Quasispheres and Bi-Lipschitz Parameterization Matthew Badger Joint work with James T. Gill Stony Brook University Steffen Rohde September 15, 2012 **Tatiana Toro** Perspectives in HA, GMT and PDE and **Their Applications to SCV Temple University** September 13 - 15, 201

This research was partially supported by DMS-0838212. The speaker is currently supported by an NSF postdoctoral fellowship, NSF Grant DMS-1203497.

Two Measurements of Distortion

 $f:\Omega\stackrel{\sim}{\to}\Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f\in W^{1,n}(\Omega)$

If $Df(x)$ exists and has eigenvalues $|\lambda_1(x)| \leq \cdots \leq |\lambda_n(x)|$, then

$$
K_f(x) = \max \left(\frac{|\lambda_n(x)|^n}{|\lambda_1(x)| \cdots |\lambda_n(x)|}, \frac{|\lambda_1(x)| \cdots |\lambda_n(x)|}{|\lambda_1(x)|^n} \right)
$$

The maximal dilatation (local distortion)

$$
K_f(\Omega)=\operatorname*{ess\,sup}_{x\in\Omega}K_f(x).
$$

The (weak) quasisymmetry constant (global distortion)

$$
H_f(\Omega) = \max\left\{\frac{|f(y)-f(x)|}{|f(z)-f(x)|}: x, y, z \in \Omega, \frac{|y-x|}{|z-x|} \leq 1\right\}
$$

[Quasispheres and Bi-Lipschitz Parameterization](#page-0-0) $-$ Matthew Badger $-$ Stony Brook University $1/12$

Local Distortion versus Global Distortion

 $f:\Omega\stackrel{\sim}{\to}\Omega'$ a homeomorphism of domains in \mathbb{R}^n , $f\in W^{1,n}(\Omega)$

For all $n \geq 2$ and all domains $\Omega \subset \mathbb{R}^n$, $K_f(\Omega) < H_f(\Omega)^{n-1}$

When $n \geq 2$ and $\Omega = \mathbb{R}^n$, $H_f(\mathbb{R}^n) - 1 \leq \Phi_n(K_f(\mathbb{R}^n) - 1), \quad \Phi_n : [0, \infty) \xrightarrow{\sim} [0, \infty)$

Precise formula for $\Phi_2(t)$ **was determined by Agard 1965.** $\Phi_n(0) = 0$ ($n \ge 3$) was proved by Vuorinen 1989.

When $n \geq 2$, $\Omega = \mathbb{R}^n$ and K is near 1,

$$
\Phi_2(K-1)\leq C_2(K-1)\quad (n=2)
$$

$$
\Phi_n(K-1) \leq C_n(K-1)\log\left(\frac{1}{K-1}\right) \quad (n\geq 3)
$$

■ Estimate ($n > 3$) by Seittenranta 1996 (cf. Prause 2007) It is not known if the logarithm term is [ne](#page-1-0)[ce](#page-3-0)[s](#page-1-0)s[ar](#page-2-0)[y](#page-3-0)[.](#page-0-0)

Quasispheres

A map $f:\mathbb{R}^n\stackrel{\sim}{\to}\mathbb{R}^n$ is K-<mark>quasiconformal</mark> if

• f is a homeomorphism, • $f \in W^{1,n}(\mathbb{R}^n)$, • $K_f(\mathbb{R}^n) \leq K$.

A **quasisphere** $f(S^{n-1})$ is image of S^{n-1} under global QC map.

(A quasicircle $f(S^1)$ is usual name for a quasisphere in the plane.)

Examples

Question: What is the relationship between the dilatation K_f of f and the geometry of the quasisphere $f(S^{n-1})$?

[Quasispheres and Bi-Lipschitz Parameterization](#page-0-0) – Matthew Badger – Stony Brook University $3/12$

K ロ > K @ > K 등 > K 등 > … 등

Dimension of Quasispheres

A quasisphere $f(S^{n-1})$ in \mathbb{R}^n has Hausdorff dimension $d_f = \dim f(S^{n-1})$ where $n-1 \leq d_f < n$.

If $K_f(\mathbb{R}^n) = 1$, then f is Möbius. Hence $d_f = n - 1$.

Exist $f(S^{n-1})$ with d_f arbitrarily close to n. (Bishop 1999)

 $d_f \leq n-1+c_n(K_f(\mathbb{R}^n)-1)$ (Mattila and Vuorinen 1990)

■
$$
d_f \le n - 1 + c_n(K_f(\mathbb{R}^n) - 1)^2 \left(\log \frac{1}{K_f(\mathbb{R}^n) - 1} \right)^2
$$

(Prause 2007): Ideal Explot quasisymmetry H_f of f.

"Astala's conjecture": In the plane $(n = 2)$, $d_f \leq 1 + k_f^2$ where $k_f = (K_f(\mathbb{R}^2) - 1)/(K_f(\mathbb{R}^2) + 1)$. (Smirnov 2010)

Refined to $\mathcal{H}^{1+k_{f}^{2}}(f(S^{n-1}))<\infty$ (Prause, Tolsa, Uriarte-Teuro 2012)

[Quasispheres and Bi-Lipschitz Parameterization](#page-0-0) – Matthew Badger – Stony Brook University 4 / 12

KORK EXTERNE PROPER

Asymptotically Conformal Quasispheres

Natural to ask: To what degree is the geometry of $f(S^{n-1})$ determined by the dilatation of f in a neighborhood S^{n-1} ?

Let A_t be annular neighborhood of S^{n-1} of size t.

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \gamma & \gamma \in \mathbb{R} \right\} & \gamma \in \mathbb{R} \end{array} \right.$

 $f(S^{n-1})$ is asymptotically conformal if $\mathcal{K}_f(\mathcal{A}_t) \to 1$ as $t \to 0.$

- If $\mathcal{K}_f(\mathbb{R}^n)=1$, then $d_f=n-1$ and $\mathcal{H}^{n-1}(f(S^{n-1}))<\infty$
- If $f(S^{n-1})$ is asymptotically conformal, then $d_f=n-1$
- There exist asymptotical conformal $f(S^{n-1})$ such that $\mathcal{H}^{n-1}(f(S^{n-1}))=\infty.$ (e.g. "flat snowflakes")
- The problem is $K_f(A_t)$ can converge to 1 very slowly!

Rectifiability

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$
\int_0^{t_0} \Psi(K_f(A_t)-1)\frac{dt}{t}<\infty.
$$

Theorem (Anderson, Becker, Lesley 1988) If $\Psi(t) = t^2$, $n = 2$ and $f|_{B(0,1)}$ is conformal, then $\mathcal{H}^1(f(S^1))<\infty.$

Theorem (Mattila and Vuorinen 1990) If $\Psi(t) = t$, then $f|_{S^{n-1}}$ is Lipschitz. Hence $\mathcal{H}^{n-1}(f(S^{n-1})) < \infty$.

Theorem (Reshetnyak 1994) If $\Psi(t) = t$, then $f|_{S^{n-1}}$ is a C^1 embedded submanifold of \mathbb{R}^n . K ロ X K @ X K 호 X K 호 X → 호 QQ [Quasispheres and Bi-Lipschitz Parameterization](#page-0-0) – Matthew Badger – Stony Brook University 6 / 12

Rectifiability (New Result!)

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$
\int_0^{t_0}\Psi(K_f(A_t)-1)\frac{dt}{t}<\infty.
$$

Theorem (B., Gill, Rohde, Toro 2012) If $\Psi(t)=\left(t\log t^{-1}\right)^2$, then $\mathcal{H}^{n-1}(f(S^{n-1}))<\infty.$ Moreover: $f(S^{n-1})$ admits local $(1+\delta)$ -bi-Lipschitz parameterizations of \mathbb{R}^{n-1} for every choice of $\delta>0.$

- This hypothesis includes the case $\Psi(t)=t^{2-\varepsilon}$, for any $\varepsilon>0$
- The exponent 2 is the best possible, cannot replace with $2 + \varepsilon$.
- The conclusion is about $f(S^{n-1})$, not about $f|_{S^{n-1}}$.
- The conclusion [i](#page-7-0)[s](#page-8-0) weaker than saying $f(S^{n-1})$ $f(S^{n-1})$ $f(S^{n-1})$ $f(S^{n-1})$ is [loc](#page-0-0)[al](#page-0-1)[ly](#page-0-0) C^1 C^1

"True Version" of Theorem: Quasisymmetry Version

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiconformal and assume that

$$
\int_0^{t_0} \sup_{x \in S^{n-1}} \Upsilon(H_f(B(x,t))-1)\frac{dt}{t} < \infty.
$$

Theorem (B., Gill, Rohde, Toro 2012) If $\Upsilon(t)=t^2$, then $\mathcal{H}^{n-1}(f(S^{n-1}))<\infty$. Moreover: $f(\mathcal{S}^{n-1})$ admits local $(1+\delta)$ -bi-Lipschitz parameterizations of

 \mathbb{R}^{n-1} for every choice of $\delta>0.$

Proof is an observation of (Prause 2007) plus a theorem on existence of bi-Lipschitz parameterizations (Toro 1995).

\n- Recall that
$$
H_f(\mathbb{R}^n) - 1 \leq C_n(K_f(\mathbb{R}^n) - 1) \log \left(\frac{1}{K_f(\mathbb{R}^n) - 1} \right)
$$
.
\n

■ To derive "dilatation" version of the theorem from "quasisymmetry" version , need to loca[liz](#page-7-0)e [t](#page-9-0)[h](#page-7-0)[is](#page-8-0) [e](#page-9-0)[sti](#page-0-0)[ma](#page-0-1)[te](#page-0-0)[.](#page-0-1)

Local Flatness of a Set $\theta A^{(x,r)r}$

Jones β-number:

$$
\beta_A(x,r) = \frac{1}{r} \inf_{L \in G(n,n-1)} \sup_{y \in A \cap B(x,r)} \text{dist}(y,(x+L) \cap B(x,r))
$$

Local Flatness:

$$
\theta_A(x,r) = \frac{1}{r} \inf_{L \in G(n,n-1)} \text{HD}[A \cap B(x,r), (x+L) \cap B(x,r)]
$$

$$
0 \leq \beta_A(x,r) \leq \theta_A(x,r) \leq 1 \text{— information when } \beta \text{ or } \theta \text{ is small } \max_{\exists r \text{ values } \theta \text{ is odd}} \theta = \text{``and } \beta \text{ for all } r \text{ or } \theta \text{ is odd.}
$$

Quasisymmetry Controls Local Flatness

Lemma (Prause 2007, BGRT) If $g : \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$, $g(\pm e_1) = \pm e_1$, then $\theta_{\mathcal{g}(\mathsf{e}_1^\perp)}(0,\frac{1}{2})$ $rac{1}{2}$ $< 20[H_f(B_2)-1]$

How does this transfer to estimates on a quasisphere?

 $\theta_{f(\mathcal{T}_x)}(f(x),\frac{1}{4}%)=\frac{1}{2\epsilon_0}\int_{\mathbb{T}_x}^{(x)}\left[\int_{\mathbb{T}_x}^{(x)}\left[f(x, y)\right]^{x}~dy\right] ds$ $\frac{1}{4}f(e_r^+) - f(e_r^-))$ $< 20[H_f(B(x, 2r)) - 1]$

where $x\in S^{n-1}$ (red point),

 T_{x} tangent plane,

$$
e_r^{\pm} = x \pm r \vec{n}_x
$$
 (blue points)

 $A \equiv 1 \pmod{4} \pmod{4} \pmod{4} \pmod{2} \pmod{2}$

Future Directions

- **1** In joint project with Jonas Azzam and Tatiana Toro, we are looking for conditions on H_f which guarantee that $f(S^{n-1})$ is uniformly rectifiable.
- $\mathbf 2$ Converse? If $f(S^{n-1})$ is a rectifiable quasisphere, must $f(S^{n-1})=g(S^{n-1})$ for some quasiconformal map $g: \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$ such that H_g satisfies a square Dini condition?
- **3** Determine if it is possible to remove the logarithm term from the estimate $H_f(\mathbb{R}^n) - 1 \leq C_n(K_f(\mathbb{R}^n) - 1) \log \frac{1}{K_f(\mathbb{R}^n) - 1}.$ This is called the linear dilatation problem.

KOD KAR KED KED E YAN