 2017 / Naples (forthcoming))

Let µ be a Radon measure on Rnor Hilbert space `2 and let m = 1. Assume

µ is pointwise doubling, i.e. lim supr↓0
µ(B(x ,2r))
µ(B(x ,r)) <∞ µ-a.e. Then

µ1
rect = µ

{
x :

∫ 1

0
β
(1)
2 (µ,B(x , r))2 r

µ(B(x , r))
dr
r <∞

}

I The first theorem identifies m-rectifiable part of Radon measures with

µ� Hm that are carried by sets of finiteHm measure

I The second theorem identifies 1-rectifiable part of Radon measures that

are pointwise doubling (µ ⊥ H1 allowed, no a priori dimension bound)

I Both theorems involve coarse densities, but in different ways
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Failure to Characterize for Non-doubling Measures
The L2 density-normalized Jones square function J̃2 is given by

J̃2(µ, x) =
∑

Q

β
(1)
2 (µ, 3Q)2 diam Q

µ(Q)
χQ(x) ∈ [0,∞] (x ∈ Rn),

where Q ranges over all dyadic cubes in Rn of side length at most 1.

I If µ is 1-rectifiable, then J̃2(µ, x) <∞ µ-a.e. [B-Schul 2015]

I If µ is pointwise doubling and J̃2(µ, x) <∞ µ-a.e., then µ is 1-rectifiable.

Theorem (Martikainen-Orponen 2018)

For all ε > 0, there exists a Borel probability measure µ on R2 such that

I J̃2(µ, x) ≤ ε for all x ∈ R2

I lim infr↓0
µ(B(x ,r))

r = 0 µ-a.e.

In particular, J̃2(µ, x) <∞ µ-a.e., but µ is purely 1-unrectifiable.

The enemy is the lack of (pointwise) doubling!

Non-doubling measures can “hide information” at coarse scales!!
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Anisotropic L2 Jones β numbers (B-Schul 2017)
Given dyadic cube Q in Rn ,∆∗(Q) denotes a subdivision of Q∗ = 1600

√
nQ

into dyadic cubes R of same / previous generation as Q s.t. 3R ⊆ Q∗.

For every Radon measure µ on Rn and every dyadic cube Q , we define

β∗2(µ,Q)2 = inf line L maxR∈∆∗(Q) β2(µ, 3R , L)2m3R , where

β2(µ, 3R , L)2m3R =

∫
3R

(
dist(x , L)
diam 3R

)2

min

(
1, µ(3R)

diam 3R

)
dµ(x)
µ(3R)



Identification of 1-rectifiable and purely 1-unrectifiable

parts of a measure in Rn: a complete solution
Anisotropic L2 density-normalized Jones function J∗2 :

J∗2 (µ, x) =
∑

Q

β∗2(µ,Q)
diam Q
µ(Q)

χQ(x) ∈ [0,∞] (x ∈ Rn)

Theorem (B-Schul 2017)

If µ is a Radon measure on Rn , then

µ1
rect = µ

{
x ∈ Rn : lim inf

r↓0

µ(B(x , r))
r > 0 and J∗2 (µ, x) <∞

}

µ1
pu = µ

{
x ∈ Rn : lim inf

r↓0

µ(B(x , r))
r = 0 or J∗2 (µ, x) =∞

}

New Ingredients: anisotropic beta numbers, technical extension of the

Analyst’s Traveling Salesman Theorem for point clouds



Scheme of the Proof in Three Steps

To solve the identification problem for locally finite

measures on (X ,M) carried by / singular to N ...

1. Find a characterization of subsets of sets in N

2. Convert the theorem for sets to a theorem for

(pointwise) doubling measures

3. Introduce anisotropic normalizations to obtain a

theorem for locally finite measures



Open Problem

Identification of m-rectifiable and purely m-unrectifiable parts of a measure:

When 2 ≤ m ≤ n − 1, find properties P(µ, x) and Q(µ, x) defined for all

Radon measures µ on Rn such that

µm
rect = µ

{
x ∈ Rn : lim inf

r↓0

µ(B(x , r))
rm > 0 and P(µ, x) holds

}

µm
pu = µ

{
x ∈ Rn : lim inf

r↓0

µ(B(x , r))
rm = 0 or Q(µ, x) holds

}

I I expect the Harmonic Analysis and Geometric Measure Theory are now

sufficiently well developed to solve this

I Main Difficulty is Metric Geometry: We lack a characterization of

subsets of Lipschitz images f ([0, 1]m) in Rn when 2 ≤ m ≤ n − 1

I Different approaches / recent progress by David-Toro, Azzam-Schul,

Edelen-Naber-Valtorta, and Alberti-Csörnyei, but more work needed
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Part I. Decomposition of Measures

Part II. Lipschitz Image Rectifiability

Part III. Fractional Rectifiability and Other Frontiers



Grades of Rectifiability

Fractional

Rectifiabilty

real-valued dimensions

Hölder curves

Hölder images of

[0, 1]m , m ≥ 2

bi-Hölder images

Integral

Rectifiability

Lipschitz images of

[0, 1]m , m ≥ 2

bi-Lipschitz images

Lipschitz graphs

C1 graphs

Higher-Order

Rectifiability

C2, C3, ...

Ck,α graphs,

k ≥ 1, 0 < α < 1

Sobolev curves

Sobolev graphs

Other Spaces Banach spaces, Carnot groups, manifolds, metric spaces



Lipschitz Image vs Lipschitz Graph vs C1 Rectifiability

Theorem (see Federer 1969)

Let 1 ≤ m ≤ n − 1. If µ on Rn is Radon and µ� Hm , TFAE:

1. µ is carried by Lipschitz images of Rm , i.e. m-rectifiable

2. µ is carried by m-dimensional Lipschitz graphs 1⇒ 2⇒ 3 trivial

3. µ is carried by m-dimensional C1 graphs

Theorem (Martín and Mattila 1988)

For all 0 < s < 1, ∃E ,F ⊂ R2 with 0 < Hs(E),Hs(F ) <∞ such that

I µ = Hs E is carried by Lipschitz images of R1, but

I µ is singular to 1-dimensional Lipschitz graphs;

I ν = Hs F is carried by 1-dimensional Lipschitz graphs, but

I ν is singular to 1-dimensional C1 graphs
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I µ = Hs E is carried by Lipschitz images of R1, but

I µ is singular to 1-dimensional Lipschitz graphs;

I ν = Hs F is carried by 1-dimensional Lipschitz graphs, but

I ν is singular to 1-dimensional C1 graphs



Lipschitz Graph Rectifiability via Cone Points
Let µ be a Radon measure on X = Rn or X = `2 and let 1 ≤ m < dim(X) be

an integer. Then µ = µLG(m) + µ
⊥
LG(m), where

I µLG(m) carried by m-dimensional Lipschitz graphs,

I µ⊥LG(m) singular to m-dimensional Lipschitz graphs.

We may say x is an m-dimensional cone point for µ if there exists an

m-dimensional cone X centered at x such that

lim
r↓0

µ(B(x , r) \ X))

µ(B(x , r)) = 0.

Theorem (Naples (forthcoming))

If µ is a pointwise doubling measure on X and 1 ≤ m < dim(X), then

µLG(m) = µ {x ∈ X : x is an m-dimensional cone point for µ}.

I Extends to pointwise doubling measures a classical theorem for

measures with 0 < lim infr↓0
µ(B(x ,r))

rm ≤ lim supr↓0
µ(B(x ,r))

rm <∞ µ-a.e.

I What about general Radon measures? Anisotropic normalizations?
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Fractional Rectifiability

There are many dimensions between 1 and 2!

Idea (Martín and Mattila 1993): Use Hölder images to study

rectifiability of sets / measures in non-integral dimensions

I For every s ∈ [1, 2], there is a four-corner Cantor set Es with

0 < Hs(Es) <∞
I Hs Es is singular to (1/s)-Hölder curves
I Hs Es is carried by (1/t)-Hölder curves ∀t > s



Sufficient Conditions

Theorem (B-Vellis 2019; cf. Martín-Mattila 2000)

Let µ be a Radon measure on Rn. If m ≤ s and t < s , then

µ

{
x ∈ Rn : 0 < lim inf

r↓0

µ(B(x , r))
r t ≤ lim sup

r↓0

µ(B(x , r))
r t <∞

}
is carried by (m/s)-Hölder images of [0, 1]m.

Theorem (B-Naples-Vellis 2019)

Let µ be a pointwise doubling measure on Rn. If s ≥ 1, then

µ

{
x ∈ Rn :

∫ 1

0
β
(1)
2 (µ,B(x , r))2 r s

µ(B(x , r))
dr
r <∞

}
is carried by (1/s)-Hölder curves.

I New Hölder Traveling Salesman Theorem giving a sufficient condition

for a set to be contained inside a (1/s)-Hölder curve



Higher-Order Rectifiability

Theorem (see Federer 1969)

If µ = Hm E , then E is carried by m-dimensional Ck,1 graphs if and only if E
is carried by m-dimensional Ck+1 graphs

Theorem (Anzelloti-Serapioni 1994)

If k + α < l + β, then there is a E on Rn such thatHm E is carried by Ck,α

graphs and singular to C l+β graphs

I Anzelloti-Serapioni characterized C1,α rectifiability of measures

µ = Hm E .

I Generalized to higher-orders by Santilli 2019



A Jones-type Sufficient Condition

Theorem (Ghinassi arXiv 2017)

Let µ be a Radon measure on Rn and let 1 ≤ m ≤ n − 1. Assume that

0 < lim supr↓0
µ(B(x ,r))

rm <∞ µ-a.e. For all 0 < α < 1,

µ

{
x :

∫ 1

0

β
(m)
2 (µ,B(x , r))2

r2α
µ(B(x , r))

rm
dr
r <∞

}

is carried by C1,α graphs.

I A similar result holds at α = 1
I Higher-orders and necessity are open



Rectifiability in Other Metric Spaces

There are many challenges, partial results, and

open directions

A partial list of work...

Preiss and Tišer 1992

Kircheim 1994

Cheeger 1999

Leger 1999

Ambrosio and Kircheim 2000

Lorent 2003, 2004, 2007

Mattila, Serapioni, Serra Cassano 2010

Bate 2015

Chousionis and Tyson 2015

Bate, Csörnyei, Wilson 2017

Bate-Li 2017

Chousionis, Fässler, and Orponen 2019

David-Schul 2019

B-McCurdy forthcoming

B-Li-Zimmerman forthcoming

.

.

.



Thank you for listening!


