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Preview: Structure of Measures
Three Measures. Let ai > 0 be weights with

∑∞
i=1 ai = 1.

Let {xi : i ≥ 1}, {`i : i ≥ 1}, {Si : i ≥ 1} be a dense set of points,

unit line segments, unit squares in the plane.

µ0 =
∑∞

i=1 ai δxi µ1 =
∑∞

i=1 ai L1|`i µ2 =
∑∞

i=1 ai L2|Si

I µ0, µ1, µ2 are probability measures on R2

I The support of µ is the smallest closed set carrying µ;

sptµ0 = sptµ1 = sptµ2 = R2

I µi is carried by i -dimensional sets (points, lines, squares)

I The support of a measure is a rough approximation that hides

the underlying structure of a measure



Part I. Curves

Part II. Subsets of Curves

Part III. Rectifiability of Measures



What is a curve?

A curve Γ ⊂ Rn is a continuous image of [0, 1]:
There exists a continuous map f : [0, 1]→ Rn such that Γ = f ([0, 1])

A continuous map f with Γ = f ([0, 1]) is called a parameterization of Γ

I There are curves which do not have a 1-1 parameterization

I There are curves which have topological dimension > 1

A curve Γ is rectifiable if ∃f with supx0≤···≤xk

∑k
j=1 |f (xj)− f (xj−1)| <∞



When I think of curves...



View from the UConn Math Department



When is a set a curve?

Theorem (Hahn-Mazurkiewicz)

A nonempty set Γ ⊂ Rn is a curve if and only if

Γ is compact, connected, and locally connected

The proof of the forward direction is an exercise

The proof of the reverse direction is content of the theorem:

must construct a parameterization from only topological information



Examples of sets which are not curves

Theorem (Hahn-Mazurkiewicz)

A nonempty set Γ ⊂ Rn is not a curve if and only if

Γ is not compact or disconnected or not locally connected

Unbounded a straight line

Not Closed an open line segment

Disconnected a Cantor set

Not Locally Connected a comb



When is a set a rectifiable curve?

Theorem (Ważewski)

Let Γ ⊂ Rn be nonempty. TFAE:

1. Γ is a rectifiable curve (finite total variation)

2. Γ is compact, connected, andH1(Γ) <∞

3. Γ is a Lipschitz curve, i.e. there exists a Lipschitz continuous map

f : [0, 1]→ Rn such that Γ = f ([0, 1])

H1 denotes the 1-dimensional Hausdorff measure

f is Lipschitz if ∃C <∞ such that |f (x)− f (y)| ≤ C |x − y | for all x , y

The proof of (1)⇒ (2) is an exercise

The proof of (3)⇒ (1) is trivial



Proof by Picture

Γ ⊂ Rn is compact, connected,H1(Γ) <∞ =⇒ Γ is Lipschitz curve

Goal: build a parameterization for the set Γ
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Step 1: approximate Γ by 2−k -nets Vk , k ≥ 1
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Proof by Picture

Γ ⊂ Rn is compact, connected,H1(Γ) <∞ =⇒ Γ is Lipschitz curve

Step 4: tour defines piecewise linear map fk : [0, 1]� Γk



Proof by Picture

Γ ⊂ Rn is compact, connected,H1(Γ) <∞ =⇒ Γ is Lipschitz curve

Step 5: length of i -th edge .H1(E ∩ B(vi ,
1
4 · 2−k))



Proof by Picture

Γ ⊂ Rn is compact, connected,H1(Γ) <∞ =⇒ Γ is Lipschitz curve

Conclusion: Lip fk ≤ 32H1(Γ). Hence fkj ⇒ f : [0, 1]� Γ Lipschitz



Open Problem #1

Theorem (Ważewski)

Let Γ ⊂ Rn be nonempty. TFAE:

1. Γ is a rectifiable curve (finite total variation)

2. Γ is compact, connected, andH1(Γ) <∞

3. Γ is a Lipschitz curve, i.e. there exists a Lipschitz continuous map

f : [0, 1]→ Rn such that Γ = f ([0, 1])

Generalize Ważewski’s theorem

to higher dimensional curves



Open Problem #1

Theorem (Ważewski)

Let Γ ⊂ Rn be nonempty. TFAE:

1. Γ is a rectifiable curve (finite total variation)

2. Γ is compact, connected, andH1(Γ) <∞

3. Γ is a Lipschitz curve, i.e. there exists a Lipschitz continuous map

f : [0, 1]→ Rn such that Γ = f ([0, 1])

Generalize Ważewski’s theorem

to higher dimensional curves



Open Problem #1

Theorem (Ważewski)

Let Γ ⊂ Rn be nonempty. TFAE:

1. Γ is a rectifiable curve (finite total variation)

2. Γ is compact, connected, andH1(Γ) <∞

3. Γ is a Lipschitz curve, i.e. there exists a Lipschitz continuous map

f : [0, 1]→ Rn such that Γ = f ([0, 1])

Generalize Ważewski’s theorem

to higher dimensional curves



Open Problem #1

Theorem (Ważewski)

Let Γ ⊂ Rn be nonempty. TFAE:

1. Γ is a rectifiable curve (finite total variation)

2. Γ is compact, connected, andH1(Γ) <∞

3. Γ is a Lipschitz curve, i.e. there exists a Lipschitz continuous map

f : [0, 1]→ Rn such that Γ = f ([0, 1])

Generalize Ważewski’s theorem

to higher dimensional curves



Snowflakes and Squares



Snowflakes and Squares

Open Problem (#2)

For each real s ∈ (1,∞), characterize curves Γ ⊂ Rn withHs(Γ) <∞

Open Problem (#3)

For each real s ∈ (1,∞), characterize (1/s)-Hölder curves, i.e. sets
that can be presented as h([0, 1]) for some map h : [0, 1]→ Rn with

|h(x)− h(y)| ≤ C |x − y |1/s

Open Problem (#4)

For each integer m ≥ 2, characterize Lipschitz m-cubes, i.e. sets that

can be presented as f ([0, 1]m) for some Lipschitz map f : [0, 1]m → Rn.



Obstruction to a Hölder Ważewski Theorem

I Every (1/s)-Hölder curve hasHs(Γ) <∞
I There are curves Γ withHs(Γ) <∞ that are not (1/s)-Hölder.

Theorem (B, Naples, Vellis 2018)

For all s > 1, there exists a curve Γ ⊂ Rn such thatHs(Γ∩B(x , r)) ∼ r s ,

but Γ is not a (1/s)-Hölder curve.

Idea.

Look at the cylinder C × [0, 1] ⊂ R2 over the standard “middle thirds”

Cantor set C ⊂ R. Adjoining the line segment [0, 1]× {0}makes the

set connected, but it is not locally connected. Adjoining additional

intervals Ii × {tj} on a dense set of heights (“rungs”) makes the set

locally connected. We call this a Cantor ladder.

A modified version of this gives the desired set.
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Sufficient conditions for Hölder curves

Theorem (Remes 1998)

Let S ⊂ Rn be a self-similar set satisfying the open set condition.

If S is connected, then S is a (1/s)-Hölder curve, s = dimH S.

A set E ⊂ Rn is 1
16 -flat if for every x ∈ E and r > 0, there exists a line `

such that dist(x , `) ≤ 1
16 r for all x ∈ E ∩ B(x , r).

Theorem (B, Naples, Vellis 2018)

Assume that E ⊂ Rn is 1
16 -flat. If E is connected, compact,Hs(E) <∞

andHs(E ∩ B(x , r)) & r s , then E is a (1/s)-Hölder curve.
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Analyst’s Traveling Salesman Problem

Given a bounded set E ⊂ Rn (an infinite list of cities),

decide whether or not E is a subset of a rectifiable curve.

If so, construct a rectifiable curve Γ containing E that is

short as possible.

This is solved for

I E in R2 by P. Jones (1990)

I E in Rn by K. Okikiolu (1992)

I E in `2 by R. Schul (2007)

I E in first Heisenberg group H1 by S. Li and R. Schul (2016)

I E in Laakso-type spaces by G.C. David and R. Schul (2017)



Not Contained in a Rectifiable Curve

Let E ⊂ R2 be the four-corner Cantor set with 0 < H1(E) <∞:

start with unit square, divide into sixteen equal size subsquares,

keep the four corner squares, and repeat on each square...

Suppose Γ = f ([0, 1]) ⊃ E for some f with |x − y | ≥ L−1|f (x)− f (y)|
To touch all subsquares in the squares generation n,
the curve Γmust cross 3× 4n−1 gaps of length at least 1

2 × 4−(n−1).

Requires at least (3/2)L−1 of length in the domain of f by Lipschitz condition.

So for Γ to contain E there would have to be infinite length in the domain of f ,
which is a contradiction.
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Contained in a Rectifiable Curve

Let E ⊂ R2 be the four-corner Cantor set with 0 < Hlog5(4)(E) <∞:

start with unit square, divide into 25 equal size subsquares,

keep the four corner squares, and repeat on each square...

To touch all subsquares in the squares generation n,
the curve Γmust cross 3× 4n−1 gaps of length at least 1

2 × 5−(n−1).

Requires at least (3/2)(4/5)n−1 of length in the image, but this time

∞∑
n=1

(
3
2

)(
4
5

)n−1

<∞.



Unilateral Linear Approximation Numbers

For any nonempty set E ⊂ Rn and bounded “window” Q ⊂ Rn ,

the Jones beta number of E in Q is

βE (Q) := inf
line `

sup
x∈E∩Q

dist(x , `)
diam Q ∈ [0, 1].

If E ∩ Q = ∅, we also define βE (Q) = 0.



Analyst’s Traveling Salesman Theorem

Theorem (P. Jones (1990), K. Okikiolu (1992))

Let E ⊂ Rn be a bounded set. Then E is contained in a rectifiable curve

if and only if

SE :=
∑

dyadic Q

βE (3Q)2 diam Q <∞

More precisely:

1. If SE <∞, then there is a curve Γ ⊃ E such that

H1(Γ) .n diam E + SE .

2. If Γ is a curve containing E , then diam E + SE .n H1(Γ).



Drawing a Rectifiable Curve through Leaves of a Tree

Theorem (B-Schul 2017): Flexible extension of P. Jones’ original

traveling salesman construction (the “sufficient” half of ATST)

Input: A sequence of 2−k -separated sets (Vk)
∞
k=0 such that

I for each v ∈ Vk (k ≥ 0), there is v ′ ∈ Vk+1 with |v − v ′| < C2−k

I for each v ∈ Vk (k ≥ 1), there is w ∈ Vk−1 with |v − w | < C2−k

P. Jones’ original traveling salesman construction required Vk+1 ⊇ Vk

For each k ≥ 1 and v ∈ Vk , we are given a line `k,v and error βk,v

such that for all x ∈ (Vk−1 ∪ Vk) ∩ B(v , 65C2−k), dist(x , `k,v ) ≤ βk,v 2−k

Output: A sequence of rectifiable curves Γm ⊃ Vm such that

H1(Γm) .n,C (diam V0) +

m∑
k=1

∑
v∈Vk

β2
k,v 2−k .

A rectifiable curve Γ that contains V = limm→∞ Vm and

H1(Γ) .n,C (diam V0) +

∞∑
k=1

∑
v∈Vk

β2
k,v 2−k (if finite)
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∞
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Drawing a Rectifiable Curve through Leaves of a Tree

Proof.

Take long walks in the woods...

(unofficial collaborator)



Open Problem #5

Theorem (P. Jones (1990), K. Okikiolu (1992))

Let E ⊂ Rn be a bounded set. Then E is contained in a rectifiable curve

if and only if

SE :=
∑

dyadic Q

βE (3Q)2 diam Q <∞

More precisely:

1. If SE <∞, then there is a curve Γ ⊃ E such that

H1(Γ) .n diam E + SE .

2. If Γ is a curve containing E , then diam E + SE .n H1(Γ).

Find characterizations of subsets

of other nice families of sets



Traveling Salesman type theorem for Hölder curves

Theorem (B, Naples, Vellis 2018)

For all s > 1, there exists a constant β0 = β0(s, n) > 0 such that:

If E ⊂ Rn is a bounded set and∑
{(diam Q)s : Q dyadic and βE (3Q) > β0} <∞,

then E is contained in a (1/s)-Hölder curve.

Corollary

Assume s > 1. If E ⊂ Rn is a bounded set and∑
dyadic Q

βE (3Q)2(diam Q)s <∞,

then E is contained in a (1/s)-Hölder curve.



Traveling Salesman type theorem for Hölder curves

Theorem (B, Naples, Vellis 2018)

For all s > 1, there exists a constant β0 = β0(s, n) > 0 such that:

If E ⊂ Rn is a bounded set and∑
{(diam Q)s : Q dyadic and βE (3Q) > β0} <∞,

then E is contained in a (1/s)-Hölder curve.

Remarks

I Construction of approximating curves Γk are essentially the

same as the case s = 1
I But unlike the case s = 1, we do not have Ważewski’s theorem

I So we have repeat the traveling salesman construction and build

explicit parameterization of the Γk

I The condition is not necessary (e.g. fails for a Sierpinski carpet)



Part I. Curves

Part II. Subsets of Curves

Part III. Rectifiability of Measures



Measure Theorist’s Traveling Salesman Problem

Given a finite Borel measure µ on Rn with bounded

support (⇔ µ(Rn \ B) = 0 for some bounded set B),
decide whether or not µ is carried by a rectifiable curve.

If so, construct a rectifiable curve Γ carrying µ,

i.e. µ(Rn \ Γ) = 0.

This is solved for

I µ such that µ(B(x , r)) ∼ r for x ∈ sptµ by Lerman (2003)

I µ any finite Borel measure by B and Schul (2017)



Non-homogeneous L2 Jones β numbers

Let µ be a Radon measure on Rn. For every cube Q , define

β2(µ, 3Q) = inf line L β2(µ, 3Q, L) ∈ [0, 1], where

β2(µ, 3Q, L)2 =

∫
3Q

(
dist(x , L)
diam 3Q

)2 dµ(x)
µ(3Q)

“Non-homogeneous” refers to the normalization 1/µ(3Q).
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Traveling Salesman for Ahlfors Regular Measures

Theorem (Lerman 2003)

Let µ be a finite measure on Rn with bounded support. Assume that

µ(B(x , r)) ∼ r for all x ∈ sptµ and 0 < r ≤ 1.

Then there is a rectifiable curve Γ such that µ(Rn \ Γ) = 0 if and only if∑
dyadic Q

β2(µ, 3Q)2 diam Q <∞.

Theorem (Martikainen and Orponen 2018)

There exists a Borel probability ν on R2 with bounded support such that∑
dyadic Q

β2(ν, 3Q)2 diam Q <∞

but ν is purely 1-unrectifiable, i.e. ν(Γ) = 0 for every rectifiable curve Γ.
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Anisotropic L2 Jones β numbers (B-Schul 2017)
Given dyadic cube Q in Rn ,∆∗(Q) denotes a subdivision of Q∗ = 1600

√
nQ

into dyadic cubes R of same / previous generation as Q s.t. 3R ⊆ Q∗.

For every Radon measure µ on Rn and every dyadic cube Q , we define

β∗∗2 (µ,Q)2 = inf line L maxR∈∆∗(Q) β2(µ, 3R , L)2, where

β2(µ, 3R , L)2 =

∫
3R

(
dist(x , L)
diam 3R

)2 dµ(x)
µ(3R)



Traveling Salesman Theorem for Measures

Theorem (B and Schul 2017)

Let µ be a finite measure on Rn with bounded support. Then there is a

rectifiable curve Γ such that µ(Rn \ Γ) = 0 if and only if∑
dyadic Q

β∗∗2 (µ,Q)2 diam Q <∞.

I Proof uses both halves of the traveling salesman theorem curves

I For the sufficient half, need extension of the traveling salesman

construction without requirement Vk+1 ⊃ Vk

I Using the same techniques, we also get a characterization of countably

1-rectifiable Radon measures



Identification of 1-rectifiable Radon measures

For any Radon measure µ on Rn and x ∈ Rn , the lower density is:

D1(µ, x) ≡ lim inf
r↓0

µ(B(x , r))
2r ∈ [0,∞]

and the geometric square function is:

J∗2 (µ, x) ≡
∑

Q dyadic

diam Q≤1

β∗2(µ,Q)2 diam Q
µ(Q)

χQ(x) ∈ [0,∞]

Theorem (B and Schul 2017)

If µ is a Radon measure on Rn , then

I µ {x : D1(µ, x) > 0 and J∗2 (µ, x) <∞} is countably 1-rectifiable
I µ {x : D1(µ, x) = 0 or J∗2 (µ, x) =∞} is purely 1-unrectifiable



Open Problem #6

Given a measurable space (X ,M) and a family of sets N , every

σ-finite measure µ on Rn decomposes as µ = µN + µ⊥N , where

I µN is carried by N : µN (X \
⋃∞

i=1 Γi) = 0 for some Γi ∈ N
I µ⊥N is singular to N : µ⊥N (Γ) = 0 for all Γ ∈ N .

Identification Problem:

Given (X ,M), N ⊂M, and of F a family of σ-finite

measures onM, find properties P(µ, x) and Q(µ, x)
defined for all µ ∈ F and x ∈ X such that

µN = µ {x : P(µ, x)} and µ⊥N = µ {x : Q(µ, x)}.

An important case is X = Rn, N is Lipschitz images of Rm

(m ≥ 2), and F is Radon measures on Rn
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Thank you for listening!


