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What is a curve?

A curve I in a metric space X is a continuous image of [0, 1]:
There exists a continuous map f : [0, 1] — X such that ' = £([0, 1])

A continuous map f with I' = ([0, 1]) is called a parameterization of I
» There are curves which do not have a 1-1 parameterization
» There are curves which have topological dimension > 1

» The modulus of continuity of a parameterization is a proxy for
the size/regularity/complexity of a curve



Two characterizations (early 20th century)

Hahn-Mazurkiewicz Theorem A set I' in a metric space is a curve if
and only if [ is compact, connected, locally connected.
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Hahn-Mazurkiewicz Theorem A set I' in a metric space is a curve if
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Wazewski Theorem A set I' in a metric space is a rectifiable curve iff
I is a Lipschitz curve iff I is compact, connected, and H!(I") < oo

> InR": Lipschitz curves (also called rectifiable curves) admit unique
tangent lines at #'-a.e. point by Rademacher’s theorem

> Note compact, connected, and #'(I') < oo implies I locally connected!
This can fail for sets with o-finite length (e.g. a topologist’'s comb)

f is Lipschitz if 3L < oo such that |f(x) — f(y)| < L|x — y| forall x, y
H?® denotes the s-dimensional Hausdorff measure



What about higher-dimensional curves?
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What about higher-dimensional curves?

Open Problem (#1)

For each real s € (1, 00), characterize curves I C R" with H*(I') < o

Open Problem (#2)

For each real s € (1, c0), characterize (1/s)-Holder curves, i.e. sets
that can be presented as h([0, 1]) for some map h : [0, 1] — R" with

|h(x) = h(y)| < Hx = y['/*

> Every (1/s)-Holder curve has H5(I') < oo (exercise)
> Example (B-Naples-Vellis, Adv. Math. 2019): For every s € (1, n),

Jacurvel C R" that is s-Ahlfors regular, %°(I' N B(x, r)) =~ r°,
but I is not a (1/s)-Hdlder curve.



Why?

There are many dimensions between 1 and 2

Lipschitz surfaces are Holder curves:
to study the former, first study the latter

Martin and Mattila (1993,2000) developed a portion of
Besicovitch'’s fine theory of 1-sets in R? works for s-sets in R"
using Holder curves as a replacement for rectifiable curves

There exist metric spaces without rectifiable curves that are
Holder path connected

Modulus of path families makes sense for Holder curves
Random settings: Brownian motion, rough paths theory

Possible tool for singular integrals in codimension > 1



Sufficient conditions for Holder curves

Theorem (Remes 1998)

Let S C R" be a self-similar set satisfying the open set condition.
If S is connected, then S is a (1/s)-Hélder curve, s = dimy S.
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Theorem (Remes 1998)

Let S C R" be a self-similar set satisfying the open set condition.
If S is connected, then S is a (1/s)-Hélder curve, s = dimy S.

A set E C R" is g-flat if for every x € E and r > 0, there exists a line £
such that dist(x, £) < Br forall x € EnN B(x, r).

Theorem (B-Naples-Vellis, Adv. Math. 2019)

There exists a universal constant 3, € (0, 1) such thatif E C R"is
Bo-flat, connected, compact, H*(E) < oo, and H*(E N B(x, r)) 2 r%,
then E is a (1/s)-Hélder curve.



lterated Function Systems (Quick Review)

Let X be a complete, separable metric space. A contraction in X is a
map ¢ : X — X with Lipschitz constant Lip(¢) strictly less than 1

Lip(¢) = inf{L > 0 : dist(¢(x), ¢(y)) < Ldist(x, y)}
Hutchinson's Theorem For every finite family F of contractions in X,

there exists a unique compact set K C X such that K = {J . ¢(K).
» Fis called an iterated function system
» K = Ky is called the attractor of F
> 7°(K) < oo where s is the similarity dimension of 7, i.e.

s > 0is the unique number such that > Lip(¢)° =1
oeF

> If each ¢ € F is a similarity, i.e. dist(¢(x), d(y)) = Mg dist(x, y),
then we call K a self-similar set
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IFS with Connected Attractors

Theorem (Hata 1985)

Let F be an IFS over a complete metric space. If Kr is connected, then
K is path connected and locally connected. Thus, K is a curve.



IFS with Connected Attractors

Theorem (Hata 1985)

Let F be an IFS over a complete metric space. If Kr is connected, then
Kr is path connected and locally connected. Thus, Kr is a curve.

Let F be an IFS over a complete metric space; let s be the similarity
dimension of F.
Theorem (B-Vellis, arXiv October 2019 (I'm optimistic))

If Kz is connected, then K is (1/s)-Holder path connected.

Theorem (B-Vellis, arXiv October 2019)

If Kr is connected, then K is a (1/c)-Holder curve for every o > s.

» Second theorem is a corollary of the first, viewing Kr as leaves
of a tree with (1/s)-Holder edges (cf. B-Vellis JGA 2019)



Remes’ parameterization of self-similar sets

Let F be an IFS over a complete metric space X that is
generated by similarities; let s be the similarity dimension of F.

Theorem
If Kr is connected and H°(Kx) > 0, then K is a (1/s)-Holder curve.
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Remes’ parameterization of self-similar sets

Let F be an IFS over a complete metric space X that is
generated by similarities; let s be the similarity dimension of F.

Theorem
If Kr is connected and H°(Kx) > 0, then K is a (1/s)-Holder curve.

> Remes (1998) proved this when X = R", where
75(Kz) > 0 & SOSC < 0SC = dimy, Kz = s (Schief 1994)

» In complete metric spaces:
H*(KF) > 0= SOSC = dimy Kz = s (Schief 1996)

» Self-similar implies Kz with 7{°(Kx) > 0 are s-Ahlfors regular
» To prove thm, embed K in £, and repeat Remes’ original proof

Open Set Condition: 3U open s.t. ¢(U) C U, (U) N (U) = 0 for
distinct ¢, ¥ € F. Strong Open Set Condition: also U N K # 0.



Case Study: Bedford-McMullen Carpets

m rows

n columns

t;=5 t,=3 t;=4
t = max(ty,...,t,)
r = # of nonempty columns

Let X be a Bedford-McMullen carpet
(see diagram).

» Similarity dimension is
s = log,(t1+ -+ tn)
McMullen (1984)
> dimy £ = log, (ijle tj!ogm(n>)
> dimy X =
log, (1) + log,, (7., ti/r)
Mackay (2011)

> If m < n(self-affine), then
dima X = log,(r) + log,,(t)



Case Study: Bedford-McMullen Carpets
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Case Study: Bedford-McMullen Carpets

Theorem (B-Vellis arXiv October 2019)

Let ¥ C [0, 1]* be a connected Bedford-McMullen carpet.
> If ¥ is aline, X is (trivially) a 1-Hdlder curve
> If ¥ is the square, ¥ is (well-known to be) a (1/2)-Hélder curve
» Otherwise, ¥ is a (1/s)-Hdlder curve, s similarity dimension

The exponents are sharp (they cannot be increased).
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Case Study: Bedford-McMullen Carpets

Theorem (B-Vellis arXiv October 2019)
Let ¥ C [0, 1]* be a connected Bedford-McMullen carpet.
> If ¥ is aline, X is (trivially) a 1-Hdlder curve
> If ¥ is the square, ¥ is (well-known to be) a (1/2)-Hélder curve
» Otherwise, ¥ is a (1/s)-Hdlder curve, s similarity dimension
The exponents are sharp (they cannot be increased).
> Idea: Lift ¥ to a self-similar set K in ([0, 1]2, d) equipped with a

partially snowflaked metric d via a Lipschitzmap F : K — . Use
Remes’ theorem upstairs to parameterize K. Then descend.

> If X doubling: #5(K) > 0 < SOSC (Stella 1992 / Schief 1996)

» When does an IFS admit a Lipschitz lift to self-similar set in
doubling space (or a 3-space)?



Self-similar vs self-affine carpets and a conjecture

3 be a connected self-similar / self-affine Bedford-McMullen carpet,
D = Hausdorff dimension, s = similarity dimension (sometimes s > 2)!

Self-Similar Self-Affine
D=s,5€]1,2] D <s,s€(l,00)
0 <H(X) < o0 H5(X)=0




Self-similar vs self-affine carpets and a conjecture

3 be a connected self-similar / self-affine Bedford-McMullen carpet,
D = Hausdorff dimension, s = similarity dimension (sometimes s > 2)!

Self-Similar Self-Affine
D=s,5€]1,2] D <s,s€(l,00)
0 <H(X) < o0 H5(X)=0

Conjecture (B 2018): If I C R" is a (1/s)-Hdlder curve with #*(T") > 0,
then at #%-a.e. x € T, all geometric blow-ups (tangent sets) of I at x
are “self-similar” (1/s)-Holder images of R



Related and Future Work

A related, but different problem: What sets in a metric space are
contained in a (1/s)-Holder curve?

» Holder Traveling Salesman Theorem in R” (sufficient conditions):
B-Naples-Vellis Adv. Math. 2019

» New result in quasiconvex metric spaces: Balogh and Ziist arXiv
2019 (in summer)

Future work:

» We need to find good necessary conditions for a set to be
(contained in) a (1/s)-Holder curve

> Applications to Geometry of Measures (cf. Lisa Naples’ talk),
Metric Geometry. Random geometry? Singular integrals?



Thank you for listening!




