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Lipschitz Images and Rectifiability

LetM and X be metric spaces.

Think ofM as themodel space and X as the target space.

Lipschitz image problem For which sets F � X, does there exist a

Lipschitz map f :M! X such that F = f (M)?

Lipschitz fragment problem For which sets F � X, does there exist a

set E �M and a Lipschitz map f : E ! X such that F = f (E)?

Rectifiable set problem For which sets F � X, does there exist a

sequence of Lipschitz maps fi : Ei �M! X such that F =
⋃
1

1 fi(Ei)?

Rectifiable measure problem For which Radon measures � on X, is

there a sequence of Lipschitz maps such that �(X n
⋃
1

1 fi(Ei)) = 0?



Rectifiable Curves and Analyst’s Traveling Salesman

M = [0; 1]: a Lipschitz image f ([0; 1]) is called a rectifiable curve.

Theorem (Ważewski 1927)

In any metric space X, a set F � X is a rectifiable curve if and only if

F is compact, F is connected, and Hausdorff measureH1(F ) <1.

Theorem (Jones-Okikiolu-Schul-Badger-McCurdy 1990–2023)

In any finite-dimensional Banach space or in any Hilbert space X, a set F � X
is contained in a rectifiable curve if and only if

diam F <1 and
∑

Q

�2
F (Q) diam Q <1;

where Q ranges over an appropriate family of “dyadic locations and scales”

and �F (Q)measures how close F \ 3Q is to a line relative to diam Q .

Theorem (Li 2022, earlier work by Ferrari-Franchi-Pajot, ...)

9 characterization of subsets of rectifiable curves in Carnot groups of step � 2



Characterization of 1-Rectifiable Measures in

Euclidean Spaces and Carnot Groups

A Radon measure � on X is 1-rectifiable in the sense of Federer

if there exist Lipschitz fi : Ei � [0; 1]! X such that �(X n⋃1
1 fi(Ei)) = 0.

Theorem (Badger-Schul 2017)

Let X = Rd for some d � 2. A Radon measure � is 1-rectifiable iff

lim inf
r#0

�(B(x ; r))
r > 0 and

∑
Q

���(Q)2 diam Q �Q(x)
�(Q)

<1 at �-a.e. x ;

where ���(Q) is an anisotropic beta number associated to � 1600Q .

Theorem (Badger-Li-Zimmerman 2023)

Let X = G = Carnot group of step s � 2. A Radon measure � is 1-rectifiable iff

lim inf
r#0

�(B(x ; r))
r > 0 and

∑
Q

���(Q)2s diam Q �Q(x)
�(Q)

<1 at �-a.e. x ;

where ���(Q) is a stratified anisotropic beta number associated to � 1600Q .



Characterization of Rectifiable Curve Fragments in

Arbitrary Metric Spaces

In a metric space X, define

Z(x1; : : : ; xn) = max


k�1∑
j=1

jxij � xij+1 j : 1 = i1 < � � � < ik = n

 ;

�(F ) = sup

{
min
�2Sn

Z(x�(1); : : : ; x�(n)) : x1; : : : ; xn 2 F ; n � 1
}

Theorem (Balka-Keleti arXiv-2023)

Let X be a metric space and let F � X be compact. There exists a

compact set E � [0; 1] such that F = f (E) for some Lipschitz map

f : E � [0; 1]! X if and only if �(F ) <1.

My Interpretation: Modify definition of total variation, realizing that

we don’t know a priori the correct order to visit all of the points in F .



Quick Review of Minkowski and Packing Dimensions

Let X be a metric space. The (upper) Minkowski dimension

or (upper) box counting dimension of a bounded set F � X is

lim sup
r#0

log(minimum number of balls of radius r needed to cover F )

log r

Unfortunately it is possible that dimM(
⋃1

1 Fi) 6= sup11 dimM Fi , i.e. Minkowski

dimension is not countably stable.

Example: In X = R, dimMf1=n : n � 1g = 1=2, but supn�1 dimMf1=ng = 0.

The (upper) packing dimension of a set F � X is

inffsup dimM Fi : F =

1⋃
1

Fi ; Fi boundedg:

This is equivalent to another well-known definition with packing measures,

but I don’t need those today. In general dimH F � dimP F � dimM F .



A “Universal” Sufficient Condition for

Higher-Dimensional Lipschitz Fragments

Theorem (Balka-Keleti arXiv-2023)

SupposeM is compact and has Hausdorff dimension t. If F � X is compact

and the Minkowski dimension of F is < t , then F = f (E) for some Lipschitz

map f : E � M! X.

Proof Ingredients Combine Balka and Keleti’s new characterization of

rectifiable curve fragments with two theorems from metric geometry:

I Mendel and Naor’s ultrametric skeleton theorem (2013) and

I Keleti-Máthé-Zindulka’s theorem (2014) on existence of Lipschitz

surjections from ultrametric spaces onto [0; 1]m.

Corollary

If F � X has packing dimension < m, then F is an m-rectifiable set in the

sense that F � ⋃1
1 fi(Ei) for some Lipschitz maps fi : Ei � [0; 1]m ! X.



Open Problem: Lipschitz Images of Squares into R3

LetM = [0; 1]2 be a Euclidean square.

Let X = R3 be a 3-dimensional Euclidean space.

Lipschitz image problem For which sets F � R3, does there exist a

Lipschitz map f : [0; 1]2 ! R
3 such that F = f ([0; 1]2)?

Lipschitz fragment problem For which sets F � R3, does there exist a

Lipschitz map f : [0; 1]2 ! R
3 such that F � f ([0; 1]2). Equivalent to

original formulation by McShane’s extension theorem.

Rectifiable set problem Because of translation invariance of R3,

this is likely equivalent to the Lipschitz fragment problem.

Rectifiable measure problem For which Radon measures � on R3, are

there Lipschitz maps fi : [0; 1]2 ! R
3 s.t. �(R3 n

⋃
1

1 fi([0; 1]2)) = 0?



Partial Results for m-Rectifiable Measures

A Radon measure � on X is m-rectifiable in the sense of Federer

if there exist Lipschitz fi : Ei � [0; 1]m ! X such that �(X n⋃1
1 fi(Ei)) = 0.

Theorem (Morse-Randolph-Moore-Preiss 1944–1987)

A Radon measure � on Rd is m-rectifiable if

0 < lim
r#0

�(B(x ; r))
rm <1 at �-a.e. x 2 Rd :

Theorem (Corollary of Balka-Keleti arXiv-2023)

A Radon measure � on a metric space X is m-rectifiable if

lim sup
r#0

log�(B(x ; r))
log r < m at �-a.e. x 2 X:

Consequence: To characterize 2-rectifiable measures in R3, it remains to

understand the rectifiability of sets in R3 that simultaneously have

(i) zero Hausdorff measureH2 and (ii) packing dimension 2.



A 2-dimensional null set in R3 that is not a distorted

copy of a null set in R2

Start with F0 = [0; 1]3. Assume Fn has been defined and consists of 9n cubes

with mutually disjoint interiors and side length sn. Define Fn+1 by replacing

each cube Q in Fn with 9 cubes of side length sn+1 = 1
n+1 3�(n+1), eight in the

corners and one in the center. Then F =
⋂1

n=0 Fn is Cantor set.

It is easy to see thatH2(F ) = 0 and dimH F = dimP F = dimM F = 2.

Theorem: F is not contained in a Lipschitz image of [0; 1]2.

Different (unpublished) proofs communicated to me and Raanan Schul by

David-Toro (2016) and Alberti-Csörnyei (2019)



A 2-dimensional null set in R3 that is a distorted copy

of a null set in R2

Let � > 1. Modify the side lengths so that sn+1 = 1
(n+1)� 3�(n+1).

Once againH2(F ) = 0 and dimH F = dimP F = dimM F = 2.

Theorem: There exists a compact set E � [0; 1]2 and a Lipschitz map

f : E ! R
3 such that F = f (E).

An (unpublished) construction of this type was found by Badger-Vellis (2019).

More systematic proof is given in Badger-Schul (2023-arXiv).
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Combinatorial Problem: Square Packing

Problem: Suppose you are given a list of side lengths

s0 > s1 > s2 > � � � > sn�1:

What is the side length side(s0; : : : ; sn�1) of the smallest square containing

squares of side length s0; : : : ; sn�1 with disjoint interiors?

Theorem (Moon-Moser 1967)

side(s0; : : : ; sn�1)
2 � 2

∑n�1
i=0 s2

i .

Remark 1: Taking s0 = s1 = 1 and s2 = s3 � 1 shows that the multiplicative

factor 2 in the lemma is sharp.

Remark 2: The multiplicative factor 2 in the lemma is deadly for iterative

constructions. This gives a heuristic explanation of why the diam2 gauge

(“diameter squared”) has not lead to a 2d traveling salesman theorem.

Remark 3: When packing intervals (1d squares), the corresponding

statement is much nicer: side(s0; : : : ; sn�1) = s0 + � � �+ sn�1.



Diameter-Based Square Packing Bound

Lemma (Badger-Schul arXiv-2023)

side(s0; : : : ; sn�1) � s0 + s1 + s4 + s9 + : : : (add squared indices only)

Proof. When n = 4, the smallest square containing squares of side

length s0, s1, s2, and s3 has side length s0 + s1.

Corollary (Restatement of an Obvious Fact): A list of N squares of

side length s can be packed inside of a square of side length dN1=2es



Idea: Represent a tree of nested sets in X as a

combinatorially equivalent tree of nested squares in R2

Pick a level l � 1. Given marked points fxQ : Q 2 Tlg, need to decide how to

place a points x 0Q = f �1(xQ) in the domain such that

jxQ � xR j = jf (x 0Q)� f (x 0R)j � jx 0Q � x 0R j or jx 0Q � x 0R j � jxQ � xR j:



Recursive construction (outline)

1. Suppose we can do the construction for trees of depth l � 1.

2. Let T be a tree of depth l � 1 and let fxQ : Q 2 Tlg be given.

3. View the tree T as a disjoint union of N0 = #Child(Top(T )) = #T1

trees of depth l � 1 (one such tree for each set in T1). For each P 2 T1,

we let FP = fxQ : Q 2 Tl and Q is a descendant of Pg.

4. For each P 2 T1, we can find a square SP � R2, “domain points”

EP � SP , and an 1-Lipschitz bijective map fP : EP ! FP .

5. Key step: Let D0 = diam Top(T ) and let sl�1 = maxfside SP : P 2 T1g.
Use the Lemma to pack (dN1=2

0 e � 1)2 cubes of side length sl�1 + D0 and

dN1=2
0 e2 � ((dN1=2

0 e � 1)2 cubes of side length sl�1 into a cube of side

sl = (dN1=2
0 e � 1)(D0 + sl�1) + sl�1 = dN1=2

0 esl�1 + (dN1=2
0 e � 1)D0:

6. Solve the recursion formula.



Example of the domain of a map with level l = 2

There are 16 cubes in T1 and each cube in T1 has 25 children.

“Yellow blocks” are translations of squares produced by the recursive step.

The side length of a “yellow block” is (dN1=2
1 e � 1)D1 = 4D1.

To get a 1-Lipschitz map, we must surround each “yellow block” (except the

rightmost ones in each direction) by a “blue” gap of side length D0.

The total side length of the big square is

(dN1=2
0 e � 1)D0 + dN1=2

0 e(dN1=2
1 e � 1)D1 = 3D0 + 4 � 4D1 = 3D0 + 16D1



Square Packing Construction

Theorem (Badger-Schul arXiv-2023)

Let T =
⊔1

j=0 Tj be a tree of sets in a metric space X, requiring only that every

set in the tree is contained in its parent. For each j � 0, assign

Nj = max
Q2Tj

#Child(Q) and Dj = max
Q2Tj

diam Q:

Let l � 1 be an integer and suppose that Tl 6= ;. Compute

s =

l�1∑
j=0

( j�1∏
i=0
dN1=2

i e
)
(dN1=2

j e � 1)Dj :

(When j = 0;
∏j�1

i=0dN1=2
i e = 1.) For any set or multiset F = fxQ 2 Q : Q 2 Tlg,

there is a set E � `2
1 \ [0; s]2 with#E = #F and we can construct a

1-Lipschitz bijection f : E ! F .

Remark (Hölder maps): If you replace the quantity Dj in s by D�
j , then the

construction produces Hölder bijection f : E ! F of exponent 1=�.



Square Packing Construction + Arzela-Ascoli

Corollary (Badger-Schul arXiv-2023)

Let T be a tree of nested sets in a metric space X, requiring only that every set

in the tree is contained in its parent. Assume each level of the tree is

nonempty. As before, for each j � 0, assign

Nj = max
Q2Tj

#Child(Q) and Dj = max
Q2Tj

diam Q:

Suppose that

L =

1∑
j=0

( j∏
i=0
dN1=2

i e
)

Dj <1:

Then there exists a compact set E � [0; 1]2 and an L-Lipschitz map

f : [0; 1]2 \ `2
1 ! X such that Leaves(T ) � f (E).

Remark (Higher-Dimensional Domains): The same construction lets you

build Lipschitz maps from subsets of [0; 1]m when m � 3.
Simply replace the quantity dN1=2

j e with dN1=m
j e.



Example of Using the Square Packing Construction

Let � > 1. Recall that we built a Cantor set F in R3 by starting with [0; 1]3 and
then replacing each cube in level n with 9 children of side length

sn+1 = 1
(n+1)� 3�(n+1).

Cubes in level n have Nn = 9 children and diameter Dn =

p
3

n�
3�n

L =

1∑
n=0

( n∏
k=0

dN1=2
k e

)
Dn =

1∑
n=0

3n+1Dn = 3
p

3 + 3
p

3
1∑

n=1

1
n�

<1

Therefore, there exists a compact set E � [0; 1]2 an L-Lipschitz map

f : E ! R
3 such that f (E) = F .



Easy Application of Square Packing Construction

The Assouad dimension of a set in a metric space (I’ll skip the definition) is at

least as large as the Minkowski dimension: dimM F � dimA F .

For any b > 1 the definition of dimA F naturally yields a tree of sets with

Leaves(T ) = F and Nj = maxf#Child(Q) : Q 2 Tjg . bdimA F and

Dj = maxfdiam Q : Q 2 Tjg � b�j . Taking b to be sufficiently large and

applying the Square Packing Construction to T gives

Theorem (Badger-Schul arXiv-2023)

If X is a complete metric space. If F � X is compact, m � 1 is an integer, and

dimA F < m, then 9 Lipschitz map f : E � [0; 1]m ! X such that f (E) � F .

Remark 1: This theorem is now superseded by Balka-Keleti.

Remark 2: On the other hand, the proof of Assouad dimension theorem is

much easier/shorter than the proof of the Minkowski dimension theorem.

Remark 3: Balka-Keleti is not specific to Euclidean domains and cannot be

used to check m-rectifiability for sets of dimension m (like previous slide).
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Context: Doubling Measures and Rectifiable Curves

For this talk a doubling measure � on a metric space X is a Radon measure

such that for some constant C ,

0 < �(B(x ; 2r)) � C�(B(x ; r)) <1 for all x 2 X and r > 0

Theorem (Volberg-Konyagin 1987, Luukkainen-Saskman 1998)

If X is a complete, doubling metric space (i.e. every ball of radius 2r can be

covered by at most C 0 balls of radius r), then there are doubling measures on X.

Lemma
If � is a doubling measure on Rd , d � 2, and F � Rd is q-Ahlfors regular set for
some q < d , then F is porous and �(F ) = 0. In particular, doubling measures

on Rd do not charge C1 and bi-Lipschitz curves (i.e. they are � null sets).

Theorem (Garnett-Killip-Schul 2010)

For all d � 2, there exist doubling measures � on Rd that are 1-rectifiable.

Hence �(Γ) > 0 for some rectifiable curve Γ (with Assouad dimension d).



Rectifiable Doubling Measures with Prescribed

Hausdorff and Packing Dimensions

Theorem (Badger-Schul arXiv-2023)

Let X be a complete, Ahlfors q-regular metric space. Let m be an integer with

q > m � 1. Given any 0 < sH < sP < q with m � 1 < sP < m and sP < q, there
exists a doubling measure � on X such that

1. � has Hausdorff dimension sH : lim infr#0
log�(B(x ;r))

log r = sH at �-a.e. x ,

2. � has packing dimension sP : lim supr#0
log�(B(x ;r))

log r = sP at �-a.e. x ,

3. � is m-rectifiable (i.e. carried by Lipschitz images of E � [0; 1]m),

4. � is purely (m � 1)-unrectifiable
(i.e. singular to Lipschitz images of E � [0; 1]m�1).

Conjecture (Badger-Schul arXiv-2023): The theorem also holds at the

endpoint parameters, i.e. if sP = m � 1, sP = m, or sP = q.



Examples

1. There exist doubling measures � on R3 of Hausdorff dimension

sH = 0:0001 and packing dimension sP = 1:9999 that are 2-rectifiable

and purely 1-unrectifiable.

2. Any compact self-similar set of Hausdorff dimension q in Rd that

satisfies the open set condition is Ahlfors q-regular and supports a

dqe-rectifiable doubling measure that is purely (dqe � 1)-unrectifiable.
These examples include Cantor sets, which are totally disconnected.

3. The Koch snowflake curve in R2 contains no non-trivial rectifiable

subcurves, but is Ahlfors log3(4)-regular. Thus, the snowflake curve
supports 1-rectifiable doubling measures of Hausdorff and packing

dimension 1� � for any � > 0.

4. When s > m and I = [0; 1]m is equipped with the snowflake metric

d(x ; y) = jx � y jm=s , the space I is Ahlfors s-regular andHs I is purely
m-unrectifiable (because s > m). Nevertheless, the space I supports an
m-rectifiable doubling measure that is purely (m � 1)-unrectifiable.



“Euclidean-Like” Measures on the Heisenberg Group

The first Heisenberg group H1 is a nonabelian step 2 Carnot group that is

topologically equivalent to R3, but equipped with a metric so that H1 has

Hausdorff dimension 4 and is Ahlfors 4-regular.

By theorem of Ambrosio and Kirchheim, the Hausdorff measuresHm
H

1

are purely m-unrectifiable for all m 2 f2; 3; 4g. Even so, for all m 2 f2; 3; 4g
and s < m, there exist doubling measures � on H1 and Lipschitz maps

f : E � Rm ! H
1 such that �� Hs�� for all � > 0, dimH f (E) = s , and

�(f (E)) > 0. That is, doubling measures on H1 can charge Lipschitz images

of Euclidean spaces of almost maximal dimension.



Remarks

I sP > m � 1 implies that � is purely (m � 1)-unrectifiable is
(or should be!) well-known

I Any doubling measure on vanishes on porous sets, including images of

lower-dimensional bi-Lipschitz embeddings into Rd . So a bi-Lipschitz

technique like David and Toro’s variant of the Reifenberg algorithm is

useless for proving rectifiability of a doubling measure.

I To prove that � is m-rectifiable, we use sP < m and the square packing

construction, but this also follows from Balka-Keleti. Finer analysis with

square packing construction should yield the case sP = m.

I In these examples, Hausdorff dimension is essentially irrelevant to

rectifiability. It is packing dimension that matters.

I So the essential point is to build a doubling measure � satisfying

m � 1 < dimP � < m. For X = Rd , we can use a Bernoulli product. For

general Ahlfors regular X, we could not locate such measures in the

literature and build quasi-Bernoulli measures using the metric cubes of

Käenmäki-Rajala-Suomala



Quasi-Bernoulli Measures with Prescribed Dimensions

Let X be complete, q-Ahlfors regular. We start with any doubling measure � ,

pick a sequence s = (sk)
1
k=1 of “target dimensions”, let∆ be a system of

(KRS) b-adic cubes on X with b � 47 sufficiently large depending on X and s,
and then redistribute the mass below scale 1 to produce a doubling measure

� with prescribed dimensions: dimH � = lim infn!1
1
n (s1 + � � �+ sn) and

dimP � = lim supn!1
1
n (s1 + � � �+ sn)

Without exact counts of cubes, we need to do some actual work to arrange

that the entropy of each level of the system takes prescribed values.

To get a doubling measure and prescribed entropy we need three weights per

cube. It is crucial that the “outer weights” � do not depend on the cube Q .



The Key Computation: How to Pick the Weights

Lemma (Badger-Schul arXiv-2023)

If b > 1 and L and M are positive integers such that L � by and M � bs for

some s; y > 0, then there exists a number �0 = �0(b; y ; s) such that for all

0 � � � �0, there exist unique numbers � = �(�; b; y ; s; L;M) and


 = 
(�; b; y ; s; L;M) such that

L�+ (M � 1)� + 
 = 1 (1)

and the entropy function

hb;L;M(�; �) := L� logb(1=�) + (M � 1)� logb(1=�) + 
 logb(1=
) = s: (2)

We may always bound L� logb (1=�) � min(1; s)=e, L� � min(1; s2)=e2 ,


 � 1� L��
s � L� logb (1=�)

logb (M � 1)
� 1�

min(1; s2)
e2 �

(
1�

1
e

)
s

logb (M � 1)
; (3)

and 
 �
1� L�

M
�

1
M

(
1�

min(1; s2)
e2

)
�

1
M

(
1�

1
e2

)
: (4)

Moreover, if 2e2 logb (e2) � ( 1
2 � 1

e )s , then

� �
s

2(M � 1) logb (M � 1)
: (5)



Actual Definition of the Quasi-Bernoulli Measures

Definition (Badger-Schul arXiv-2023)
Let X be a complete Ahlfors q-regular metric space with diamX � 2:1, let � be a doubling measure on X, and let s = (sk )

1
k=1 be a

sequence of positive numbers (“target dimensions”) such that

s� := inf
k�1

sk > 0 and s� := sup
k�1

sk < q: (6)

Let (∆k )k2Z be a system of b-adic cubes for X for some large b � 47. For all Q 2 ∆, assign LQ := #Outer(Q), MQ := #Inner(Q), and

NQ := #Child(Q). We require that b be large enough depending on at most X and s� so that

MQ � bs� and LQ � NQ � bq+1 for all Q 2 ∆+ =

1⋃
k=0

∆k . (7)

Let 0 < � �
( 1

2 minfs� ; 1g ln(b)b�(q+1)
)2

be a given weight. For all k � 0 and Q 2 ∆k , use the Lemma to define unique weights

�Q = �(�; b; q + 1; sk+1 ; LQ ;MQ ) and 
Q = 
(�; b; q + 1; sk+1 ; LQ ;MQ )

satisfying

1 = LQ�+ (MQ � 1)�Q + 
Q and hb;LQ ;MQ
(�; �Q ) = sk+1 : (8)

We specify a Radon measure �s on X by specifying its values on cubes as follows:

1. Declare �s(Q) := �(Q) for all Q 2 ∆0 .

2. For all k � 0 and Q 2 ∆k , declare �s(R) := ��s(Q) for all R 2 Outer(Q), declare �s(R) := �Q�s(Q) for all

R 2 Inner(Q) n fQ#g, and declare �s(Q#) := 
Q�s(Q).

We call �s a quasi-Bernoulli measure on X with target dimensions s, background measure � , and outer weight �.



Thank you for your attention!

View from the UConn Math Department


