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Decomposition of Measures
Geometric Measure Theory: Understand a measure on a
space through its interaction with canonical sets in the space.

Let (X,M, µ) be a measure space. Let N ⊆ M be a family of
measurable sets.

I µ is carried by N if there exist countably many sets Γi ∈ N
such that µ (X \

∪
i Γi) = 0.

I µ is singular to N if µ(Γ) = 0 for every Γ ∈ N .

Exercise (Decomposition Lemma)
If µ is σ-finite, then µ can be written uniquely as µN + µ⊥

N where µN is
carried by N and µ⊥

N is singular to N .

I Proof of the Decomposition Theorem is abstract nonsense.
I Identification Problem: Find measure-theoretic and/or

geometric characterizations or constructions of µN and µ⊥
N ?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

PSA: Don’t Think About Support
Three Measures. Let ai > 0 be weights with

∑∞
i=1 ai = 1.

Let {xi : i ≥ 1}, {ℓi : i ≥ 1}, {Si : i ≥ 1} be a dense set of points,
unit line segments, unit squares in the plane.

µ0 =
∑∞

i=1 ai δxi µ1 =
∑∞

i=1 ai L1 ℓi µ2 =
∑∞

i=1 ai L2 Si

I µ0, µ1, µ2 are probability measures on R2

I sptµ is smallest closed set carrying µ;
sptµ0 = sptµ1 = sptµ2 = R2

I µi is carried by i-dimensional sets (points, lines, squares)
I The support of a measure is a rough approximation that
hides the underlying structure of a measure
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Example: Atomic Measures vs Atomless Measures
A Radon measure is a locally finite, Borel regular outer measure.

Let µ be a Radon measure on Rn. Then we can write

µ = µ0
rect + µ0

pu,

where
I µ0

rect is carried by singletons (i.e. µ0
rect is atomic)

I µ0
pu is singular to singletons (i.e. µ0

pu is atomless)

How can you identify µ0
rect and µ0

pu?

µ0
rect = µ {x ∈ Rn : lim

r↓0
µ(B(x, r)) > 0}

µ0
pu = µ {x ∈ Rn : lim

r↓0
µ(B(x, r)) = 0}

µ E denotes the restriction of µ to E: (µ E)(F) = µ(E ∩ F)
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1-Rectifiable and Purely 1-Unrectifiable Measures
A singleton {x} has the following properties:

I {x} is connected, compact, H0({x}) < ∞
A candidate Γ for a “1-dimensional atom” might satisfy:

I Γ is connected, compact, H1(Γ) < ∞

Theorem
A set Γ ⊆ Rn is connected, compact, and H1(Γ) < ∞ if and only if
there exists a Lipschitz map f : [0, 1] → Rn such that Γ = f ([0, 1]).

A connected, compact set Γ ⊆ Rn with H1(Γ) < ∞ is called a
rectifiable curve or Lipschitz curve

Decomposition: Let µ be a Radon measure on Rn. Then

µ = µ1
rect + µ1

pu,

where
I µ1

rect is carried by rectifiable curves (µ1
rect is 1-rectifiable)

I µ1
pu is singular to rectifiable curves (µ1

pu is purely 1-unrectifiable)
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Identification Problem for µ1
rect and µ1

pu
If E ⊆ Rn and H1(E) < ∞, then

1

2
≤ lim sup

r↓0

H1(E ∩ B(x, r))
2r ≤ 1 H1-a.e. x ∈ E.

Solution for Hausdorff measures:

Theorem (Besicovitch 1928,1938)
Let µ = H1 E, where E ⊆ R2 and 0 < H1(E) < ∞. Then

µ1
rect = µ

{
x ∈ R2 : lim

r↓0

µ(B(x, r))
2r = 1

}
= µ

{
x ∈ R2 : E has a tangent line at x

}

µ1
pu = µ

{
x ∈ R2 : lim inf

r↓0

µ(B(x, r))
2r ≤ 3

4

}
= µ

{
x ∈ R2 : E does not have a tangent line at x

}
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Identification Problem for µ1
rect and µ1

pu
Let µ be a Radon measure on Rn. The following are equivalent:

I µ ≪ H1 (i.e. H1(E) = 0 =⇒ µ(E) = 0)

I lim supr↓0
µ(B(x, r))

2r < ∞ at µ-a.e. x ∈ Rn

Solution for absolutely continuous measures:

Theorem (Morse and Randolph 1944)
Let µ be a Radon measure on R2 with µ ≪ H1. Then

µ1
rect = µ

{
x ∈ R2 : 0 < lim

r↓0

µ(B(x, r))
2r < ∞

}
= µ

{
x ∈ R2 : E has a µ-approximate tangent line at x

}

µ1
pu = µ

{
x ∈ R2 : lim inf

r↓0

µ(B(x, r))
2r ≤ 1

1.01
lim sup

r↓0

µ(B(x, r))
2r

}
= µ

{
x ∈ R2 : E does not have a µ-approximate tangent line at x

}



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Examples I

I For 1 ≤ i ≤ k, let Ei be a subset of a rectifiable curve Γi ⊆ Rn.
µ =

∑k
i=1 H1 Ei is a finite 1-rectifiable measure, µ ≪ H1.

I Let C be the Cantor middle-third set and let µ = Hs C × {0},
where s = log(2)/ log(3) is the Hausdorff dimension of C.
µ is 1-rectifiable measure with µ(B(x, r)) ∼ rs for all x ∈ sptµ
and 0 < r ≤ 1; and µ ⊥ H1 and lim supr↓0

µ(B(x,r))
2r = ∞ µ-a.e.
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Examples II

I Lebesgue measure on Rn is purely 1-unrectifiable for all n ≥ 2

(This is obvious!)
I Let E ⊆ R2 be the “4 corners” Cantor set, E =

∩∞
i=0 Ei

I E is Ahlfors regular: H1(E ∩ B(x, r)) ∼ r for all x ∈ E, 0 < r ≤ 1.
I Every rectifiable curve Γ = f([0, 1]) ⊂ R2 intersects E

in a set of zero H1 measure.
I H1 E is a purely 1-unrectifiable measure on R2
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Examples III

Let Eλ ⊆ R2 be the generalized “4 corners” Cantor set, where
0 < λ ≤ 1/2 is the scaling factor.

(λ = 1/5)
I E has Hausdorff dimension s = log(4)/ log(1/λ)
I Hs(Eλ ∩ B(x, r)) ∼ rs for all x ∈ Eλ and 0 < r ≤ 1.
I When λ = 1/2, s = 2 and Hs E is just Lebesgue measure

restricted to the unit square.
I If 1/4 ≤ λ ≤ 1/2, then Hs Eλ is purely 1-unrectifiable
I If 0 < λ < 1/4, then Hs Eλ is 1-rectifiable

see e.g. Martin and Mattila (1988)
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Examples IV
Theorem (Garnett-Killip-Schul 2010)
There exist a Radon measure µ on R2 with sptµ = R2 such that µ is
doubling (µ(B(x, 2r)) . µ(B(x, r))), µ ⊥ H1, and µ is 1-rectifiable.
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Examples IV
Theorem (Garnett-Killip-Schul 2010)
There exist a Radon measure µ on R2 with sptµ = R2 such that µ is
doubling (µ(B(x, 2r)) . µ(B(x, r))), µ ⊥ H1, and µ is 1-rectifiable.
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Examples IV
Theorem (Garnett-Killip-Schul 2010)
There exist a Radon measure µ on R2 with sptµ = R2 such that µ is
doubling (µ(B(x, 2r)) . µ(B(x, r))), µ ⊥ H1, and µ is 1-rectifiable.
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Examples IV
Theorem (Garnett-Killip-Schul 2010)
There exist a Radon measure µ on R2 with sptµ = R2 such that µ is
doubling (µ(B(x, 2r)) . µ(B(x, r))), µ ⊥ H1, and µ is 1-rectifiable.
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Theorem (Garnett-Killip-Schul 2010)
There exist a Radon measure µ on R2 with sptµ = R2 such that µ is
doubling (µ(B(x, 2r)) . µ(B(x, r))), µ ⊥ H1, and µ is 1-rectifiable.
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Theorem (Garnett-Killip-Schul 2010)
There exist a Radon measure µ on R2 with sptµ = R2 such that µ is
doubling (µ(B(x, 2r)) . µ(B(x, r))), µ ⊥ H1, and µ is 1-rectifiable.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Examples IV
Theorem (Garnett-Killip-Schul 2010)
There exist a Radon measure µ on R2 with sptµ = R2 such that µ is
doubling (µ(B(x, 2r)) . µ(B(x, r))), µ ⊥ H1, and µ is 1-rectifiable.
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Examples IV
Theorem (Garnett-Killip-Schul 2010)
There exist a Radon measure µ on R2 with sptµ = R2 such that µ is
doubling (µ(B(x, 2r)) . µ(B(x, r))), µ ⊥ H1, and µ is 1-rectifiable.
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Examples IV
Theorem (Garnett-Killip-Schul 2010)
There exist a Radon measure µ on R2 with sptµ = R2 such that µ is
doubling (µ(B(x, 2r)) . µ(B(x, r))), µ ⊥ H1, and µ is 1-rectifiable.

I limr↓0
µ(B(x, r))

2r = ∞ µ-a.e.

I
∫ 1

0

(
µ(B(x,r))

2r

)−1 dr
r < ∞ µ-a.e.

(see B-Schul 2016)
I µ(Γ) = 0 whenever Γ = f([0, 1]) and

f : [0, 1] → R2 is bi-Lipschitz
I Nevertheless there exist Lipschitz

maps fi : [0, 1] → R2 such that

µ

(
R2 \

∞∪
i=1

fi([0, 1])
)

= 0
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Identification Problem for µ1
rect and µ1

pu

A Radon measure µ on Rn is doubling if µ(B(x, 2r)) . µ(B(x, r)) for
all x ∈ sptµ and r > 0.

Solution for doubling measures with connected supports:

Theorem (Azzam-Mourgoglou 2016)
Let µ be a doubling measure on Rn such that sptµ is connected. Then

µ1
rect = µ

{
x ∈ Rn : lim inf

r↓0

µ(B(x, r))
2r > 0

}

µ1
pu = µ

{
x ∈ Rn : lim inf

r↓0

µ(B(x, r))
2r = 0

}

Azzam and Mourgoglou’s main result applies to doubling
measures with connected supports on arbitrary metric spaces.
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Non-homogeneous L2 Jones β numbers
Let µ be a Radon measure on Rn. For every cube Q, define
β2(µ, 3Q) = infline L β2(µ, 3Q, L) ∈ [0, 1], where

β2(µ, 3Q, L)2 =

∫
3Q

(
dist(x, L)
diam 3Q

)2 dµ(x)
µ(3Q)

“Non-homogeneous” refers to the normalization 1/µ(3Q).
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Identification Problem for µ1
rect and µ1

pu
A Radon measure µ on Rn is pointwise doubling if

lim sup
r↓0

µ(B(x, 2r))
µ(B(x, r)) < ∞ at µ-a.e. x ∈ Rn.

Solution for pointwise doubling measures:

Theorem (B and Schul 2017)
Let µ be a pointwise doubling measure on Rn. Then

µ1
rect = µ

{
x ∈ Rn : J̃ 2(µ, x) < ∞

}
µ1

pu = µ
{

x ∈ Rn : J̃ 2(µ, x) = ∞
}

Here J̃ 2(µ, x) is a non-homogeneous L2 Jones square function:

J̃ 2(µ, x) =
∑

dyadic Q
side Q≤1

β2(µ, 3Q)2
diam Q
µ(Q)

χQ(x)
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Interpretation
Let µ be a pointwise doubling measure on Rn. Then µ is 1-rectifiable iff

J̃ 2(µ, x) =
∑

dyadic Q
side Q≤1

β2(µ, 3Q)2
diam Q
µ(Q)

χQ(x) < ∞ µ-a.e.

Extreme Behaviors
I Suppose 0 < lim infr↓0

µ(B(x, r))
2r ≤ lim supr↓0

µ(B(x, r))
2r < ∞ µ-a.e.

Then µ is 1-rectifiable if and only if∑
dyadic Q

side Q≤1

β2(µ, 3Q)2χQ(x) < ∞ µ-a.e.

When µ = H1 K, K ⊆ Rn compact, this was proved by Pajot (1997)

I Suppose µ has is badly linearly approximable in the sense
lim infQ↓x β2(µ, 3Q) > 0 µ-a.e. Then µ is 1-rectifiable if and only if∑

dyadic Q
side Q≤1

diam Q
µ(Q)

χQ(x) < ∞ µ-a.e.
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Examples V

Theorem (Martikainen and Orponen, arXiv 2016)
For all ε > 0, there exists a probability measure µ on R2 with
sptµ ⊆ [0, 1]2 such that

1. pointwise non-doubling: lim supr↓0
µ(B(x, 2r))
µ(B(x, r)) = ∞ µ-a.e.

2. vanishing lower density: lim infr↓0
µ(B(x, r))

2r = 0 µ-a.e.

3. uniformly bounded square function:

J̃ 2(µ, x) =
∑

dyadic Q
side Q≤1

β2(µ, 3Q)2
diam Q
µ(Q)

χQ(x) ≤ ε for all x ∈ sptµ

Interpretation:
I vanishing lower density implies that µ is purely 1-unrectifiable
I cannot hope to characterize rectifiability of a Radon measure

using only non-homogeneous square function J̃ 2(µ, x).
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Anisotropic L2 Jones β numbers
Given dyadic cube Q in Rn, ∆∗(Q) denotes a subdivision of 1600

√nQ into
overlapping dyadic cubes R of same / previous (larger) generation as Q.

For every Radon measure µ on Rn and every dyadic cube Q, we define
β∗
2 (µ,Q)2 = infline L maxR∈∆∗(Q) β2(µ, 3R, L)2m3R ∈ [0, 1], where

β2(µ, 3R, L)2m3R =

∫
3R

(
dist(x, L)
diam 3R

)2

min
(
1,

µ(3R)
diam 3R

)
dµ(x)
µ(3R)
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Identification Problem for µ1
rect and µ1

pu

Solution for Radon measures:

Theorem (B and Schul 2017)
Let µ be a Radon measure on Rn. Then

µ1
rect = µ

{
x ∈ Rn : lim inf

r↓0

µ(B(x, r))
2r > 0 and J ∗

2 (µ, x) < ∞
}

µ1
pu = µ

{
x ∈ Rn : lim inf

r↓0

µ(B(x, r))
2r = 0 or J ∗

2 (µ, x) = ∞
}

Here J ∗
2 (µ, x) is an anisotropic L2 Jones square function:

J ∗
2 (µ, x) =

∑
dyadic Q

side Q≤1

β∗
2(µ,Q)2

diam Q
µ(Q)

χQ(x)
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Main Takeaway

Corollary
A Radon measure µ on Rn is 1-rectifiable if and only if at µ-a.e. x,
lim infr↓0

µ(B(x, r))
2r > 0 and

J ∗
2 (µ, x) =

∑
dyadic Q

side Q≤1

β∗
2 (µ,Q)2

diam Q
µ(Q)

χQ(x) < ∞

A Radon measure µ on Rn is purely 1-rectifiable if and only if at µ-a.e. x,
lim infr↓0

µ(B(x, r))
2r = 0 or

J ∗
2 (µ, x) =

∑
dyadic Q

side Q≤1

β∗
2 (µ,Q)2

diam Q
µ(Q)

χQ(x) = ∞

Takeaway:
To understand geometric properties of non-doubling measures
(such as rectifiability) using multiscale analysis, it may be convenient or
necessary to incorporate anisotropic normalizations.
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Proof Ingredient: Drawing Rectifiable Curves
Theorem (B and Schul 2017)
Let n ≥ 2, let C⋆ > 1, let x0 ∈ Rn , and let r0 > 0. Let (Vk)

∞
k=0 be a sequence of nonempty finite subsets of B(x0, C⋆r0) such that

1. distinct points v, v′ ∈ Vk are uniformly separated: |v − v′| ≥ 2−kr0 ;

2. for all vk ∈ Vk , there exists vk+1 ∈ Vk+1 such that |vk+1 − vk| < C⋆2−kr0 ; and,

3. for all vk ∈ Vk (k ≥ 1), there exists vk−1 ∈ Vk−1 such that |vk−1 − vk| < C⋆2−kr0 .

Suppose that for all k ≥ 1 and for all v ∈ Vk we are given a straight line ℓk,v in Rn and a number αk,v ≥ 0 such that

sup
x∈(Vk−1∪Vk)∩B(v,65C⋆2−kr0)

dist(x, ℓk,v) ≤ αk,v2
−kr0 (1)

and
∞∑

k=1

∑
v∈Vk

α
2
k,v2

−kr0 < ∞. (2)

Then the sets Vk converge in the Hausdorff metric to a compact set V ⊆ B(x0, C⋆r0) and there exists a compact, connected set
Γ ⊆ B(x0, C⋆r0) such that Γ ⊇ V and

H1
(Γ) .n,C⋆ r0 +

∞∑
k=1

∑
v∈Vk

α
2
k,v2

−kr0. (3)

I This is a flexible criterion for drawing a rectifiable curve through the
leaves of a tree; extends P. Jones’ Traveling Salesman construction
(Inventiones 1990), which required Vk+1 ⊇ Vk

I Our write-up separates relatively simple description of the curve
from the intricate length estimates



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sample of Higher Dimensional Results I

A Radon measure µ on Rn is m-rectifiable if µ(Rn \
∪

Γi) = 0 for
some sequence of images Γi of Lipschitz maps fi : [0, 1]m → Rn.

That is, a Radon measure is m-rectifiable provided it is carried by
Lipschitz images of m-cubes.

Theorem (Preiss 1987)
Assume lim supr↓0

µ(B(x, r))
rm < ∞ µ-a.e. (or equivalently, µ ≪ Hm)

Then µ is m-rectifiable if and only if 0 < limr↓0
µ(B(x, r))

rm < ∞.

Preiss introduced tangent measures and studied global geometry
of m-uniform measures in Rn.

New examples of 3-uniform measures in Rn have been
announced by Nimer on the arXiv in August 2016 !!!!!
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Sample of Higher Dimensional Results II

A Radon measure µ on Rn is m-rectifiable if µ(Rn \
∪

Γi) = 0 for
some sequence of images Γi of Lipschitz maps fi : [0, 1]m → Rn.

Theorem (Azzam-Tolsa + Tolsa 2015)
Assume 0 < lim supr↓0

µ(B(x, r))
rm < ∞ µ-a.e. Then µ is m-rectifiable

if and only if the homogeneous L2 Jones function

J2(µ, x) =
∫ 1

0

β
(m)
2 (µ,B(x, r))2µ(B(x, r))rm

dr
r < ∞ µ-a.e.

One ingredient in Azzam-Tolsa’s proof is David and Toro’s version
of the Reifenberg algorithm for sets with holes.

Edelen-Naber-Valtorta announced an extension of Azzam-Tolsa
on the arXiv in December 2016.
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Understanding higher-dim rectifiability is hard
A Radon measure µ on Rn is m-rectifiable if µ(Rn \

∪
Γi) = 0 for

some sequence of images Γi of Lipschitz maps fi : [0, 1]m → Rn.

I This definition is due to Federer (1947).

I When m ≥ 2, it is not clear if Lipschitz images of [0, 1]m is the
“correct” family N of m-dimensional sets.

I The catastrophe: If f : [0, 1]m → Rn is Lipschitz, then
Γ = f([0, 1]m) is connected, compact, and Hm(Γ) < ∞.
But the converse is false when m ≥ 2!

Open Problem: Find additional metric, geometric, and/or
topological conditions which ensure that a compact,
connected set K ⊆ Rn with H2(K) < ∞ is contained in the
image of a Lipschitz map f : [0, 1]2 → Rn.
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Related developments

I Azzam and Schul, The Analyst’s Traveling Salesman Theorem
for sets of dimension larger than one, arXiv 2016.

I Novel definition of higher-dimensional beta numbers of sets
using the Choquet integral

I Results include a characterization of subsets of Reifenberg
vanishing bi-Lipschitz surfaces that is similar to Jones’ TST.

I K. Rajala, Uniformization of two-dimensional metric surfaces,
Inventiones 2016

I Gives an intrinsic characterization of metric spaces with locally
finite H2 measure that are quasiconformally equivalent to R2

I Does not immediately extend to higher dimensions.
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Current Project (w/ Vellis): Non-integral Dimensions
For each s ∈ [1, n], let Ns denote all (1/s)-Hölder curves in Rn,
i.e. all images Γ of (1/s)-Hölder continuous maps f : [0, 1] → Rn.

Decomposition: Every Radon measure µ on Rn can be uniquely
written as µ = µNs + µN⊥

s
, where

I µNs is carried by (1/s)-Hölder curves
I µN⊥

s
is singular to (1/s)-Hölder curves

Notes

I Every measure µ on Rn is carried by (1/n)-Hölder curves
(space-filling curves).

I A measure µ is carried by 1-Hölder curves iff µ is 1-rectifiable.
I If µ is m-rectifiable, then µ is carried by (1/m)-Hölder curves.
I Martín and Mattila (1988,1993,2000) studied this concept for

measures µ of the form µ = Hs E, where 0 < Hs(E) < ∞
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Measures with extreme lower densities

Theorem (B-Vellis, in preparation)
Let µ be a Radon measure on Rn and let s ∈ (1, n). Then the measure

µs
0
:= µ

{
x ∈ Rn : lim inf

r↓0

µ(B(x, r))
rs = 0

}
is singular to (1/s)-Hölder curves, i.e. µs

0
(Γ) = 0 whenever Γ is a (1/s)-Hölder

curve; and, the measure

µs
∞

:= µ

{
x ∈ Rn :

∫ 1

0

rs

µ(B(x, r))
dr
r < ∞ and lim sup

r↓0

µ(B(x, 2r))
µ(B(x, r)) < ∞

}
is carried by Hs null sets of (1/s)-Hölder curves, i.e. there exist (1/s)-Hölder
curves and Borel sets Ni ⊆ Γi withHs(Ni) = 0 such that µs

∞
(Rn \

∪∞
i=1 Ni) = 0.

I The condition
∫ 1

0

rs

µ(B(x, r))
dr
r < ∞ implies limr↓0

µ(B(x, r))
rs = ∞.

I The theorem is also true when s = 1 by B-Schul (2015, 2016).
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Further results

Corollary (B-Vellis, in preparation)
Let µ be a Radon measure on Rn, let s ∈ [1, n), and let t ∈ [0, s). Then the
measure

µt
+ := µ

{
x ∈ Rn : 0 < lim inf

r↓0

µ(B(x, r))
rt ≤ lim sup

r↓0

µ(B(x, r))
rt < ∞

}
is carried by Hs null sets of (1/s)-Hölder curves.

Theorem (B-Vellis, in preparation)
Let µ be a Radon measure on Rn and let t ∈ [0, 1). Then the measure µt

+ is
carried by H1 null sets of bi-Lipschitz curves, i.e. there exist bi-Lipschitz
curves Γi and Borel sets Ni ⊆ Γi with H1(Ni) = 0 s.t. µt

+(Rn \
∪∞

i=1 Ni) = 0.

Martìn and Mattila (1988): If 0 < Ht(E) < ∞ for some t ∈ [0, 1) and

lim infr↓0
Hs(E ∩ B(x, r))

rs > 0 at Hs-a.e. x ∈ E, then Hs E is 1-rectifiable.
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Thank you!


