Hölder parameterizations of Bedford-McMullen carpets and connected IFS

Matthew Badger

University of Connecticut Department of Mathematics

Fall AMS Meeting Madison A&P on Metric Spaces and Fractals September 14–15, 2019

Joint work with Vyron Vellis (Tennessee)

This research is partially supported by NSF grant DMS 1650546

What is a curve?

A curve Γ in a metric space X is a continuous image of [0, 1]: There exists a continuous map $f : [0, 1] \rightarrow X$ such that $\Gamma = f([0, 1])$

A continuous map f with $\Gamma = f([0, 1])$ is called a **parameterization** of Γ

- There are curves which do not have a 1-1 parameterization
- ▶ There are curves which have topological dimension > 1
- The modulus of continuity of a parameterization is a proxy for the size/regularity/complexity of a curve

Two characterizations (early 20th century)

Hahn-Mazurkiewicz Theorem A set Γ in a metric space is a **curve** if and only if Γ is compact, connected, locally connected.

Ważewski Theorem A set Γ in a metric space is a **rectifiable curve** iff Γ is a **Lipschitz curve** iff Γ is compact, connected, and $\mathcal{H}^1(\Gamma) < \infty$

- In ℝⁿ: Lipschitz curves (also called rectifiable curves) admit unique tangent lines at H¹-a.e. point by Rademacher's theorem
- Note compact, connected, and H¹(Γ) < ∞ implies Γ locally connected! This can fail for sets with σ-finite length (e.g. a topologist's comb)

f is Lipschitz if $\exists L < \infty$ such that $|f(x) - f(y)| \le L|x - y|$ for all *x*, *y* \mathcal{H}^s denotes the s-dimensional Hausdorff measure

Two characterizations (early 20th century)

Hahn-Mazurkiewicz Theorem A set Γ in a metric space is a **curve** if and only if Γ is compact, connected, locally connected.

Ważewski Theorem A set Γ in a metric space is a **rectifiable curve** iff Γ is a **Lipschitz curve** iff Γ is compact, connected, and $\mathcal{H}^1(\Gamma) < \infty$

- In ℝⁿ: Lipschitz curves (also called *rectifiable curves*) admit unique tangent lines at H¹-a.e. point by Rademacher's theorem
- Note compact, connected, and H¹(Γ) < ∞ implies Γ locally connected! This can fail for sets with σ-finite length (e.g. a topologist's comb)

f is Lipschitz if $\exists L < \infty$ such that $|f(x) - f(y)| \le L|x - y|$ for all *x*, *y* \mathcal{H}^s denotes the s-dimensional Hausdorff measure

What about higher-dimensional curves?

▲ロト▲置ト▲臣ト▲臣ト 臣 のへで

What about higher-dimensional curves?

Open Problem (#1)

For each real $s \in (1, \infty)$, characterize curves $\Gamma \subset \mathbb{R}^n$ with $\mathcal{H}^s(\Gamma) < \infty$

Open Problem (#2)

For each real $s \in (1, \infty)$, characterize (1/s)-Hölder curves, i.e. sets that can be presented as h([0, 1]) for some map $h : [0, 1] \to \mathbb{R}^n$ with

$$|h(x) - h(y)| \le H|x - y|^{1/s}$$

- Every (1/s)-Hölder curve has $\mathcal{H}^{s}(\Gamma) < \infty$ (exercise)
- Example (B-Naples-Vellis, Adv. Math. 2019): For every s ∈ (1, n), ∃ a curve Γ ⊂ ℝⁿ that is s-Ahlfors regular, H^s(Γ ∩ B(x, r)) ≈ r^s, but Γ is not a (1/s)-Hölder curve.

Why?

- There are many dimensions between 1 and 2
- Lipschitz surfaces are Hölder curves: to study the former, first study the latter
- Martín and Mattila (1993,2000) developed a portion of Besicovitch's fine theory of 1-sets in R² works for s-sets in Rⁿ using Hölder curves as a replacement for rectifiable curves
- There exist metric spaces without rectifiable curves that are Hölder path connected
- Modulus of path families makes sense for Hölder curves
- Random settings: Brownian motion, rough paths theory
- Possible tool for singular integrals in codimension > 1

Sufficient conditions for Hölder curves

Theorem (Remes 1998)

Let $S \subset \mathbb{R}^n$ be a **self-similar set** satisfying the **open set condition**. If S is connected, then S is a (1/s)-Hölder curve, $s = \dim_H S$.

Theorem (B-Naples-Vellis, Adv. Math. 2019)

There exists a universal constant $\beta_0 \in (0, 1)$ such that if $E \subset \mathbb{R}^n$ is β_0 -flat, connected, compact, $\mathcal{H}^s(E) < \infty$, and $\mathcal{H}^s(E \cap B(x, r)) \gtrsim r^s$, then E is a (1/s)-Hölder curve.

Sufficient conditions for Hölder curves

Theorem (Remes 1998)

Let $S \subset \mathbb{R}^n$ be a **self-similar set** satisfying the **open set condition**. If S is connected, then S is a (1/s)-Hölder curve, $s = \dim_H S$.

A set $E \subset \mathbb{R}^n$ is β -flat if for every $x \in E$ and r > 0, there exists a line ℓ such that dist $(x, \ell) \leq \beta r$ for all $x \in E \cap B(x, r)$.

Theorem (B-Naples-Vellis, Adv. Math. 2019)

There exists a universal constant $\beta_0 \in (0, 1)$ such that if $E \subset \mathbb{R}^n$ is β_0 -flat, connected, compact, $\mathcal{H}^s(E) < \infty$, and $\mathcal{H}^s(E \cap B(x, r)) \gtrsim r^s$, then E is a (1/s)-Hölder curve.

Iterated Function Systems (Quick Review)

Let X be a complete, separable metric space. A **contraction** in X is a map $\phi : X \to X$ with Lipschitz constant $Lip(\phi)$ strictly less than 1

$$Lip(\phi) = \inf\{L \ge 0 : dist(\phi(x), \phi(y)) \le L dist(x, y)\}$$

Hutchinson's Theorem For every finite family \mathcal{F} of contractions in X, there exists a unique compact set $K \subset X$ such that $K = \bigcup_{\phi \in \mathcal{F}} \phi(K)$.

F is called an iterated function system

•
$$K = K_{\mathcal{F}}$$
 is called the **attractor** of \mathcal{F}

• $\mathcal{H}^{s}(\mathcal{K}) < \infty$ where *s* is the similarity dimension of \mathcal{F} , i.e.

$$s\geq 0$$
 is the unique number such that $\sum_{\phi\in \mathcal{F}} {
m Lip}(\phi)^s=1$

► If each $\phi \in \mathcal{F}$ is a similarity, i.e. $dist(\phi(x), \phi(y)) = \lambda_{\phi} dist(x, y)$, then we call *K* a **self-similar set**

Iterated Function Systems sprott.physics.wisc.edu

Iterated function system - Wikipedia en.wikipedia.org

youtube.com

Iterated Function Systems - Chaos ...

stsci.edu

Iterated function system - Wikipedia en wikipedia.org

Iterated Function Systems

Iterated Function System ... mathworld wolfram com

Fractal Foundation Online Course ... fractalfoundation.org

Iterated Function Systems - Chaos ... stsci.edu

Iterated Function Systems (IFS) and ... slideplayer.com

"Iterated Function Systems", Google Image Search, 3pm (Atlanta) on 9/13/2019

Iterated function system - YouTube

Nonlinear Iterated Function Systems cg.tuwien.ac.at

plot of random iterated function ... mathematica.stackexchange.com

IFS (Iterated Function System ... codewars.com

Iterated Function Systems sprott.physics.wisc.edu

Iterated function system - Wikipedia

en.wikipedia.org

IFS with Connected Attractors

Theorem (Hata 1985)

Let \mathcal{F} be an IFS over a complete metric space. If $K_{\mathcal{F}}$ is connected, then $K_{\mathcal{F}}$ is **path connected** and **locally connected**. Thus, $K_{\mathcal{F}}$ is a **curve**.

Let \mathcal{F} be an IFS over a complete metric space; let *s* be the similarity dimension of \mathcal{F} .

Theorem (B-Vellis, arXiv October 2019 (I'm optimistic)) If $K_{\mathcal{F}}$ is connected, then $K_{\mathcal{F}}$ is (1/s)-**Hölder path connected**.

Theorem (B-Vellis, arXiv October 2019)

If $K_{\mathcal{F}}$ is connected, then $K_{\mathcal{F}}$ is a $(1/\alpha)$ -Hölder curve for every $\alpha > s$.

Second theorem is a corollary of the first, viewing K_F as leaves of a tree with (1/s)-Hölder edges (cf. B-Vellis JGA 2019)

IFS with Connected Attractors

Theorem (Hata 1985)

Let \mathcal{F} be an IFS over a complete metric space. If $K_{\mathcal{F}}$ is connected, then $K_{\mathcal{F}}$ is **path connected** and **locally connected**. Thus, $K_{\mathcal{F}}$ is a **curve**.

Let \mathcal{F} be an IFS over a complete metric space; let *s* be the similarity dimension of \mathcal{F} .

Theorem (B-Vellis, arXiv October 2019 (I'm optimistic)) If $K_{\mathcal{F}}$ is connected, then $K_{\mathcal{F}}$ is (1/s)-Hölder path connected.

Theorem (B-Vellis, arXiv October 2019)

If $K_{\mathcal{F}}$ is connected, then $K_{\mathcal{F}}$ is a $(1/\alpha)$ -Hölder curve for every $\alpha > s$.

Second theorem is a corollary of the first, viewing K_F as leaves of a tree with (1/s)-Hölder edges (cf. B-Vellis JGA 2019)

Let \mathcal{F} be an IFS over a complete metric space X that is **generated by similarities**; let s be the similarity dimension of \mathcal{F} .

Theorem

If $K_{\mathcal{F}}$ is connected **and** $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0$, then $K_{\mathcal{F}}$ is a (1/s)-Hölder curve.

▶ Remes (1998) proved this when $X = \mathbb{R}^n$, where $\mathcal{H}^s(K_F) > 0 \Leftrightarrow SOSC \Leftrightarrow OSC \Rightarrow \dim_H K_F = s$ (Schief 1994)

► In complete metric spaces: $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0 \Rightarrow SOSC \Rightarrow \dim_{H} K_{\mathcal{F}} = s$ (Schief 1996)

- Self-similar implies $K_{\mathcal{F}}$ with $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0$ are *s*-Ahlfors regular
- \blacktriangleright To prove thm, embed ${\cal K}_{\cal F}$ in ℓ_∞ and repeat Remes' original proof

Let \mathcal{F} be an IFS over a complete metric space X that is **generated by similarities**; let s be the similarity dimension of \mathcal{F} .

Theorem

If $K_{\mathcal{F}}$ is connected **and** $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0$, then $K_{\mathcal{F}}$ is a (1/s)-Hölder curve.

- ▶ Remes (1998) proved this when $X = \mathbb{R}^n$, where $\mathcal{H}^s(K_F) > 0 \Leftrightarrow SOSC \Leftrightarrow OSC \Rightarrow \dim_H K_F = s$ (Schief 1994)
- ► In complete metric spaces: $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0 \Rightarrow SOSC \Rightarrow \dim_{H} K_{\mathcal{F}} = s$ (Schief 1996)
- Self-similar implies $K_{\mathcal{F}}$ with $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0$ are *s*-Ahlfors regular
- \blacktriangleright To prove thm, embed ${\cal K}_{\cal F}$ in ℓ_∞ and repeat Remes' original proof

Let \mathcal{F} be an IFS over a complete metric space X that is **generated by similarities**; let s be the similarity dimension of \mathcal{F} .

Theorem

If $K_{\mathcal{F}}$ is connected **and** $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0$, then $K_{\mathcal{F}}$ is a (1/s)-Hölder curve.

▶ Remes (1998) proved this when $X = \mathbb{R}^n$, where $\mathcal{H}^s(\mathcal{K}_F) > 0 \Leftrightarrow SOSC \Leftrightarrow OSC \Rightarrow \dim_H \mathcal{K}_F = s$ (Schief 1994)

► In complete metric spaces: $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0 \Rightarrow SOSC \Rightarrow \dim_{H} K_{\mathcal{F}} = s$ (Schief 1996)

- Self-similar implies $K_{\mathcal{F}}$ with $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0$ are *s*-Ahlfors regular
- \blacktriangleright To prove thm, embed ${\cal K}_{\cal F}$ in ℓ_∞ and repeat Remes' original proof

Let \mathcal{F} be an IFS over a complete metric space X that is **generated by similarities**; let s be the similarity dimension of \mathcal{F} .

Theorem

If $K_{\mathcal{F}}$ is connected **and** $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0$, then $K_{\mathcal{F}}$ is a (1/s)-Hölder curve.

- ▶ Remes (1998) proved this when $X = \mathbb{R}^n$, where $\mathcal{H}^s(K_F) > 0 \Leftrightarrow SOSC \Leftrightarrow OSC \Rightarrow \dim_H K_F = s$ (Schief 1994)
- ► In complete metric spaces: $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0 \Rightarrow SOSC \Rightarrow \dim_{H} K_{\mathcal{F}} = s$ (Schief 1996)
- Self-similar implies $K_{\mathcal{F}}$ with $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0$ are *s*-Ahlfors regular
- $\blacktriangleright\,$ To prove thm, embed ${\cal K}_{\cal F}$ in ℓ_∞ and repeat Remes' original proof

Let \mathcal{F} be an IFS over a complete metric space X that is **generated by similarities**; let s be the similarity dimension of \mathcal{F} .

Theorem

If $K_{\mathcal{F}}$ is connected **and** $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0$, then $K_{\mathcal{F}}$ is a (1/s)-Hölder curve.

- ▶ Remes (1998) proved this when $X = \mathbb{R}^n$, where $\mathcal{H}^s(K_F) > 0 \Leftrightarrow SOSC \Leftrightarrow OSC \Rightarrow \dim_H K_F = s$ (Schief 1994)
- ► In complete metric spaces: $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0 \Rightarrow SOSC \Rightarrow \dim_{H} K_{\mathcal{F}} = s$ (Schief 1996)
- Self-similar implies $K_{\mathcal{F}}$ with $\mathcal{H}^{s}(K_{\mathcal{F}}) > 0$ are *s*-Ahlfors regular
- $\blacktriangleright\,$ To prove thm, embed ${\cal K}_{\cal F}$ in ℓ_∞ and repeat Remes' original proof

Let Σ be a Bedford-McMullen carpet (see diagram).

► Similarity dimension is
s = log_n(t₁ + ··· + t_n)

McMullen (1984)

- dim_H $\Sigma = \log_n \left(\sum_{j=1}^n t_j^{\log_m(n)} \right)$
- dim_M Σ = log_n(r) + log_m $\left(\sum_{j=1}^{n} t_j/r\right)$

Mackay (2011)

• If m < n (self-affine), then $\dim_A \Sigma = \log_n(r) + \log_m(t)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

(日)

Theorem (B-Vellis arXiv October 2019)

Let $\Sigma \subset [0, 1]^2$ be a connected Bedford-McMullen carpet.

- If Σ is a line, Σ is (trivially) a 1-Hölder curve
- If Σ is the square, Σ is (well-known to be) a (1/2)-Hölder curve
- Otherwise, Σ is a (1/s)-Hölder curve, s similarity dimension

The exponents are sharp (they cannot be increased).

- ► Idea: Lift Σ to a self-similar set K in $([0, 1]^2, d)$ equipped with a partially snowflaked metric d via a Lipschitz map $F : K \to \Sigma$. Use Remes' theorem upstairs to parameterize K. Then descend.
- ▶ If X doubling: $\mathcal{H}^{s}(K) > 0 \Leftrightarrow SOSC$ (Stella 1992 / Schief 1996)
- When does an IFS admit a Lipschitz lift to self-similar set in doubling space (or a β-space)?

Theorem (B-Vellis arXiv October 2019)

Let $\Sigma \subset [0, 1]^2$ be a connected Bedford-McMullen carpet.

- If Σ is a line, Σ is (trivially) a 1-Hölder curve
- If Σ is the square, Σ is (well-known to be) a (1/2)-Hölder curve
- Otherwise, Σ is a (1/s)-Hölder curve, s similarity dimension

The exponents are sharp (they cannot be increased).

- ► Idea: Lift Σ to a self-similar set K in $([0, 1]^2, d)$ equipped with a partially snowflaked metric d via a Lipschitz map $F : K \to \Sigma$. Use Remes' theorem upstairs to parameterize K. Then descend.
- ▶ If X doubling: $\mathcal{H}^{s}(K) > 0 \Leftrightarrow SOSC$ (Stella 1992 / Schief 1996)
- When does an IFS admit a Lipschitz lift to self-similar set in doubling space (or a β-space)?

Theorem (B-Vellis arXiv October 2019)

Let $\Sigma \subset [0,1]^2$ be a connected Bedford-McMullen carpet.

- If Σ is a line, Σ is (trivially) a 1-Hölder curve
- If Σ is the square, Σ is (well-known to be) a (1/2)-Hölder curve
- Otherwise, Σ is a (1/s)-Hölder curve, s similarity dimension

The exponents are sharp (they cannot be increased).

Idea: Lift Σ to a self-similar set K in ([0, 1]², d) equipped with a partially snowflaked metric d via a Lipschitz map F : K → Σ. Use Remes' theorem upstairs to parameterize K. Then descend.

- ▶ If X doubling: $\mathcal{H}^{s}(K) > 0 \Leftrightarrow SOSC$ (Stella 1992 / Schief 1996)
- When does an IFS admit a Lipschitz lift to self-similar set in doubling space (or a β-space)?

Theorem (B-Vellis arXiv October 2019)

Let $\Sigma \subset [0, 1]^2$ be a connected Bedford-McMullen carpet.

- If Σ is a line, Σ is (trivially) a 1-Hölder curve
- If Σ is the square, Σ is (well-known to be) a (1/2)-Hölder curve
- Otherwise, Σ is a (1/s)-Hölder curve, s similarity dimension

The exponents are sharp (they cannot be increased).

- ► Idea: Lift Σ to a self-similar set K in $([0, 1]^2, d)$ equipped with a partially snowflaked metric d via a Lipschitz map $F : K \to \Sigma$. Use Remes' theorem upstairs to parameterize K. Then descend.
- ▶ If X doubling: $\mathcal{H}^{s}(K) > 0 \Leftrightarrow SOSC$ (Stella 1992 / Schief 1996)
- When does an IFS admit a Lipschitz lift to self-similar set in doubling space (or a β-space)?

Self-similar vs self-affine carpets and a conjecture

 Σ be a connected self-similar / self-affine Bedford-McMullen carpet, D = Hausdorff dimension, s = similarity dimension (sometimes s > 2)!

 $\begin{array}{l} \textbf{Self-Similar}\\ D=s, s\in [1,2]\\ 0<\mathcal{H}^s(\Sigma)<\infty \end{array}$

$egin{aligned} & extsf{Self-Affine} \ D < s, s \in [1,\infty) \ & \mathcal{H}^s(\Sigma) = 0 \end{aligned}$

Conjecture (B 2018): If $\Gamma \subset \mathbb{R}^n$ is a (1/s)-Hölder curve with $\mathcal{H}^s(\Gamma) > 0$, then at \mathcal{H}^s -a.e. $x \in \Gamma$, all geometric blow-ups (tangent sets) of Γ at x are "self-similar" (1/s)-Hölder images of \mathbb{R}

Self-similar vs self-affine carpets and a conjecture

 Σ be a connected self-similar / self-affine Bedford-McMullen carpet, D = Hausdorff dimension, s = similarity dimension (sometimes s > 2)!

> Self-Similar $D = s, s \in [1, 2]$ $0 < \mathcal{H}^{s}(\Sigma) < \infty$

$\begin{array}{l} \textbf{Self-Affine}\\ D < s, s \in [1,\infty)\\ \mathcal{H}^s(\Sigma) = 0 \end{array}$

Conjecture (B 2018): If $\Gamma \subset \mathbb{R}^n$ is a (1/s)-Hölder curve with $\mathcal{H}^s(\Gamma) > 0$, then at \mathcal{H}^s -a.e. $x \in \Gamma$, all geometric blow-ups (tangent sets) of Γ at x are "self-similar" (1/s)-Hölder images of \mathbb{R}

Related and Future Work

A related, but different problem: What sets in a metric space are contained in a (1/s)-Hölder curve?

- ► Hölder Traveling Salesman Theorem in Rⁿ (sufficient conditions): B-Naples-Vellis Adv. Math. 2019
- New result in quasiconvex metric spaces: Balogh and Züst arXiv 2019 (in summer)

Future work:

- We need to find good necessary conditions for a set to be (contained in) a (1/s)-Hölder curve
- Applications to Geometry of Measures (cf. Lisa Naples' talk), Metric Geometry. Random geometry? Singular integrals?

Thank you for listening!

