Open Problems about Curves, Sets, and Measures

Matthew Badger

University of Connecticut Department of Mathematics

8th Ohio River Analysis Meeting University of Kentucky in Lexington March 24–25, 2018

Research Partially Supported by NSF DMS 1500382, 1650546

K ロ ⊁ → 伊 ⊁ → ミ ▶

つへへ

Preview: Structure of Measures

Three Measures. Let $a_i > 0$ be weights with $\sum_{i=1}^{\infty} a_i = 1$. Let $\{x_i : i \geq 1\}$, $\{\ell_i : i \geq 1\}$, $\{S_i : i \geq 1\}$ be a dense set of points, unit line segments, unit squares in the plane.

- \blacktriangleright μ_0 , μ_1 , μ_2 are probability measures on \mathbb{R}^2
- \blacktriangleright The support of μ is the smallest closed set carrying μ ;

 $\mathsf{spt}\,\mu_0=\mathsf{spt}\,\mu_1=\mathsf{spt}\,\mu_2=\mathbb{R}^2$

- \blacktriangleright μ_i is carried by *i*-dimensional sets (points, lines, squares)
- **FRE** The support of a measure is a rough approximation that hides **the underlying structure of a measureKORKAR KERKER E VOOR**

Part I. Curves

Part II. Subsets of Curves

Part III. Rectifiability of Measures

K ロ K (日) K 경 K (日) K (日) X (日) K (日) K (日) K (日) K (日) K (日) X (日) X (日)

What is a curve?

A curve Γ ⊂ ℝⁿ is a **continuous image** of [0, 1]:

There exists a continuous map $f : [0, 1] \to \mathbb{R}^n$ such that $\Gamma = f([0, 1])$

A continuous map f with $\Gamma = f([0, 1])$ is called a **parameterization** of Γ

- \blacktriangleright There are curves which do not have a 1-1 parameterization
- \blacktriangleright There are curves which have topological dimension >1

A curve Γ is **rectifiable** if ∃ f with $\sup_{x_0 \leq \cdots \leq x_k} \sum_{j=1}^k |f(x_j) - f(x_{j-1})| < \infty$

When I think of curves...

View from the UConn Math Department

KOMKON 4EM

 2990

When is a set a curve?

Theorem (Hahn-Mazurkiewicz)

A nonempty set $\Gamma \subset \mathbb{R}^n$ is a curve if and only if

Γ *is compact, connected, and locally connected*

The proof of the forward direction is an exercise

The proof of the reverse direction is content of the theorem: must **construct a parameterization** from only topological information

KOD CONTRACT A START AND KOD

Examples of sets which are not curves

イロトメタトメミトメミト (ミ) の女々

When is a set a rectifiable curve?

Theorem (Ważewski)

 $Let $Γ ⊂ ℝⁿ be nonempty.$ TFAE:$

- 1. Γ *is a rectifiable curve (finite total variation)*
- $\overline{\mathsf{2.}}~$ Γ is compact, connected, and $\mathcal{H}^1(\Gamma)<\infty$
- 3. Γ *is a Lipschitz curve, i.e. there exists a Lipschitz continuous map* $f: [0, 1] \to \mathbb{R}^n$ such that $\Gamma = f([0, 1])$

 \mathcal{H}^1 denotes the 1-dimensional Hausdorff measure f is Lipschitz if $\exists C < \infty$ such that $|f(x) - f(y)| \le C|x - y|$ for all x, y

The proof of $(1) \Rightarrow (2)$ is an exercise

The proof of $(3) \Rightarrow (1)$ is trivial

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Goal: build a parameterization for the set Γ

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k , $k\geq 1$

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k , $k\geq 1$

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k , $k\geq 1$

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k , $k\geq 1$

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k , $k\geq 1$

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k , $k\geq 1$

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k , $k\geq 1$

KORKARK (EXIST) DRAM

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k , $k\geq 1$

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k , $k\geq 1$

イロト 不優 トイモト イモト 一重

 2990

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k , $k\geq 1$

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 2: draw piecewise linear spanning tree Γ_k through V_k

イロトメ 御 トメ 君 トメ 君 トッ 君

 2990

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 2: draw piecewise linear spanning tree Γ_k through V_k

KORKARK (EXIST) DRAM

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 2: draw piecewise linear spanning tree Γ_k through V_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 2: draw piecewise linear spanning tree Γ_k through V_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 2: draw piecewise linear spanning tree Γ_k through V_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

KORKARK (EXIST) DRAM

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k
Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\Gamma)<\infty\implies\Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Γ $\subset \mathbb{R}^n$ is compact, connected, $\mathcal{H}^1(\Gamma)<\infty \implies$ Γ is Lipschitz curve

Step 4: tour defines piecewise linear map $f_k : [0, 1] \rightarrow F_k$

KOD KAR KED KED E YOUR

Γ $\subset \mathbb{R}^n$ is compact, connected, $\mathcal{H}^1(\Gamma)<\infty \implies$ Γ is Lipschitz curve

Step 5: length of *i*-th edge $\lesssim \mathcal{H}^1(E \cap B(v_i, \frac{1}{4} \cdot 2^{-k}))$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Γ \subset \mathbb{R}^n is compact, connected, $\mathcal{H}^1(\mathsf{\Gamma}) < \infty \implies \mathsf{\Gamma}$ is Lipschitz curve

Conclusion: Lip $f_k \leq 32{\mathcal H}^1(\Gamma)$. Hence $f_{k_j} \rightrightarrows f : [0,1] \twoheadrightarrow \Gamma$ Lipschitz

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Theorem (Ważewski)

 $Let **Γ** ⊂ **ℝ**^{*n*} be nonempty. *TFAE*:$

- 1. Γ *is a rectifiable curve (finite total variation)*
- 2. Γ *is compact, connected, and* H¹ (Γ) < ∞
- 3. Γ *is a Lipschitz curve, i.e. there exists a Lipschitz continuous map* $f: [0, 1] \rightarrow \mathbb{R}^n$ such that $\Gamma = f([0, 1])$

Theorem (Ważewski)

 $Let **Γ** ⊂ **ℝ**^{*n*} be nonempty. *TFAE*:$

- 1. Γ *is a rectifiable curve (finite total variation)*
- 2. Γ *is compact, connected, and* H¹ (Γ) < ∞
- 3. Γ *is a Lipschitz curve, i.e. there exists a Lipschitz continuous map* $f: [0, 1] \rightarrow \mathbb{R}^n$ such that $\Gamma = f([0, 1])$

Theorem (Ważewski)

- $Let **Γ** ⊂ **ℝ**^{*n*} be nonempty. *TFAE*:$
	- 1. Γ *is a rectifiable curve (finite total variation)*
	- 2. $\,$ Γ is compact, connected, and $\mathcal{H}^1(\Gamma) < \infty$
	- 3. Γ *is a Lipschitz curve, i.e. there exists a Lipschitz continuous map* $f: [0, 1] \rightarrow \mathbb{R}^n$ such that $\Gamma = f([0, 1])$

Theorem (Ważewski)

 $Let **Γ** ⊂ **ℝ**^{*n*} be nonempty. *TFAE*:$

- 1. Γ *is a rectifiable curve (finite total variation)*
- 2. Γ *is compact, connected, and* H¹ (Γ) < ∞
- 3. Γ *is a Lipschitz curve, i.e. there exists a Lipschitz continuous map* $f: [0, 1] \rightarrow \mathbb{R}^n$ such that $\Gamma = f([0, 1])$

Snowflakes and Squares

K ロ ▶ K 御 ▶ K 唐

 $\rightarrow \equiv$

つへへ

∍

Snowflakes and Squares

Open Problem (#2)

 $\mathsf{For\; each\; real}\; s\in (1,\infty)$, characterize curves $\mathsf{\Gamma}\subset\mathbb{R}^n$ with $\mathcal{H}^s(\mathsf{\Gamma})<\infty$

Open Problem (#3)

For each real s ∈ (1, ∞)*, characterize* (1/s)*-Hölder curves, i.e. sets* $\mathit{that}~\mathit{can}~\mathit{be}~\mathit{presented}~\mathit{as}~\mathit{h}([0,1])~\mathit{for}~\mathit{some}~\mathit{map}~\mathit{h}:\left[0,1\right]\rightarrow\mathbb{R}^n~\mathit{with}~\mathit{h}$

$$
|h(x)-h(y)|\leq C|x-y|^{1/s}
$$

Open Problem (#4)

For each integer m ≥ 2*, characterize Lipschitz* m*-cubes, i.e. sets that can be presented as* $f([0, 1]^m)$ for some Lipschitz map $f : [0, 1]^m \to \mathbb{R}^n$.

- **Every** (1/s)-Hölder curve has $H^s(\Gamma) < \infty$
- There are curves Γ with $H^s(\Gamma) < \infty$ that are not $(1/s)$ -Hölder.

Theorem (B, Naples, Vellis 2018)

 $\mathsf{For\ all\ }s>1,$ there exists a curve $\mathsf{\Gamma}\subset\mathbb{R}^n$ such that $\mathcal{H}^s(\mathsf{\Gamma}\cap B(\mathsf{x},r))\sim r^s$ *, but* Γ *is not a* (1/s)*-Hölder curve.*

Look at the cylinder $C\times [0,1]\subset \mathbb{R}^2$ over the standard "middle thirds" Cantor set $C \subset \mathbb{R}$. Adjoining the line segment [0, 1] \times {0} makes the set connected, but it is not locally connected. Adjoining additional intervals $I_i \times \{t_i\}$ on a dense set of heights ("rungs") makes the set locally connected. We call this a **Cantor ladder**. A modified version of this gives the desired set.

- **Every** (1/s)-Hölder curve has $H^s(\Gamma) < \infty$
- There are curves Γ with $H^s(\Gamma) < \infty$ that are not $(1/s)$ -Hölder.

Theorem (B, Naples, Vellis 2018)

 $\mathsf{For\ all\ }s>1,$ there exists a curve $\mathsf{\Gamma}\subset\mathbb{R}^n$ such that $\mathcal{H}^s(\mathsf{\Gamma}\cap B(\mathsf{x},r))\sim r^s$ *, but* Γ *is not a* (1/s)*-Hölder curve.*

Idea.

Look at the cylinder $C\times [0,1]\subset \mathbb{R}^2$ over the standard "middle thirds" Cantor set $C \subset \mathbb{R}$. Adjoining the line segment [0, 1] \times {0} makes the set connected, but it is not locally connected. Adjoining additional intervals $I_i \times \{t_i\}$ on a dense set of heights ("rungs") makes the set locally connected. We call this a **Cantor ladder**. A modified version of this gives the desired set.

- **Every** (1/s)-Hölder curve has $H^s(\Gamma) < \infty$
- There are curves Γ with $H^s(\Gamma) < \infty$ that are not $(1/s)$ -Hölder.

Theorem (B, Naples, Vellis 2018)

 $\mathsf{For\ all\ }s>1,$ there exists a curve $\mathsf{\Gamma}\subset\mathbb{R}^n$ such that $\mathcal{H}^s(\mathsf{\Gamma}\cap B(\mathsf{x},r))\sim r^s$ *, but* Γ *is not a* (1/s)*-Hölder curve.*

Idea.

Look at the cylinder $C\times [0,1]\subset \mathbb{R}^2$ over the standard "middle thirds" **Cantor set C** $\subset \mathbb{R}$. Adjoining the line segment [0, 1] \times {0} makes the set connected, but it is not locally connected. Adjoining additional intervals $I_i \times \{t_i\}$ on a dense set of heights ("rungs") makes the set locally connected. We call this a **Cantor ladder**. A modified version of this gives the desired set.

- **Every** (1/s)-Hölder curve has $H^s(\Gamma) < \infty$
- There are curves Γ with $H^s(\Gamma) < \infty$ that are not $(1/s)$ -Hölder.

Theorem (B, Naples, Vellis 2018)

 $\mathsf{For\ all\ }s>1,$ there exists a curve $\mathsf{\Gamma}\subset\mathbb{R}^n$ such that $\mathcal{H}^s(\mathsf{\Gamma}\cap B(\mathsf{x},r))\sim r^s$ *, but* Γ *is not a* (1/s)*-Hölder curve.*

Idea.

Look at the cylinder $C\times [0,1]\subset \mathbb{R}^2$ over the standard "middle thirds" Cantor set $C \subset \mathbb{R}$. Adjoining the line segment $[0, 1] \times \{0\}$ makes the set connected, but it is not locally connected. Adjoining additional intervals $I_i \times \{t_i\}$ on a dense set of heights ("rungs") makes the set locally connected. We call this a **Cantor ladder**. A modified version of this gives the desired set.

A O A A A A A B A A A A A A A A A A A A

- **Every** (1/s)-Hölder curve has $H^s(\Gamma) < \infty$
- There are curves Γ with $H^s(\Gamma) < \infty$ that are not $(1/s)$ -Hölder.

Theorem (B, Naples, Vellis 2018)

 $\mathsf{For\ all\ }s>1,$ there exists a curve $\mathsf{\Gamma}\subset\mathbb{R}^n$ such that $\mathcal{H}^s(\mathsf{\Gamma}\cap B(\mathsf{x},r))\sim r^s$ *, but* Γ *is not a* (1/s)*-Hölder curve.*

Idea.

Look at the cylinder $C\times [0,1]\subset \mathbb{R}^2$ over the standard "middle thirds" Cantor set $C \subset \mathbb{R}$. Adjoining the line segment $[0, 1] \times \{0\}$ makes the set connected, but it is not locally connected. Adjoining additional intervals $I_i \times \{t_i\}$ on a dense set of heights ("rungs") makes the set locally connected. We call this a **Cantor ladder**. A modified version of this gives the desired set.

A O A A A A A B A A A A A A A A A A A A

- **Every** (1/s)-Hölder curve has $H^s(\Gamma) < \infty$
- There are curves Γ with $H^s(\Gamma) < \infty$ that are not $(1/s)$ -Hölder.

Theorem (B, Naples, Vellis 2018)

 $\mathsf{For\ all\ }s>1,$ there exists a curve $\mathsf{\Gamma}\subset\mathbb{R}^n$ such that $\mathcal{H}^s(\mathsf{\Gamma}\cap B(\mathsf{x},r))\sim r^s$ *, but* Γ *is not a* (1/s)*-Hölder curve.*

Idea.

Look at the cylinder $C\times [0,1]\subset \mathbb{R}^2$ over the standard "middle thirds" Cantor set $C \subset \mathbb{R}$. Adjoining the line segment $[0, 1] \times \{0\}$ makes the set connected, but it is not locally connected. Adjoining additional intervals $I_i \times \{t_i\}$ on a dense set of heights ("rungs") makes the set locally connected. We call this a **Cantor ladder**.

A modified version of this gives the desired set.

- **Every** (1/s)-Hölder curve has $H^s(\Gamma) < \infty$
- There are curves Γ with $H^s(\Gamma) < \infty$ that are not $(1/s)$ -Hölder.

Theorem (B, Naples, Vellis 2018)

 $\mathsf{For\ all\ }s>1,$ there exists a curve $\mathsf{\Gamma}\subset\mathbb{R}^n$ such that $\mathcal{H}^s(\mathsf{\Gamma}\cap B(\mathsf{x},r))\sim r^s$ *, but* Γ *is not a* (1/s)*-Hölder curve.*

Idea.

Look at the cylinder $C\times [0,1]\subset \mathbb{R}^2$ over the standard "middle thirds" Cantor set $C \subset \mathbb{R}$. Adjoining the line segment $[0, 1] \times \{0\}$ makes the set connected, but it is not locally connected. Adjoining additional intervals $I_i \times \{t_i\}$ on a dense set of heights ("rungs") makes the set locally connected. We call this a **Cantor ladder**. A modified version of this gives the desired set. \Box

Sufficient conditions for Hölder curves

Theorem (Remes 1998)

Let $S \subset \mathbb{R}^n$ be a **self-similar set** satisfying the open set condition. *If S* is connected, then *S* is a $(1/s)$ -Hölder curve, $s = \dim_H S$.

A set $E \subset \mathbb{R}^n$ is $\frac{1}{16}$ **-flat** if for every $x \in E$ and $r > 0$, there exists a line ℓ such that dist $(x, \ell) \leq \frac{1}{16} r$ for all $x \in E \cap B(x, r)$.

Theorem (B, Naples, Vellis 2018)

Assume that $E\subset \mathbb{R}^n$ is $\frac{1}{16}$ -flat. If E is connected, compact, $\mathcal{H}^s(E)<\infty$ and $\mathcal{H}^s(E \cap B(x,r)) \gtrsim r^s$, then *E* is a (1/s)-Hölder curve.

Sufficient conditions for Hölder curves

Theorem (Remes 1998)

Let $S \subset \mathbb{R}^n$ be a **self-similar set** satisfying the open set condition. *If S* is connected, then *S* is a $(1/s)$ -Hölder curve, $s = \dim_H S$.

A set $E\subset \mathbb{R}^n$ is $\frac{1}{16}$ **-flat** if for every $x\in E$ and $r>0$, there exists a line ℓ such that dist $(x, \ell) \leq \frac{1}{16} r$ for all $x \in E \cap B(x, r)$.

Theorem (B, Naples, Vellis 2018)

Assume that $E\subset \mathbb{R}^n$ is $\frac{1}{16}$ -flat. If E is connected, compact, $\mathcal{H}^s(E)<\infty$ and $H^s(E \cap B(x, r)) \gtrsim r^s$, then *E* is a (1/s)-Hölder curve.

Part I. Curves

Part II. Subsets of Curves

Part III. Rectifiability of Measures

K ロ K (日) K 경 K (日) K (日) X (日) K (日) K (日) K (日) K (日) K (日) X (日) X (日)

Analyst's Traveling Salesman Problem

Given a bounded set $E\subset \mathbb{R}^n$ (an infinite list of cities), decide whether or not E is a subset of a rectifiable curve.

If so, construct a rectifiable curve Γ containing E that is short as possible.

This is solved for

- \blacktriangleright E in \mathbb{R}^2 by P. Jones (1990)
- \blacktriangleright *E* in \mathbb{R}^n by K. Okikiolu (1992)
- \blacktriangleright E in ℓ_2 by R. Schul (2007)
- \blacktriangleright E in first Heisenberg group \mathbb{H}^1 by S. Li and R. Schul (2016)
- \triangleright E in Laakso-type spaces by G.C. David and R. Schul (2017)

Let $E\subset \mathbb{R}^2$ be the four-corner Cantor set with $0<{\mathcal H}^1(E)<\infty$: start with unit square, divide into sixteen equal size subsquares, keep the four corner squares, and repeat on each square...

Suppose $\Gamma = f([0, 1]) \supset E$ for some f with $|x - y| \geq L^{-1}|f(x) - f(y)|$

To touch all subsquares in the squares generation n,

the curve Γ must cross 3 \times 4^{n -1} gaps of length at least $\frac{1}{2}$ \times 4 $^{-(n-1)}.$

Requires at least $(3/2) L^{-1}$ of length in the domain of f by Lipschitz condition.

So for Γ to contain E there would have to be infinite length in the domain of f , which is a contradiction.**KORKARK (EXIST) DRAM**

Let $E\subset \mathbb{R}^2$ be the four-corner Cantor set with $0<{\mathcal H}^1(E)<\infty$: start with unit square, divide into sixteen equal size subsquares, keep the four corner squares, and repeat on each square...

Suppose $\Gamma = f([0, 1]) \supset E$ for some f with $|x - y| \geq L^{-1}|f(x) - f(y)|$

To touch all subsquares in the squares generation n, the curve Γ must cross 3 \times 4^{n -1} gaps of length at least $\frac{1}{2}$ \times 4 $^{-(n-1)}.$ Requires at least $(3/2) L^{-1}$ of length in the domain of f by Lipschitz condition. So for Γ to contain E there would have to be infinite length in the domain of f , which is a contradiction.**KORKARK (EXIST) DRAM**

Let $E\subset \mathbb{R}^2$ be the four-corner Cantor set with $0<{\mathcal H}^1(E)<\infty$: start with unit square, divide into sixteen equal size subsquares, keep the four corner squares, and repeat on each square...

Suppose $\Gamma = f([0, 1]) \supset E$ for some f with $|x - y| \geq L^{-1}|f(x) - f(y)|$ To touch all subsquares in the squares generation n , the curve Γ must cross 3 \times 4^{n -1} gaps of length at least $\frac{1}{2} \times$ 4 $^{-(n-1)}$. Requires at least (3/2)L $^{-1}$ of length in the domain of f by Lipschitz condition. So for Γ to contain E there would have to be infinite length in the domain of f , which is a contradiction.**KORKARK (EXIST) DRAM**

Let $E\subset \mathbb{R}^2$ be the four-corner Cantor set with $0<{\mathcal H}^1(E)<\infty$: start with unit square, divide into sixteen equal size subsquares, keep the four corner squares, and repeat on each square...

Suppose $\Gamma = f([0, 1]) \supset E$ for some f with $|x - y| \geq L^{-1}|f(x) - f(y)|$ To touch all subsquares in the squares generation n , the curve Γ must cross 3 \times 4^{n -1} gaps of length at least $\frac{1}{2} \times$ 4 $^{-(n-1)}$. Requires at least (3/2)L $^{-1}$ of length in the domain of f by Lipschitz condition. So for Γ to contain E there would have to be infinite length in the domain of f , which is a contradiction.**KORKARK (EXIST) DRAM**
Contained in a Rectifiable Curve

Let $E\subset \mathbb{R}^2$ be the four-corner Cantor set with $0<\mathcal{H}^{\mathsf{log}_5(4)}(E)<\infty$: start with unit square, divide into 25 equal size subsquares, keep the four corner squares, and repeat on each square...

To touch all subsquares in the squares generation n , the curve Γ must cross 3 \times 4^{n -1} gaps of length at least $\frac{1}{2}$ \times 5 $^{-(n-1)}.$ Requires at least (3/2)(4/5) $^{n-1}$ of length in the image, but this time

$$
\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)\left(\frac{4}{5}\right)^{n-1}<\infty.
$$

KORKARK (EXIST) DRAM

Unilateral Linear Approximation Numbers

For any nonempty set $E \subset \mathbb{R}^n$ and bounded "window" $Q \subset \mathbb{R}^n$, the **Jones beta number** of E in Q is

$$
\beta_E(Q):=\inf_{\text{line }\ell} \sup_{x\in E\cap Q} \frac{\text{dist}(x,\ell)}{\text{diam }Q}\in [0,1].
$$

KOD KAR KED KED E YOUR

If $E \cap Q = \emptyset$, we also define $\beta_E(Q) = 0$.

Analyst's Traveling Salesman Theorem

Theorem (P. Jones (1990), K. Okikiolu (1992))

Let E ⊂ R ⁿ *be a bounded set. Then* E *is contained in a rectifiable curve if and only if*

$$
\mathcal{S}_E := \sum_{\textit{dyadic } Q} \beta_E (3Q)^2 \, \text{diam } Q < \infty
$$

KORKARK (EXIST) DRAM

More precisely:

- 1. If $S_F < \infty$, then there is a curve $\Gamma \supset E$ such that $\mathcal{H}^1(\Gamma) \lesssim_n \text{diam } E + S_E.$
- 2. If Γ is a curve containing E, then diam $E + S_E \lesssim_n \mathcal{H}^1(\Gamma)$.

Theorem (B-Schul 2017): Flexible extension of P. Jones' original traveling salesman construction (the "sufficient" half of ATST)

Input: A sequence of 2^{—k}-separated sets $(V_k)_{k=0}^\infty$ such that

- ► for each $v \in V_k$ $(k \ge 0)$, there is $v' \in V_{k+1}$ with $|v v'| < C2^{-k}$
- ► for each $v \in V_k$ $(k \ge 1)$, there is $w \in V_{k-1}$ with $|v w| < C2^{-k}$

For each $k \geq 1$ and $v \in V_k$, we are given a **line** $\ell_{k,v}$ and **error** $\beta_{k,v}$ such that for all $x\in (V_{k-1}\cup V_k)\cap B(v,65C2^{-k}),$ dist $(x,\ell_{k,v})\leq \beta_{k,v}2^{-k}$

Output: A sequence of rectifiable curves $\Gamma_m \supset V_m$ such that

$$
\mathcal{H}^{1}(\Gamma_{m}) \lesssim_{n,C} (\text{diam } V_{0}) + \sum_{k=1}^{m} \sum_{v \in V_{k}} \beta_{k,v}^{2} 2^{-k}.
$$

A rectifiable curve Γ that contains $V = \lim_{m\to\infty} V_m$ and

$$
\mathcal{H}^{1}(\Gamma) \lesssim_{n,C} (\text{diam } V_0) + \sum_{k=1}^{\infty} \sum_{v \in V_k} \beta_{k,v}^2 2^{-k}
$$
 (if finite)

Theorem (B-Schul 2017): Flexible extension of P. Jones' original traveling salesman construction (the "sufficient" half of ATST) **Input:** A sequence of 2^{−k}-separated sets (V_k) $_{k=0}^{\infty}$ such that

- ► for each $v \in V_k$ $(k \ge 0)$, there is $v' \in V_{k+1}$ with $|v v'| < C2^{-k}$
- ► for each $v \in V_k$ $(k \ge 1)$, there is $w \in V_{k-1}$ with $|v w| < C2^{-k}$

P. Jones' original traveling salesman construction required $V_{k+1} \supset V_k$ For each $k > 1$ and $v \in V_k$, we are given a **line** $\ell_{k,v}$ and **error** $\beta_{k,v}$ such that for all $x\in (V_{k-1}\cup V_k)\cap B(v,65C2^{-k}),$ dist $(x,\ell_{k,v})\leq \beta_{k,v}2^{-k}$

Output: A sequence of rectifiable curves $\Gamma_m \supset V_m$ such that

$$
\mathcal{H}^{1}(\Gamma_{m}) \lesssim_{n,C} (\text{diam } V_{0}) + \sum_{k=1}^{m} \sum_{v \in V_{k}} \beta_{k,v}^{2} 2^{-k}.
$$

A rectifiable curve Γ that contains $V = \lim_{m\to\infty} V_m$ and

$$
\mathcal{H}^{1}(\Gamma) \lesssim_{n,C} (\text{diam } V_0) + \sum_{k=1}^{\infty} \sum_{v \in V_k} \beta_{k,v}^2 2^{-k}
$$
 (if finite)

Theorem (B-Schul 2017): Flexible extension of P. Jones' original traveling salesman construction (the "sufficient" half of ATST) **Input:** A sequence of 2^{−k}-separated sets (V_k) $_{k=0}^{\infty}$ such that

- ► for each $v \in V_k$ $(k \ge 0)$, there is $v' \in V_{k+1}$ with $|v v'| < C2^{-k}$
- ► for each $v \in V_k$ $(k \ge 1)$, there is $w \in V_{k-1}$ with $|v w| < C2^{-k}$

P. Jones' original traveling salesman construction required $V_{k+1} \supset V_k$ For each $k > 1$ and $v \in V_k$, we are given a **line** $\ell_{k,v}$ and **error** $\beta_{k,v}$ such that for all $x\in (V_{k-1}\cup V_k)\cap B(v,65C2^{-k}),$ dist $(x,\ell_{k,v})\leq \beta_{k,v}2^{-k}$

Output: A sequence of rectifiable curves $\Gamma_m \supset V_m$ such that

$$
\mathcal{H}^1(\Gamma_m) \lesssim_{n,C} (\text{diam } V_0) + \sum_{k=1}^m \sum_{v \in V_k} \beta_{k,v}^2 2^{-k}.
$$

A rectifiable curve Γ that contains $V = \lim_{m \to \infty} V_m$ and

$$
\mathcal{H}^1(\Gamma) \lesssim_{n,C} (\text{diam } V_0) + \sum_{k=1}^{\infty} \sum_{v \in V_k} \beta_{k,v}^2 2^{-k} \qquad \text{(if finite)}
$$

Proof.

Take long walks in the woods...

(unofficial collaborator)

 \Rightarrow

 299

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \bigoplus \right. \right. & \rightarrow & \left\langle \begin{array}{ccc} \square & \rightarrow & \left\langle \right. & \square & \rightarrow \end{array} \right. \end{array} \right.$

Theorem (P. Jones (1990), K. Okikiolu (1992))

 $\mathsf{Let}\; \mathsf{E}\subset \mathbb{R}^n$ be a bounded set. Then E is contained in a rectifiable curve *if and only if*

$$
\mathcal{S}_E := \sum_{\text{dyadic } Q} \beta_E (3Q)^2 \operatorname{diam} Q < \infty
$$

More precisely:

- 1. If $S_F < \infty$, then there is a curve $\Gamma \supset E$ such that $\mathcal{H}^1(\Gamma) \lesssim_n \mathsf{diam}\, E + S_E.$
- 2. If Γ is a curve containing E, then diam $E + S_E \lesssim_n \mathcal{H}^1(\Gamma)$.

Find characterizations of subsets of other nice families of sets

KOD CONTRACT A START AND KOD

Traveling Salesman type theorem for Hölder curves

Theorem (B, Naples, Vellis 2018)

For all $s > 1$, there exists a constant $\beta_0 = \beta_0(s, n) > 0$ such that: If $E \subset \mathbb{R}^n$ is a bounded set and

 $\sum\left\{(\text{\rm diam }\mathsf{Q})^{\mathsf{s}}:\mathsf{Q} \text{\rm dyadic and } \beta_{\mathsf{E}}(3\mathsf{Q})>\beta_0\right\}<\infty,$

then E *is contained in a* (1/s)*-Hölder curve.*

Corollary

 $\mathsf{Assume} \ s > 1.$ If $\mathsf{E} \subset \mathbb{R}^n$ is a bounded set and

$$
\sum_{\text{dyadic } Q} \beta_E(3Q)^2 (\text{diam } Q)^s < \infty,
$$

KORKARK (EXIST) DRAM

then E *is contained in a* (1/s)*-Hölder curve.*

Traveling Salesman type theorem for Hölder curves

Theorem (B, Naples, Vellis 2018)

For all $s > 1$, there exists a constant $\beta_0 = \beta_0(s, n) > 0$ such that: If $E \subset \mathbb{R}^n$ is a bounded set and

 $\sum\left\{(\text{\rm diam }\mathsf{Q})^{\mathsf{s}}:\mathsf{Q} \text{\rm dyadic and } \beta_{\mathsf{E}}(3\mathsf{Q})>\beta_0\right\}<\infty,$

then E *is contained in a* (1/s)*-Hölder curve.*

Remarks

- **DED** Construction of approximating curves Γ_k are essentially the same as the case $s = 1$
- But unlike the case $s = 1$, we do not have Ważewski's theorem
- \triangleright So we have repeat the traveling salesman construction and build explicit parameterization of the Γ_k
- \blacktriangleright The condition is not necessary (e.g. fails for a Sierpinski carpet)

Part I. Curves

Part II. Subsets of Curves

Part III. Rectifiability of Measures

イロトメタトメミトメミト (ミ) の女々

Measure Theorist's Traveling Salesman Problem

Given a finite Borel measure μ on \mathbb{R}^n with bounded support $(\Leftrightarrow \mu(\mathbb{R}^n \setminus B) = 0$ for some bounded set $B)$, decide whether or not μ is carried by a rectifiable curve.

If so, construct a rectifiable curve Γ carrying μ , i.e. $\mu(\mathbb{R}^n \setminus \Gamma) = 0$.

This is solved for

 \triangleright μ such that $\mu(B(x, r)) \sim r$ for $x \in \text{spt } \mu$ by Lerman (2003)

K ロ K K 제8 K X 회 X X 회 X 및 X X X X X 전

 \triangleright μ any finite Borel measure by B and Schul (2017)

Non-homogeneous L^2 Jones β numbers

Let μ be a Radon measure on \mathbb{R}^n . For every cube Q, define $\beta_2(\mu, 3Q) = \inf_{\text{line } L} \beta_2(\mu, 3Q, L) \in [0, 1]$, where

$$
\beta_2(\mu, 3Q, L)^2 = \int_{3Q} \left(\frac{\text{dist}(x, L)}{\text{diam } 3Q} \right)^2 \frac{d\mu(x)}{\mu(3Q)}
$$

K ロ K K 메 K K B X K B X D H X O Q O

"Non-homogeneous" refers to the normalization $1/\mu(3Q)$.

Non-homogeneous L^2 Jones β numbers

Let μ be a Radon measure on \mathbb{R}^n . For every cube Q, define $\beta_2(\mu, 3Q) = \inf_{\text{line }I} \beta_2(\mu, 3Q, L) \in [0, 1]$, where

$$
\beta_2(\mu,3Q,L)^2 = \int_{3Q} \left(\frac{\mathsf{dist}(x,L)}{\mathsf{diam}\,3Q}\right)^2 \frac{d\mu(x)}{\mu(3Q)}
$$

イロトメタトメ 君 トメ 君 トー 君一

 2990

Traveling Salesman for Ahlfors Regular Measures

Theorem (Lerman 2003)

Let μ be a finite measure on \mathbb{R}^n with bounded support. Assume that

 $\mu(B(x, r)) \sim r$ for all $x \in \text{spr } \mu$ and $0 < r \leq 1$.

Then there is a rectifiable curve Γ *such that* $\mu(\mathbb{R}^n \setminus \Gamma) = 0$ *if and only if*

$$
\sum_{\text{dyadic }Q}\beta_2(\mu,3Q)^2\,\text{diam }Q<\infty.
$$

Theorem (Martikainen and Orponen 2018)

There exists a Borel probability ν on \mathbb{R}^2 with bounded support such that

 $\sum \ \beta_2(\nu,3Q)^2$ diam $Q<\infty$

A O A G A 4 O A C A G A 4 O A 4 O A 4 O A 4 O A 4 O A C

but ν *is purely 1-unrectifiable, i.e.* ν(Γ) = 0 *for every rectifiable curve* Γ*.*

Traveling Salesman for Ahlfors Regular Measures

Theorem (Lerman 2003)

Let μ be a finite measure on \mathbb{R}^n with bounded support. Assume that

 $\mu(B(x, r)) \sim r$ for all $x \in \text{spr } \mu$ and $0 < r < 1$.

Then there is a rectifiable curve Γ *such that* $\mu(\mathbb{R}^n \setminus \Gamma) = 0$ *if and only if*

$$
\sum_{\text{dyadic }Q}\beta_2(\mu,3Q)^2\,\text{diam }Q<\infty.
$$

Theorem (Martikainen and Orponen 2018)

There exists a Borel probability ν on \mathbb{R}^2 with bounded support such that

$$
\sum_{\text{dyadic }Q}\beta_2(\nu,3Q)^2\,\text{diam }Q<\infty
$$

but ν *is purely 1-unrectifiable, i.e.* ν(Γ) = 0 *for every rectifiable curve* Γ*.*

Anisotropic L^2 Jones β numbers (B-Schul 2017)

Given dyadic cube Q in \mathbb{R}^n , $\Delta^*(Q)$ denotes a subdivision of $Q^*=1600\sqrt{n}Q$ into dyadic cubes R of same / previous generation as Q s.t. 3 $R \subseteq Q^*.$

For every Radon measure μ on \mathbb{R}^n and every dyadic cube Q, we define $\beta_2^{**}(\mu,\,Q)^2=\mathsf{inf}_{\mathsf{line}\,\mathsf{L}}$ max $_{R\in\Delta^*(Q)}\beta_2(\mu,3R, L)^2$, where

$$
\beta_2(\mu, 3R, L)^2 = \int_{3R} \left(\frac{\text{dist}(x, L)}{\text{diam } 3R} \right)^2 \frac{d\mu(x)}{\mu(3R)}
$$

 000

Traveling Salesman Theorem for Measures

Theorem (B and Schul 2017)

Let μ be a finite measure on \mathbb{R}^n with bounded support. Then there is a *rectifiable curve* Γ *such that* $\mu(\mathbb{R}^n \setminus \Gamma) = 0$ *if and only if*

$$
\sum_{\text{dyadic } Q} \beta_2^{**}(\mu, Q)^2 \text{ diam } Q < \infty.
$$

- \triangleright Proof uses both halves of the traveling salesman theorem curves
- \blacktriangleright For the sufficient half, need extension of the traveling salesman construction without requirement $V_{k+1} \supset V_k$
- \triangleright Using the same techniques, we also get a characterization of countably 1-rectifiable Radon measures

Identification of 1-rectifiable Radon measures

For any Radon measure μ on \mathbb{R}^n and $x \in \mathbb{R}^n$, the **lower density** is:

$$
\underline{D}^1(\mu, x) \equiv \liminf_{r \downarrow 0} \frac{\mu(B(x, r))}{2r} \in [0, \infty]
$$

and the **geometric square function** is:

$$
J_2^*(\mu,x) \equiv \sum_{\substack{Q \text{ dyadic} \\ \text{diam } Q \leq 1}} \beta_2^*(\mu,Q)^2 \frac{\text{diam } Q}{\mu(Q)} \chi_Q(x) \in [0,\infty]
$$

Theorem (B and Schul 2017)

If μ is a Radon measure on \mathbb{R}^n , then

 $\blacktriangleright \ \mu\sqcup \{\mathsf{x}:\underline{D}^1(\mu,\mathsf{x})>0\ \text{and}\ J_2^*(\mu,\mathsf{x})<\infty\}$ is countably 1-rectifiable

 $\blacktriangleright \ \mu \sqcup \{x : \underline{D}^1(\mu,x) = 0 \text{ or } J_2^*(\mu,x) = \infty \}$ is purely 1-unrectifiable

Given a measurable space (X, \mathcal{M}) and a family of sets \mathcal{N} , every σ -finite measure μ on \mathbb{R}^n decomposes as $\mu=\mu_{\mathcal{N}}+\mu_{\mathcal{N}}^{\perp}$, where

- $\blacktriangleright \mu_{\mathcal{N}}$ is carried by $\mathcal{N}: \mu_{\mathcal{N}}(X \setminus \bigcup_{i=1}^{\infty} \Gamma_i) = 0$ for some $\Gamma_i \in \mathcal{N}$
- $\blacktriangleright \ \mu_{\mathcal N}^{\perp}$ is singular to $\mathcal N \colon \mu_{\mathcal N}^{\perp}(\Gamma) = 0$ for all $\Gamma \in \mathcal N.$

Identification Problem:

Given (X, \mathcal{M}) , $\mathcal{N} \subset \mathcal{M}$, and of F a family of σ -finite measures on M, find properties $P(\mu, x)$ and $Q(\mu, x)$ defined for all $\mu \in \mathcal{F}$ and $x \in X$ such that

 $\mu_{\mathcal{N}} = \mu \sqcup \{ \mathsf{x} : \mathsf{P}(\mu, \mathsf{x}) \}$ and $\mu_{\mathcal{N}}^{\perp} = \mu \sqcup \{ \mathsf{x} : \mathsf{Q}(\mu, \mathsf{x}) \}.$

An important case is $X=\mathbb{R}^n$, $\mathcal N$ is Lipschitz images of \mathbb{R}^m $(m \ge 2)$, and $\overline{\mathcal{F}}$ is Radon measures on \mathbb{R}^n

Given a measurable space (X, \mathcal{M}) and a family of sets \mathcal{N} , every σ -finite measure μ on \mathbb{R}^n decomposes as $\mu=\mu_{\mathcal{N}}+\mu_{\mathcal{N}}^{\perp}$, where

 $\blacktriangleright \mu_{\mathcal{N}}$ is carried by $\mathcal{N}: \mu_{\mathcal{N}}(X \setminus \bigcup_{i=1}^{\infty} \Gamma_i) = 0$ for some $\Gamma_i \in \mathcal{N}$

 $\blacktriangleright \ \mu_{\mathcal N}^{\perp}$ is singular to $\mathcal N \colon \mu_{\mathcal N}^{\perp}(\Gamma) = 0$ for all $\Gamma \in \mathcal N.$

Identification Problem:

Given (X, \mathcal{M}) , $\mathcal{N} \subset \mathcal{M}$, and of $\mathcal F$ a family of σ -finite measures on M, find properties $P(\mu, x)$ and $Q(\mu, x)$ defined for all $\mu \in \mathcal{F}$ and $x \in X$ such that $\mu_{\mathcal{N}} = \mu \sqcup \{ \mathsf{x} : \mathsf{P}(\mu, \mathsf{x}) \}$ and $\mu_{\mathcal{N}}^{\perp} = \mu \sqcup \{ \mathsf{x} : \mathsf{Q}(\mu, \mathsf{x}) \}.$

An important case is $X=\mathbb{R}^n$, $\mathcal N$ is Lipschitz images of \mathbb{R}^m $(m \ge 2)$, and $\overline{\mathcal{F}}$ is Radon measures on \mathbb{R}^n

K ロ K K 제8 K X 회 X X 회 X 및 X X X X X 전

Given a measurable space (X, \mathcal{M}) and a family of sets \mathcal{N} , every σ -finite measure μ on \mathbb{R}^n decomposes as $\mu=\mu_{\mathcal{N}}+\mu_{\mathcal{N}}^{\perp}$, where

 $\blacktriangleright \mu_{\mathcal{N}}$ is carried by $\mathcal{N}: \mu_{\mathcal{N}}(X \setminus \bigcup_{i=1}^{\infty} \Gamma_i) = 0$ for some $\Gamma_i \in \mathcal{N}$

 $\blacktriangleright \ \mu_{\mathcal N}^{\perp}$ is singular to $\mathcal N \colon \mu_{\mathcal N}^{\perp}(\Gamma) = 0$ for all $\Gamma \in \mathcal N.$

Identification Problem:

Given (X, \mathcal{M}) , $\mathcal{N} \subset \mathcal{M}$, and of $\mathcal F$ a family of σ -finite measures on M, find properties $P(\mu, x)$ and $Q(\mu, x)$ defined for all $\mu \in \mathcal{F}$ and $x \in X$ such that $\mu_{\mathcal{N}} = \mu \sqcup \{ \mathsf{x} : \mathsf{P}(\mu, \mathsf{x}) \}$ and $\mu_{\mathcal{N}}^{\perp} = \mu \sqcup \{ \mathsf{x} : \mathsf{Q}(\mu, \mathsf{x}) \}.$

An important case is $X=\mathbb{R}^n$, $\mathcal N$ is Lipschitz images of \mathbb{R}^m ($m\geq 2$), and ${\mathcal F}$ is Radon measures on \mathbb{R}^n

Thank you for listening!

イロトメタトメミトメミト (ミ) の女々