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Dirichlet Problem

Let n ≥ 2 and let Ω ⊂ Rn be a domain.

Dirichlet Problem

(D)

{
∆u = 0 in Ω
u = f on ∂Ω

∆ = ∂x1x1 +∂x2x2 +· · ·+∂xnxn

∃! family of probability measures {ωX}X∈Ω on the boundary ∂Ω
called harmonic measure of Ω with pole at X ∈ Ω such that

u(X ) =

∫
∂Ω

f (Q)dωX (Q) solves (D)
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Brownian Motion Demonstrations



Examples of Harmonic Measure

I If Ω = Bn unit ball and X ∈ Ω, then

ωX (E ) =

∫
E

1− |X |2

|X − Y |n
dσ(Y )

σn−1
E ⊂ Sn−1

where σn−1 = σ(Sn−1).

I If Ω ⊂ Rn is bounded domain of class C 1,
then ∃ K (X ,Y ) : Ω× ∂Ω→ R such that

ωX (E ) =

∫
E

K (X ,Y )dσ(Y ) E ⊂ ∂Ω.

I We call the Radon-Nikodym derivative
dωX

dσ
= K (X , ·) the Poisson kernel of Ω.
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More Examples of Harmonic Measure

I If Ω ⊂ R2 is a simply connected and ∂Ω is a Jordan curve,
then

I If Ω = A(0, r ,R) ⊂ Rn is an annular region, then the
harmonic measure of “the inner shell” S(0, r) is

ωX (S(0, r)) =


log R − log |X |
log R − log r

if n = 2

|X |2−n − R2−n

r 2−n − R2−n if n ≥ 3
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Harmonic Measure at Different Poles

For every Borel set E ⊂ ∂Ω,
X 7→ ωX (E ) is a nonnegative
harmonic function in Ω

Harmonic measures ωX1 and ωX2 at
different poles are

mutually absolutely continuous
(ωX1(E ) = 0⇔ ωX2(E ) = 0).

“Drop the pole” to get
“the harmonic measure” ω of Ω
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Harmonic Measure and Hausdorff Measure

Theorem: If Ω ⊂ Rn and Hn−2(E ) = 0, then ω(E ) = 0.



Harmonic Measure and Hausdorff Measure

Theorem: If Ω ⊂ Rn and Hn−2(E ) = 0, then ω(E ) = 0.



Harmonic Measure and Hausdorff Measure

Theorem: If Ω ⊂ Rn and Hn−2(E ) = 0, then ω(E ) = 0.



Harmonic Measure and Hausdorff Measure

Theorem: If Ω ⊂ Rn and Hn−2(E ) = 0, then ω(E ) = 0.



Harmonic Measure and Hausdorff Measure

Theorem: If Ω ⊂ Rn and Hn−2(E ) = 0, then ω(E ) = 0.



Dimension of Harmonic Measure

Let dim E denote the Hausdorff dimension of a set E ⊂ Rn.

The (upper) Hausdorff dimension of harmonic measure is smallest
dimension of a set with full harmonic measure:

dimω = inf{dim E : ω(Rn \ E ) = 0}.

On a general domain Ω ⊂ Rn we have the bounds:

n − 2 ≤ dimω ≤ n − bn for some bn > 0

I The lower bound is easy (previous slide)

I The upper bound is a contribution of Bourgain from 1987.
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Harmonic Measure in the Plane

I (Bourgain 1987) dimω ≤ n − bn for some bn > 0

I (F. and M. Riesz 1916) If Ω ⊂ R2 simply connected,
∂Ω Jordan curve and H1(∂Ω) <∞, then ω � H1|∂Ω � ω.
Thus dimω = 1.

I (Makarov 1985) If Ω ⊂ R2 is simply connected, dimω = 1.

I (Jones and Wolff 1988) If Ω ⊂ R2 is any domain, dimω ≤ 1
Thus b2 = 1.

I (Bishop and Jones 1990) “Local F. and M. Riesz theorem”:
if Ω ⊂ R2 is simply connected, Γ = γ([0, 1]) is a curve of
finite length, then ω|Γ � H1|Γ.
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Harmonic Measure in Space

I (Bourgain 1987) dimω ≤ n − bn for some bn > 0

I (Wolff 1995) There exist Jordan domains Ω ⊂ R3 with
“good geometry” such that dimω > 2 or dimω < 2.

These are now called Wolff snowflakes.

I (Lewis, Verchota and Vogel 2005) There exist complementary
domains Ω+ = Ω ⊂ Rn and Ω− = Rn \ Ω such that

I dimω+ > n − 1 and dimω− > n − 1
I dimω+ > n − 1 and dimω− < n − 1
I dimω+ < n − 1 and dimω− < n − 1

I (Kenig, Preiss, Toro 2009) On 2-sided NTA domains Ω ⊂ Rn

if ω+ � ω− � ω+ then dimω± = n − 1.

I (Badger) “F. and M. Riesz Theorem for NTA domains”:
If Ω ⊂ Rn NTA and if Hn−1(∂Ω) <∞, then Hn−1|∂Ω � ω.
Thus dimω = n − 1.
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Open Problems

I Compute Bourgain’s constant bn for n ≥ 3.

I Does bn → 0 as n→∞ or is infn bn > 0?

I Let Ω ⊂ Rn be an NTA domain such that Hn−1(∂Ω) <∞.
Show ω � Hn−1|∂Ω (or find a counterexample).
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Regularity of Harmonic Measure

Recall if Ω ⊂ Rn is bounded domain
and ∂Ω is at least C 1, then

ωX (E ) =

∫
E

dωX

dσ
(Y )dσ(Y ) E ⊂ ∂Ω.

Regularity of the Boundary =⇒ Regularity of the Poisson Kernel:

I ∂Ω is C∞ ⇒ log dω
dσ ∈ C∞(∂Ω)

I ∂Ω is C k and k ≥ 2 ⇒ log dω
dσ ∈ C k−1(∂Ω)

I ∂Ω is C 1,α and α > 0 ⇒ log dω
dσ ∈ C 0,α(∂Ω) (Kellogg 1929)

I ∂Ω is C 1 ⇒ log dω
dσ ∈ VMO(∂Ω) (Jerison and Kenig 1982)
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Free Boundary Problem 1

Let Ω ⊂ Rn be a domain of locally finite perimeter, with
harmonic measure ω and surface measure σ = Hn−1|∂Ω.

If the Poisson kernel
dω

dσ
is sufficiently regular,

then how regular is the boundary ∂Ω?



FBP 1 Results

I (Kinderlehrer and Nirenberg 1977) Let Ω ⊂ Rn be of class C 1.

1. log dω
dσ ∈ C 1+m,α for m ≥ 0, α ∈ (0, 1) =⇒ ∂Ω is C 2+m,α.

2. log dω
dσ ∈ C∞ =⇒ ∂Ω is C∞

3. log dω
dσ is real analytic =⇒ ∂Ω is real analytic.

I (Alt and Caffarelli 1981) Assume Ω ⊂ Rn satisfies necessary
“weak conditions” (that includes C 1 as a special case). Then:
log dω

dσ ∈ C 0,α for α > 0 =⇒ ∂Ω is C 1,β, β = β(α) > 0.

I (Jerison 1987) In Alt and Caffarelli’s Theorem, β = α.

I (Jerison 1987) log dω
dσ ∈ C 0 =⇒ ∂Ω is VMO1.

I (Kenig and Toro 2003) Studied FBP 1 with log dω
dσ ∈ VMO.
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Examples of NTA Domains

Smooth Domains Lipschitz Domains Quasispheres

(e.g. snowflake)

Question: How should we measure regularity of harmonic measure
on domains which do not have surface measure?
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Free Boundary Problem 2

Ω ⊂ Rn is a 2-sided domain if:

1. Ω+ = Ω is open and connected

2. Ω− = Rn \ Ω is open and connected

3. ∂Ω+ = ∂Ω−

Let Ω ⊂ Rn be a 2-sided domain, equipped with interior
harmonic measure ω+ and exterior harmonic measure ω−

If the two-sided kernel
dω−

dω+
is sufficiently regular,

then how regular is the boundary ∂Ω?



An Unexpected Example

log dω−

dω+ is smooth 6⇒ ∂Ω is smooth

Figure: The zero set of the harmonic polynomial
h(x , y , z) = x2(y − z) + y 2(z − x) + z2(x − y)− 10xyz

Ω± = {h± > 0} is a 2-sided domain, ω+ = ω− (pole at infinity),

log dω−

dω+ ≡ 0 but ∂Ω± = {h = 0} is not smooth at the origin.
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Local Flatness

I Always have θA(x , r) ≤ 1 — only get information if θ is small

I A ⊂ Rn is δ-Reifenberg flat, if θA(x , r) ≤ δ ∀x ∈ A, r ≤ r0

I A ⊂ Rn is Reifenberg flat with vanishing constant
if A is δ-Reifenberg flat for all δ > 0
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I A ⊂ Rn is Reifenberg flat with vanishing constant
if A is δ-Reifenberg flat for all δ > 0



Blow-up of a Set ( = Zooming In on a Set)

Let A ⊂ Rn be a closed set and let x ∈ A.
We say B is a blow-up of A at x ∈ A if ∃ radii ri ↓ 0 so that

A− x

ri
→ B in Hausdorff distance, uniformly on compact sets.

Figure: A blow-up of Sn−1 at the north pole is the plane Rn−1 × {0}
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Structure Theorem for FBP 2

Theorem (Badger) Assume Ω ⊂ Rn is a 2-sided NTA domain,

ω+ � ω− � ω+ and log dω−

dω+ ∈ C 0(∂Ω).

There exists d ≥ 1 (depending on the NTA constants) such that
∂Ω = Γ1 ∪ Γ2 ∪ · · · ∪ Γd .

1. Every blow-up of ∂Ω about a point Q ∈ Γk is the zero set
h−1(0) of a homogeneous harmonic polynomial h of degree k
which separates Rn into two components.

2. The “flat points” Γ1 is an open subset of ∂Ω and is (locally)
Reifenberg flat with vanishing constant.

3. The “singularities” Γ2 ∪ · · · ∪ Γd have harmonic measure zero.
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Flat Points Q ∈ Γ1

Figure: h−1(0) when h homogeneous harmonic polynomial of degree 1,
i.e. a plane through the origin

Remarks

I Γ1 has full measure: ω±(∂Ω \ Γ1) = 0.

I Γ1 is open in ∂Ω and Reifenberg flat with vanishing constant.
Thus dim Γ1 = n − 1.

I At Q ∈ Γ1 one can see different planes as limi→∞
∂Ω−Q

ri
along

different sequences of scales ri ↓ 0.

I In dimension n = 2, ∂Ω = Γ1.
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Singularities Q ∈ Γ2 ∪ · · · ∪ Γd

Figure: h−1(0) where h(x , y , z) = x2(y − z) + y 2(z− x) + z2(x − y)− xyz
is an example blow-up of ∂Ω about Q ∈ Γ3, Ω ⊂ R3.

Remarks

I Γ2 ∪ · · · ∪ Γd ⊂ ∂Ω is closed and ω±(Γ2 ∪ · · · ∪ Γd) = 0.

I Examples shows that dim(Γ2 ∪ · · · ∪ Γd) = n − 3 is possible.
Upper bound is unknown.

I In dimension n = 3, ∂Ω = Γ1 ∪ Γ3 ∪ Γ5 ∪ · · · ∪ Γ2k+1.
(by a Result about Spherical Harmonics by Lewy 1977)
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Ingredients in the Proof

1. FBP 2 was studied by Kenig and Toro (2006) who showed
that blow-ups of ∂Ω are zero sets of harmonic polynomials.

I We show that only zero sets of homogeneous harmonic
polynomials appear as blow-ups.

I We show the degree of polynomials appearing in blow-ups is
unique at every Q ∈ ∂Ω. Hence ∂Ω = Γ1 ∪ Γ2 ∪ · · · ∪ Γd .

I We study topology and size of the sets Γk .

2. To classify geometric blow-ups of the boundary, we study
measure-theoretic blow-ups of ω (tangent measures).

3. To show Γ1 is open, we study local flatness properties of the
zero sets of harmonic polynomials.
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Open Problems

Open Problems

1. Are each of the sets Γk , k ≥ 2 closed separately?

2. Find a sharp upper bound on dim Γk for k ≥ 2.
(Conjecture: dim Γk ≤ n − 3.)

3. If log dω−

dω+ is C 0,α, then is Γ1 locally the C 1,α image of a
hyperplane?

4. If log dω−

dω+ is C 0,α, then at Q ∈ Γk is ∂Ω locally the C 1,α

image of the zero set of a homogeneous harmonic polynomial
of degree k separating Rn into two components?
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Flat Points
If p : Rn → R is a polynomial (with real coefficients), then
Σp = {X ∈ Rn : p(X ) = 0} is its zero set.

We say X ∈ Σp is a flat point if limr↓0 θΣp(X , r) = 0.

I If X ∈ Σp and Dp(X ) 6= 0, then X is a flat point.

I Converse is not true for general polynomials!
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Converse for Harmonic Polynomials

Theorem (Badger) For each n ≥ 2 and d ≥ 2, there exists
δn,d > 0 with the following property:

If p : Rn → R is a harmonic polynomial of degree d, then
X ∈ Σp and Dp(X ) = 0⇒ θΣp(X , r) ≥ δn,d for all r > 0.

Corollary (Badger) If p : Rn → R is a harmonic polynomial, then
{X ∈ Σp : X is flat} = {X ∈ Σp : Dp(X ) 6= 0}.

Open Problem Find all polynomials p : Rn → R whose zero set
Σp has the feature that its flat points and regular points coincide.
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