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Lipschitz Images and Rectifiability

Let M and X be metric spaces.

Think of M as the model space and X as the target space.

Lipschitz image problem For which sets F C X, does there exist a
Lipschitzmap f : M — X such that F = f(M)?

Lipschitz fragment problem For which sets F C X, does there exist a
set E C M and a Lipschitzmap f : E = X such that F = f(E)?

Rectifiable set problem For which sets F C X, does there exist a
sequence of Lipschitz maps f; : E; C M — X such that F = | J{° fi(E;)?

Rectifiable measure problem For which Radon measures . on X, is
there a sequence of Lipschitz maps such that (X \ U7 fi(E;)) = 0?



Rectifiable Curves and Analyst's Traveling Salesman
M = [0, 1]: a Lipschitz image ([0, 1]) is called a rectifiable curve.
Theorem (Wazewski 1927)

In any metric space X, a set F C Xis a rectifiable curve if and only if
F is compact, F is connected, and Hausdorff measure 7—[,1(F ) < 0.

Theorem (Jones-Okikiolu-Schul-Badger-McCurdy 1990-2023)
In any finite-dimensional Banach space or in any Hilbert space X, a set F C X
is contained in a rectifiable curve if and only if

diam F < co and Zﬁ%(Q)diam Q < oo,

Q

where Q ranges over an appropriate family of “dyadic locations and scales”
and Br(Q) measures how close F N 3Q is to a line relative to diam Q.
Theorem (Li 2022, earlier work by Ferrari-Franchi-Pajot, ...)

3 characterization of subsets of rectifiable curves in Carnot groups of step > 2



Characterization of 1-Rectifiable Measures in
Euclidean Spaces and Carnot Groups

A Radon measure 1 on X is 1-rectifiable in the sense of Federer
if there exist Lipschitz f; : E; C [0, 1] — X such that u(X\ U fi(E;)) = 0.

Theorem (Badger-Schul 2017)

Let X = RY for some d > 2. A Radon measure v is 1-rectifiable iff

. w(B(x.r)) f N2 g xe(x) )
I|nr1u|)nff >0 and ZBM(Q) diam Q 4(Q) < oo at u-a.e. x,

where B,,(Q) is an anisotropic beta number associated to 1 L 1600Q.

Theorem (Badger-Li-Zimmerman 2023)
Let X = G = Carnot group of step s > 2. A Radon measure v is 1-rectifiable iff

I|m|nfM >0 and ZB“ Q)2sd|am QX(E(Q)) < oo at u-a.e. x,

where B,,(Q) is a stratified anisotropic beta number associated to . L 1600Q.



Characterization of Rectifiable Curve Fragments in
Arbitrary Metric Spaces

In a metric space X, define

k-1
Z(x1, ..., xn):max{2|x,-j—x,-j+1|:1:i1<---<ik:n},

j=1
6(F) = sup{mig Z(Xp(1y, - - - Xr(n)) © XLy - - - x, € F,n> 1}
mTES,

Theorem (Balka-Keleti arXiv-2023)

Let X be a metric space and let F C X be compact. There exists a
compact set E C [0, 1] such that F = f(E) for some Lipschitz map
f:EC|0 1] — Xifand only if 6(F) < oc.

My Interpretation: Modify definition of total variation, realizing that
we don't know a priori the correct order to visit all of the points in F.



Quick Review of Minkowski and Packing Dimensions
Let X be a metric space. The (upper) Minkowski dimension
or (upper) box counting dimension of a bounded set F C X is

lim sup log(minimum number of balls of radius r needed to cover F)

i log r

Unfortunately it is possible that dimu (L;” Fi) # sup$® dimu F;, i.e. Minkowski
dimension is not countably stable.

Example: In X =R, dimu{1/n: n> 1} = 1/2,but sup,s, dimy{1/n} = 0.
The (upper) packing dimension of a set F C X is
inf{sup dimu F; : F = | J £, F; bounded}.
1

This is equivalent to another well-known definition with packing measures,
but | don’t need those today. In general dimy F < dimp F < dimy F.



A “Universal” Sufficient Condition for
Higher-Dimensional Lipschitz Fragments

Theorem (Balka-Keleti arXiv-2023)

Suppose M is compact and has Hausdorff dimension t. If F C X is compact
and the Minkowski dimension of F is < t, then F = f(E) for some Lipschitz
mapf: ECM—=X

Proof Ingredients Combine Balka and Keleti's new characterization of
rectifiable curve fragments with two theorems from metric geometry:
» Mendel and Naor’s ultrametric skeleton theorem (2013) and

> Keleti-Mathé-Zindulka's theorem (2014) on existence of Lipschitz
surjections from ultrametric spaces onto [0, 1]".

Corollary

If F C X has packing dimension < m, then F is an m-rectifiable set in the
sense that F C |J7° fi(E;) for some Lipschitzmaps f; : E; C [0,1]" - X



Open Problem: Lipschitz Images of Squares into R3
Let M = [0, 1] be a Euclidean square.
Let X = R? be a 3-dimensional Euclidean space.
Lipschitz image problem For which sets F C R?, does there exist a
Lipschitzmap f : [0, 1]> — R3 such that F = £([0, 1]?)?

Lipschitz fragment problem For which sets F C R3, does there exist a
Lipschitz map f : [0, 1]> — R3 such that F C f([0, 1]?).

Rectifiable set problem Because of translation invariance of R3,
this is likely equivalent to the Lipschitz fragment problem.

Rectifiable measure problem For which Radon measures p on R3, are
there Lipschitz maps f; : [0, 1] — R3 s.t. u(R3\ U7° £(]0, 1]2)) = 0?



Partial Results for m-Rectifiable Measures

A Radon measure 1 on X is m-rectifiable in the sense of Federer
if there exist Lipschitz f; : E; C [0, 1]™ — X such that u(X\ US° fi(E/)) = 0.

Theorem (Morse-Randolph-Moore-Preiss 1944-1987)

A Radon measure 1 on R? is m-rectifiable if

w(B(x.r))

0< lim < oo atu-ae x¢€ R

rl0
Theorem (Corollary of Balka-Keleti arXiv-2023)

A Radon measure 1. on a metric space X is m-rectifiable if

I B
lim sup M <m atu-ae xéeX
10 log r
Consequence: To characterize 2-rectifiable measures in R?, it remains to
understand the rectifiability of sets in R® that simultaneously have
(i) zero Hausdorff measure %2 and (ii) packing dimension 2.



A 2-dimensional null set in R3 that is not a distorted
copy of a null set in R?

Start with Fy = [0, 1]°. Assume F, has been defined and consists of 9” cubes
with mutually disjoint interiors and side length s,. Define F,.1 by replacing
each cube Q in F, with 9 cubes of side length s,.1 = -1:37("""), eight in the
corners and one in the center. Then F = (2, F, is Cantor set.

It is easy to see that H(F) = 0 and dimy F = dimp F = dimum F = 2.
Theorem: F is not contained in a Lipschitz image of [0, 1]%.

Different (unpublished) proofs communicated to me and Raanan Schul by
David-Toro (2016) and Alberti-Csdrnyei (2019)



A 2-dimensional null set in R3 that is a distorted copy
of a null set in R?

Let o > 1. Modify the side lengths so that s,41 37+,

O
o P

_ 1
- (n+1)>

Once again H?(F) = 0 and dimy F = dimp F = dimy F = 2.

Theorem: There exists a compact set £ C [0, 1]* and a Lipschitz map
f: E — R?suchthat F = f(E).

An (unpublished) construction of this type was found by Badger-Vellis (2019).
More systematic proof is given in Badger-Schul (2023-arXiv).
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Combinatorial Problem: Square Packing

Problem: Suppose you are given a list of side lengths
SO>S >8> > Sp-1.

What is the side length side(so, - . ., sn—1) of the smallest square containing
squares of side length s, . . ., s»—1 With disjoint interiors?

Theorem (Moon-Moser 1967)

Side(Sg ..... Sp— 1) < 227 01 ,2

Remark 1: Taking s = s1 = 1 and s, = s3 < 1 shows that the multiplicative
factor 2 in the lemma is sharp.

Remark 2: The multiplicative factor 2 in the lemma is deadly for iterative
constructions. This gives a heuristic explanation of why the diam? gauge
(“diameter squared”) has not lead to a 2d traveling salesman theorem.

Remark 3: When packing intervals (1d squares), the corresponding
statement is much nicer: side(s, . . ., Sn—1) = So + -+ + Sn—1.



Diameter-Based Square Packing Bound

Lemma (Badger-Schul arXiv-2023)

side(so, - . -, sn—1) < o+ 51+ s4 + S + ... (add squared indices only)

Proof. When n = 4, the smallest square containing squares of side
length sg, s1, 2, and s3 has side length sy + s;.

Corollary (Restatement of an Obvious Fact): A list of N squares of
side length s can be packed inside of a square of side length [N'/?]s

[m] [ = =



Idea: Represent a tree of nested setsin X as a
combinatorially equivalent tree of nested squares in R?

Teee. o¥ Nesled S?)w Abshact Tree

B

I’\or lteo! ?o-stS

Pick a level | > 1. Given marked points {xg : Q € 7;}, need to decide how to
place a points x;, = f*(xg) in the domain such that

xo — xrl = |f(xq) — f(xk)| < |xg —xr| ©OF |xo — xkl| = |xo — x&l.



Recursive construction (outline)

1.

2.

Suppose we can do the construction for trees of depth / — 1.

Let 7 be a tree of depth / > 1 and let {xq : Q € 7;} be given.

. View the tree T as a disjoint union of No = # Child(Top(7)) = #T1

trees of depth / — 1 (one such tree for each set in 7;). Foreach P € T3,
we let Fp = {x¢ : Q € T;and Q is a descendant of P}.

. For each P € 71, we can find a square Sp C R?, “domain points”

Ep C Sp, and an 1-Lipschitz bijective map fp : Ep — Fp.

. Key step: Let Dy = diam Top(7") and let si—; = max{side Sp : P € T1}.

Use the Lemma to pack ([ Ni/?] — 1)2 cubes of side length s,_; + Dy and
[NE/212 — ((TNg’?] = 1)? cubes of side length s, into a cube of side

s = ([Ny"*1 = 1)(Do + si-1) + 51 = [N*1si—1 + ([N/*] — 1) Do.

. Solve the recursion formula.



Example of the domain of a map with level / = 2

e
fEEE e N EEEE e
R
EEEE

There are 16 cubes in 71 and each cube in 7; has 25 children.

“Yellow blocks” are translations of squares produced by the recursive step.
The side length of a “yellow block” is ([N}/*] — 1)D; = 4D;.

To get a 1-Lipschitz map, we must surround each “yellow block” (except the
rightmost ones in each direction) by a “blue” gap of side length Dy.

The total side length of the big square is

(TN3*1 = 1)Do + TN/*1(TN}/*] = 1)Dy = 3Do + 4 - 4Dy = 3Dy + 16D,



Square Packing Construction

Theorem (Badger-Schul arXiv-2023)

Let T = | |2, T; be a tree of sets in a metric space X, requiring only that every
set in the tree is contained in its parent. For each j > 0, assign

N; = rgg%( #Child(Q) and D, = glé%?dlam Q.

Let | > 1 be an integer and suppose that T; # (. Compute

(mm) (TN - D,

i=0

I—

1
>

j=0
(When j = 0, TZaTN;/?] = 1.) For any set or multiset F = {xg € Q : Q € Ti},
there is a set E C £%, N[0, s]® with #:E = #F and we can construct a
1-Lipschitz bijection f : E — F.

Remark (Holder maps): If you replace the quantity D; in s by Dy, then the
construction produces Holder bijection f : E — F of exponent 1/c.



Square Packing Construction + Arzela-Ascoli

Corollary (Badger-Schul arXiv-2023)

Let T be a tree of nested sets in a metric space X, requiring only that every set
in the tree is contained in its parent. Assume each level of the tree is
nonempty. As before, for each j > 0, assign

N; = r&a%#Chﬂd(Q) and D;= rc‘?é%gdmm Q.

Suppose that
00 J
L=>" (HW}/QT) Dj < oo.
j=0 \i=0
Then there exists a compact set E C [0, 1]? and an L-Lipschitz map
f: [0, 1]> N ¢4 — X such that Leaves(T) C f(E).

Remark (Higher-Dimensional Domains): The same construction lets you
build Lipschitz maps from subsets of [0, 1]™ when m > 3.
Simply replace the quantity [ N/*] with [N}/™].



Example of Using the Square Packing Construction

Let o > 1. Recall that we built a Cantor set F in R? by starting with [0, 1]* and
then replacing each cube in level n with 9 children of side length

Sni1 = ﬁ?)_(nJrl).
. . . V3,__,
Cubes in level n have N, = 9 children and diameter D, = n—a?)
a @
]

Z (Hlem ) D, = Z3n+1D,, = 3\/§+3\/§Znia < oo
n=0 n=1

n=0

Therefore, there exists a compact set £ C [0, 1]* an L-Lipschitz map
f: E— R?®suchthat f(E) =



Easy Application of Square Packing Construction

The Assouad dimension of a set in a metric space (I'll skip the definition) is at
least as large as the Minkowski dimension: dimy F < dima F.

For any b > 1 the definition of dim4 F naturally yields a tree of sets with
Leaves(7) = F and N; = max{# Child(Q) : Q € T;} < b ™ F and

D; = max{diam @ : Q € 7;} < b 4. Taking b to be sufficiently large and
applying the Square Packing Construction to 7 gives

Theorem (Badger-Schul arXiv-2023)

If X is a complete metric space. If F C X is compact, m > 1 is an integer, and
dima F < m, then 3 Lipschitzmap f : E C [0,1]™ — X such that f(E) D F.

Remark 1: This theorem is now superseded by Balka-Keleti.

Remark 2: On the other hand, the proof of Assouad dimension theorem is
much easier/shorter than the proof of the Minkowski dimension theorem.

Remark 3: Balka-Keleti is not specific to Euclidean domains and cannot be
used to check m-rectifiability for sets of dimension m (like previous slide).
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Context: Doubling Measures and Rectifiable Curves

For this talk a doubling measure 1 on a metric space X is a Radon measure
such that for some constant C,

0 < u(B(x,2r)) < Cu(B(x,r)) < oo forallx € Xandr >0

Theorem (Volberg-Konyagin 1987, Luukkainen-Saskman 1998)

If X is a complete, doubling metric space (i.e. every ball of radius 2r can be
covered by at most C’ balls of radius r), then there are doubling measures on X.

Lemma

If 1 is a doubling measure onR?, d > 2, and F C R? is g-Ahlfors regular set for
some q < d, then F is porous and w(F) = 0. In particular, doubling measures
on R9 do not charge C! and bi-Lipschitz curves (i.e. they are 1 null sets).

Theorem (Garnett-Killip-Schul 2010)

For all d > 2, there exist doubling measures 1. on R? that are 1-rectifiable.
Hence u(I) > 0 for some rectifiable curve I (with Assouad dimension d).



Rectifiable Doubling Measures with Prescribed
Hausdorff and Packing Dimensions

Theorem (Badger-Schul arXiv-2023)

Let X be a complete, Ahlfors g-regular metric space. Let m be an integer with
g>m—1. Givenany 0 < sy < sp < gwithm —1 < sp < mand sp < g, there
exists a doubling measure y on X such that

1. w has Hausdorff dimension sy: lim inf, o % = sy at u-a.e. x,

. u has packing dimension sp: limsup, w = sp at u-a.e. x,

2
3. wis m-rectifiable (i.e. carried by Lipschitz images of E C [0, 1]7),
4. wis purely (m — 1)-unrectifiable

(i.e. singular to Lipschitz images of E C [0,1]™ ).

Conjecture (Badger-Schul arXiv-2023): The theorem also holds at the
endpoint parameters, i.e.if sp = m—1,sp = m,0orsp = q.



Examples

1. There exist doubling measures u on R? of Hausdorff dimension
sy = 0.0001 and packing dimension sp = 1.9999 that are 2-rectifiable
and purely T-unrectifiable.

2. Any compact self-similar set of Hausdorff dimension g in R? that
satisfies the open set condition is Ahlfors g-regular and supports a
[ q]-rectifiable doubling measure that is purely ([q] — 1)-unrectifiable.
These examples include Cantor sets, which are totally disconnected.

3. The Koch snowflake curve in R? contains no non-trivial rectifiable
subcurves, but is Ahlfors log,(4)-regular. Thus, the snowflake curve
supports 1-rectifiable doubling measures of Hausdorff and packing
dimension 1 — ¢ for any € > 0.

4. When's > mand / = [0, 1]™ is equipped with the snowflake metric
d(x,y) = |x — y|™, the space I is Ahlfors s-regular and #° L_ I is purely
m-unrectifiable (because s > m). Nevertheless, the space / supports an
m-rectifiable doubling measure that is purely (m — 1)-unrectifiable.



“Euclidean-Like” Measures on the Heisenberg Group

The first Heisenberg group H' is a nonabelian step 2 Carnot group that is
topologically equivalent to R?, but equipped with a metric so that H! has
Hausdorff dimension 4 and is Ahlfors 4-regular.

By theorem of Ambrosio and Kirchheim, the Hausdorff measures 7™ L H*
are purely m-unrectifiable for all m € {2, 3,4}. Even so, forall m € {2, 3, 4}
and s < m, there exist doubling measures 1 on H* and Lipschitz maps

f: ECR™— H' such that u < H* < forall € > 0, dimy f(E) = s, and
u(f(E)) > 0. That is, doubling measures on H' can charge Lipschitz images
of Euclidean spaces of almost maximal dimension.



Remarks

» sp > m — 1implies that u is purely (m — 1)-unrectifiable is
(or should be!) well-known

» Any doubling measure on vanishes on porous sets, including images of
lower-dimensional bi-Lipschitz embeddings into R?. So a bi-Lipschitz
technique like David and Toro's variant of the Reifenberg algorithm is
useless for proving rectifiability of a doubling measure.

» To prove that u is m-rectifiable, we use sp < m and the square packing
construction, but this also follows from Balka-Keleti. Finer analysis with
square packing construction should yield the case sp = m.

> In these examples, Hausdorff dimension is essentially irrelevant to
rectifiability. It is packing dimension that matters.

> So the essential point is to build a doubling measure u satisfying
m—1 < dimp i < m. For X = RY we can use a Bernoulli product. For
general Ahlfors regular X, we could not locate such measures in the
literature and build quasi-Bernoulli measures using the metric cubes of
Kaenmaki-Rajala-Suomala



Quasi-Bernoulli Measures with Prescribed Dimensions

Let X be complete, g-Ahlfors regular. We start with any doubling measure v,
pick a sequence s = (sx)32; of “target dimensions”, let A be a system of
(KRS) b-adic cubes on X with b > 47 sufficiently large depending on X and s,
and then redistribute the mass below scale 1 to produce a doubling measure
u with prescribed dimensions: dimy u = liminf, %(51 +---+s,)and
dimp = limsup,_o (st + -+ + sn)

Without exact counts of cubes, we need to do some actual work to arrange
that the entropy of each level of the system takes prescribed values.

To get a doubling measure and prescribed entropy we need three weights per
cube. It is crucial that the “outer weights” o do not depend on the cube Q.




The Key Computation: How to Pick the Weights

Lemma (Badger-Schul arXiv-2023)

If b > 1and L and M are positive integers such that L < b¥ and M > b® for
some s, y > 0, then there exists a number o,y = (b, y, s) such that for all
0 < a < aq, there exist unique numbers g = B(a. b, y, s, L, M) and

v =7(a, b,y,s, L, M) such that

Lla+(M-1)B+vy=1
and the entropy function

hsLm(eax, B) := Laclog,(1/a) + (M — 1)Blog,(1/B) + v log,(1/7v) = s.

We may always bound La logy, (1/c) < min(1,s)/e, Lex < min(1,s2)/e2,

¥>1-Lla—

s— Larlogy(1/a) min(1, s2) 1 s
logp, (M — 1) 21- &2 B ( 7;) logp, (M - 1)°

1-L 1 in(1, s2 1 1
and v > o Ly min(sf)) 1 1Y
=M M &2 =M &2
Moreover, if 2¢2 Iogb(e2) < (% - %)s, then

p2 2(M — 1) log,(M - 1)



Actual Definition of the Quasi-Bernoulli Measures

Definition (Badger-Schul arXiv-2023)

Let ¢ be a complete Ahlfors g-regular metric space with diam i > 2.1, let v be a doubling measure on X, and let s = (sk)ia:1 bea
sequence of positive numbers (“target dimensions”) such that

s«:= inf s, >0 and s* := sups, <gq.
TSk 1

(6)

Let (A ) ke be a system of b-adic cubes for i for some large b > 47. For all Q € A, assign L := #Outer(Q), Mg := #Inner(Q), and

Ng =# Child(Q). We require that b be large enough depending on at most ¥ and s™* so that

~
MQZbS* and LQSNngqu1 forallQe &y = UAk'
k=0

2
Let0 < o < (% min{s«, 1} In(b)b’(q"'l)) be a given weight. Forall k > 0 and Q € A, use the Lemma to define unique weights
Bo =B(a.b.a+1si1.Lg.Mq) and vg =(a. b a+1 51, Lo Mg)
satisfying
1= Loa + (MQ — 1)50 +7Q and hb,LQ,MQ(“'ﬁQ) = Sk4q-

We specify a Radon measure us on i by specifying its values on cubes as follows:
1. Declare us(Q) := v(Q) forall Q € Ag.
2. Forallk > 0and Q € Ay, declare us(R) := aus(Q) forall R € Outer(Q), declare us(R) := Bous(Q) for all
R € Inner(Q) \ {Q*}, and declare us(Q*) = vqus(Q).

We call us a quasi-Bernoulli measure on X with target dimensions s, background measure v, and outer weight cx.






