Matthew Badger

Department of Mathematics Stony Brook University

September 28, 2011

Research Partially Supported by NSF Grants DMS-0838212 and DMS-0856687

K ロ K K 個 K K X B K X B K C B

 299

Part I Harmonic Measure

Part II Dimension of Harmonic Measure

Part III Free Boundary Problems for Harmonic Measure

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Part IV Interlude: Geometric Measure Theory

Part V Structure Theorem for FBP 2

Dirichlet Problem

Let $n \geq 2$ and let $\Omega \subset \mathbb{R}^n$ be a domain.

∃! family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$
u(X) = \int_{\partial\Omega} f(Q)d\omega^X(Q) \quad \text{ solves (D)}
$$

 2990

Dirichlet Problem

∃! family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$
u(X) = \int_{\partial \Omega} f(Q) d\omega^X(Q) \quad \text{ solves (D)}
$$

イロト 不優 トメ 差 トメ 差 トー 差し

 2990

Dirichlet Problem

∃! family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$
u(X) = \int_{\partial \Omega} f(Q) d\omega^X(Q) \quad \text{ solves (D)}
$$

Brownian Motion Demonstrations

KOX KOX KEX KEX E 1990

Examples of Harmonic Measure

If $\Omega = \mathbb{B}^n$ unit ball and $X \in \Omega$, then

$$
\omega^X(E) = \int_E \frac{1 - |X|^2}{|X - Y|^n} \frac{d\sigma(Y)}{\sigma_{n-1}} \quad E \subset S^{n-1}
$$

where $\sigma_{n-1} = \sigma(S^{n-1}).$

 \blacktriangleright If $\Omega \subset \mathbb{R}^n$ is bounded domain of class C^1 , then $\exists K(X, Y) : \Omega \times \partial \Omega \rightarrow \mathbb{R}$ such that

$$
\omega^X(E) = \int_E K(X, Y) d\sigma(Y) \quad E \subset \partial \Omega.
$$

 \triangleright We call the Radon-Nikodym derivative $d\omega^X$ $\frac{d\omega}{d\sigma} = K(X, \cdot)$ the **Poisson kernel** of Ω .

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Examples of Harmonic Measure

If $\Omega = \mathbb{B}^n$ unit ball and $X \in \Omega$, then

$$
\omega^X(E) = \int_E \frac{1 - |X|^2}{|X - Y|^n} \frac{d\sigma(Y)}{\sigma_{n-1}} \quad E \subset S^{n-1}
$$

where $\sigma_{n-1} = \sigma(S^{n-1}).$

 \blacktriangleright If $\Omega \subset \mathbb{R}^n$ is bounded domain of class C^1 , then $\exists K(X, Y) : \Omega \times \partial \Omega \rightarrow \mathbb{R}$ such that

$$
\omega^X(E) = \int_E K(X,Y)d\sigma(Y) \quad E \subset \partial \Omega.
$$

• We call the Radon-Nikodym derivative
\n
$$
\frac{d\omega^X}{d\sigma} = K(X, \cdot)
$$
 the **Poisson kernel** of Ω .

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Examples of Harmonic Measure

If $\Omega = \mathbb{B}^n$ unit ball and $X \in \Omega$, then

$$
\omega^X(E) = \int_E \frac{1 - |X|^2}{|X - Y|^n} \frac{d\sigma(Y)}{\sigma_{n-1}} \quad E \subset S^{n-1}
$$

where $\sigma_{n-1} = \sigma(S^{n-1}).$

 \blacktriangleright If $\Omega \subset \mathbb{R}^n$ is bounded domain of class C^1 , then $\exists K(X, Y) : \Omega \times \partial \Omega \rightarrow \mathbb{R}$ such that

$$
\omega^X(E)=\int_E K(X,Y)d\sigma(Y)\quad E\subset\partial\Omega.
$$

• We call the Radon-Nikodym derivative
\n
$$
\frac{d\omega^X}{d\sigma} = K(X, \cdot)
$$
 the **Poisson kernel** of Ω .

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

More Examples of Harmonic Measure

► If $\Omega \subset \mathbb{R}^2$ is a simply connected and $\partial \Omega$ is a Jordan curve, then

KORK (FRAGE) KEY GROV

If $\Omega = A(0, r, R) \subset \mathbb{R}^n$ is an annular region, then the harmonic measure of "the inner shell" $S(0, r)$ is

$$
\omega^{X}(S(0,r)) = \begin{cases}\n\frac{\log R - \log |X|}{\log R - \log r} & \text{if } n = 2 \\
\frac{|X|^{2-n} - R^{2-n}}{r^{2-n} - R^{2-n}} & \text{if } n \ge 3\n\end{cases}
$$

More Examples of Harmonic Measure

► If $\Omega \subset \mathbb{R}^2$ is a simply connected and $\partial \Omega$ is a Jordan curve, then

If $\Omega = A(0, r, R) \subset \mathbb{R}^n$ is an annular region, then the harmonic measure of "the inner shell" $S(0, r)$ is

$$
\omega^{X}(S(0,r)) = \begin{cases} \frac{\log R - \log |X|}{\log R - \log r} & \text{if } n = 2 \\ \frac{|X|^{2-n} - R^{2-n}}{r^{2-n} - R^{2-n}} & \text{if } n \ge 3 \end{cases}
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 2990

Harmonic Measure at Different Poles

For every Borel set $E \subset \partial \Omega$, $X \mapsto \omega^X(E)$ is a nonnegative harmonic function in Ω

Harmonic measures ω^{X_1} and ω^{X_2} at different poles are mutually absolutely continuous $(\omega^{X_1}(E) = 0 \Leftrightarrow \omega^{X_2}(E) = 0).$

"Drop the pole" to get "the harmonic measure" ω of Ω

Harmonic Measure at Different Poles

 $cw^{X_2}(E) < w^{X_1}(E) < Cw^{X_2}(E)$

For every Borel set $E \subset \partial \Omega$, $X \mapsto \omega^X(E)$ is a nonnegative harmonic function in Ω

Harmonic measures ω^{X_1} and ω^{X_2} at different poles are mutually absolutely continuous $(\omega^{X_1}(E) = 0 \Leftrightarrow \omega^{X_2}(E) = 0).$

"Drop the pole" to get "the harmonic measure" ω of Ω

イロト 不優 トメ 君 トメ 君 トー 道

 2990

Harmonic Measure at Different Poles

 $cw^{X_2}(E) < w^{X_1}(E) < Cw^{X_2}(E)$

For every Borel set $E \subset \partial \Omega$, $X \mapsto \omega^X(E)$ is a nonnegative harmonic function in Ω

Harmonic measures ω^{X_1} and ω^{X_2} at different poles are mutually absolutely continuous $(\omega^{X_1}(E) = 0 \Leftrightarrow \omega^{X_2}(E) = 0).$

"Drop the pole" to get "the harmonic measure" ω of Ω

> **KID KIND KEY KEY LE** 2990

Part I Harmonic Measure

Part II Dimension of Harmonic Measure

Part III Free Boundary Problems for Harmonic Measure

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Part IV Interlude: Geometric Measure Theory

Part V Structure Theorem for FBP 2

Theorem: If $\Omega \subset \mathbb{R}^n$ and $\mathcal{H}^{n-2}(E) = 0$, then $\omega(E) = 0$.

K □ ▶ K @ ▶ K 할 X K 할 X (할 X) 9 Q Q ·

Theorem: If $\Omega \subset \mathbb{R}^n$ and $\mathcal{H}^{n-2}(E) = 0$, then $\omega(E) = 0$.

K □ ▶ K @ ▶ K 할 X K 할 X (할 X) 9 Q Q ·

Theorem: If $\Omega \subset \mathbb{R}^n$ and $\mathcal{H}^{n-2}(E) = 0$, then $\omega(E) = 0$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Theorem: If $\Omega \subset \mathbb{R}^n$ and $\mathcal{H}^{n-2}(E) = 0$, then $\omega(E) = 0$.

Theorem: If $\Omega \subset \mathbb{R}^n$ and $\mathcal{H}^{n-2}(E) = 0$, then $\omega(E) = 0$.

KENKEN E MAG

Let dim E denote the Hausdorff dimension of a set $E \subset \mathbb{R}^n$.

The (upper) Hausdorff dimension of harmonic measure is smallest dimension of a set with full harmonic measure:

$$
\dim \omega = \inf \{ \dim E : \omega(\mathbb{R}^n \setminus E) = 0 \}.
$$

On a general domain $\Omega \subset \mathbb{R}^n$ we have the bounds:

 $n-2 < \dim \omega < n-b_n$ for some $b_n > 0$

-
-

Let dim E denote the Hausdorff dimension of a set $E \subset \mathbb{R}^n$.

The (upper) Hausdorff dimension of harmonic measure is smallest dimension of a set with full harmonic measure:

$$
\dim \omega = \inf \{ \dim E : \omega(\mathbb{R}^n \setminus E) = 0 \}.
$$

On a general domain $\Omega \subset \mathbb{R}^n$ we have the bounds:

$$
n-2 \leq \dim \omega \leq n-b_n \quad \text{ for some } b_n > 0
$$

- \triangleright The lower bound is easy (previous slide)
- \blacktriangleright The upper bound is a contribution of Bourgain from 1987.

Let dim E denote the Hausdorff dimension of a set $E \subset \mathbb{R}^n$.

The (upper) Hausdorff dimension of harmonic measure is smallest dimension of a set with full harmonic measure:

$$
\dim \omega = \inf \{ \dim E : \omega(\mathbb{R}^n \setminus E) = 0 \}.
$$

On a general domain $\Omega \subset \mathbb{R}^n$ we have the bounds:

$$
n-2 \leq \dim \omega \leq n-b_n \quad \text{ for some } b_n > 0
$$

- \triangleright The lower bound is easy (previous slide)
- \triangleright The upper bound is a contribution of Bourgain from 1987.

Let dim E denote the Hausdorff dimension of a set $E \subset \mathbb{R}^n$.

The (upper) Hausdorff dimension of harmonic measure is smallest dimension of a set with full harmonic measure:

$$
\dim \omega = \inf \{ \dim E : \omega(\mathbb{R}^n \setminus E) = 0 \}.
$$

On a general domain $\Omega \subset \mathbb{R}^n$ we have the bounds:

$$
n-2 \leq \dim \omega \leq n-b_n \quad \text{ for some } b_n > 0
$$

- \blacktriangleright The lower bound is easy (previous slide)
- \blacktriangleright The upper bound is a contribution of Bourgain from 1987.

► (Bourgain 1987) dim $\omega \le n - b_n$ for some $b_n > 0$

- \blacktriangleright (F. and M. Riesz 1916) If Ω $\subset \mathbb{R}^2$ simply connected, $\partial \Omega$ Jordan curve and $\mathcal{H}^1(\partial \Omega)<\infty$, then $\omega \ll \mathcal{H}^1|_{\partial \Omega} \ll \omega$. Thus dim $\omega = 1$.
- \blacktriangleright (Makarov 1985) If Ω ⊂ \mathbb{R}^2 is simply connected, dim $\omega = 1$.
- \blacktriangleright (Jones and Wolff 1988) If $\Omega\subset\mathbb{R}^2$ is any domain, dim $\omega\leq 1$ Thus $b_2 = 1$.
- \triangleright (Bishop and Jones 1990) "Local F. and M. Riesz theorem": if $\Omega \subset \mathbb{R}^2$ is simply connected, $\Gamma = \gamma([0,1])$ is a curve of finite length, then $\omega|_{\mathsf{\Gamma}} \ll \mathcal{H}^1|_{\mathsf{\Gamma}}.$

- ► (Bourgain 1987) dim ω < $n b_n$ for some $b_n > 0$
- ► (F. and M. Riesz 1916) If $\Omega \subset \mathbb{R}^2$ simply connected, $\partial \Omega$ Jordan curve and $\mathcal{H}^1(\partial \Omega)<\infty$, then $\omega \ll \mathcal{H}^1|_{\partial \Omega} \ll \omega$. Thus dim $\omega = 1$.
- \blacktriangleright (Makarov 1985) If Ω ⊂ \mathbb{R}^2 is simply connected, dim $\omega = 1$.
- \blacktriangleright (Jones and Wolff 1988) If $\Omega\subset\mathbb{R}^2$ is any domain, dim $\omega\leq 1$ Thus $b_2 = 1$.
- ▶ (Bishop and Jones 1990) "Local F. and M. Riesz theorem": if $\Omega \subset \mathbb{R}^2$ is simply connected, $\Gamma = \gamma([0,1])$ is a curve of finite length, then $\omega|_{\mathsf{\Gamma}} \ll \mathcal{H}^1|_{\mathsf{\Gamma}}.$

KORKAR KERKER DRAM

- ► (Bourgain 1987) dim ω < $n b_n$ for some $b_n > 0$
- ► (F. and M. Riesz 1916) If $\Omega \subset \mathbb{R}^2$ simply connected, $\partial \Omega$ Jordan curve and $\mathcal{H}^1(\partial \Omega)<\infty$, then $\omega \ll \mathcal{H}^1|_{\partial \Omega} \ll \omega$. Thus dim $\omega = 1$.
- \blacktriangleright (Makarov 1985) If Ω \subset \mathbb{R}^2 is simply connected, dim $\omega=1.$
- \blacktriangleright (Jones and Wolff 1988) If $\Omega\subset\mathbb{R}^2$ is any domain, dim $\omega\leq 1$ Thus $b_2 = 1$.
- ▶ (Bishop and Jones 1990) "Local F. and M. Riesz theorem": if $\Omega \subset \mathbb{R}^2$ is simply connected, $\Gamma = \gamma([0,1])$ is a curve of finite length, then $\omega|_{\mathsf{\Gamma}} \ll \mathcal{H}^1|_{\mathsf{\Gamma}}.$

KORKAR KERKER DRAM

- ► (Bourgain 1987) dim ω < $n b_n$ for some $b_n > 0$
- ► (F. and M. Riesz 1916) If $\Omega \subset \mathbb{R}^2$ simply connected, $\partial \Omega$ Jordan curve and $\mathcal{H}^1(\partial \Omega)<\infty$, then $\omega \ll \mathcal{H}^1|_{\partial \Omega} \ll \omega$. Thus dim $\omega = 1$.
- \blacktriangleright (Makarov 1985) If Ω \subset \mathbb{R}^2 is simply connected, dim $\omega=1.$
- \blacktriangleright (Jones and Wolff 1988) If $\Omega\subset\mathbb{R}^2$ is any domain, dim $\omega\leq 1$ Thus $b_2 = 1$.
- ▶ (Bishop and Jones 1990) "Local F. and M. Riesz theorem": if $\Omega \subset \mathbb{R}^2$ is simply connected, $\Gamma = \gamma([0,1])$ is a curve of finite length, then $\omega|_{\mathsf{\Gamma}} \ll \mathcal{H}^1|_{\mathsf{\Gamma}}.$

AD A RELATE LE A RELATE DE

► (Bourgain 1987) dim ω < $n - b_n$ for some $b_n > 0$

- ► (F. and M. Riesz 1916) If $\Omega \subset \mathbb{R}^2$ simply connected, $\partial \Omega$ Jordan curve and $\mathcal{H}^1(\partial \Omega)<\infty$, then $\omega \ll \mathcal{H}^1|_{\partial \Omega} \ll \omega$. Thus dim $\omega = 1$.
- \blacktriangleright (Makarov 1985) If Ω \subset \mathbb{R}^2 is simply connected, dim $\omega=1.$
- \blacktriangleright (Jones and Wolff 1988) If $\Omega\subset\mathbb{R}^2$ is any domain, dim $\omega\leq 1$ Thus $b_2 = 1$.
- \blacktriangleright (Bishop and Jones 1990) "Local F. and M. Riesz theorem": if $\Omega \subset \mathbb{R}^2$ is simply connected, $\Gamma = \gamma([0,1])$ is a curve of finite length, then $\omega|_{\mathsf{\Gamma}} \ll \mathcal{H}^1|_{\mathsf{\Gamma}}.$

AD A RELATE LE A RELATE DE

- ► (Bourgain 1987) dim $\omega \le n b_n$ for some $b_n > 0$
- \blacktriangleright (Wolff 1995) There exist Jordan domains $Ω ⊂ ℝ³$ with "good geometry" such that dim $\omega > 2$ or dim $\omega < 2$. These are now called Wolff snowflakes.
- \blacktriangleright (Lewis, Verchota and Vogel 2005) There exist complementary domains $\Omega^+=\Omega\subset\mathbb{R}^n$ and $\Omega^+=\mathbb{R}^n\setminus\overline{\Omega}$ such that
	- \blacktriangleright dim $\omega^+ > n 1$ and dim $\omega^- > n 1$
	- \blacktriangleright dim $\omega^+ > n 1$ and dim $\omega^- < n 1$
	- \blacktriangleright dim $\omega^+ < n-1$ and dim $\omega^- < n-1$
- \blacktriangleright (Kenig, Preiss, Toro 2009) On 2-sided NTA domains Ω $\subset \mathbb{R}^n$ if $\omega^+ \ll \omega^- \ll \omega^+$ then $\dim \omega^{\pm} = n-1$.
- \triangleright (Badger) "F. and M. Riesz Theorem for NTA domains": If $\Omega\subset \mathbb{R}^n$ NTA and if $\mathcal{H}^{n-1}(\partial \Omega)<\infty$, then $\mathcal{H}^{n-1}|_{\partial \Omega}\ll\omega.$ Thus dim $\omega = n - 1$. **KORKAR KERKER EL POLO**

- ► (Bourgain 1987) dim $\omega \le n b_n$ for some $b_n > 0$
- \blacktriangleright (Wolff 1995) There exist Jordan domains $\Omega\subset\mathbb{R}^3$ with "good geometry" such that dim $\omega > 2$ or dim $\omega < 2$. These are now called Wolff snowflakes.
- \blacktriangleright (Lewis, Verchota and Vogel 2005) There exist complementary domains $\Omega^+=\Omega\subset\mathbb{R}^n$ and $\Omega^+=\mathbb{R}^n\setminus\overline{\Omega}$ such that
	- \blacktriangleright dim $\omega^+ > n 1$ and dim $\omega^- > n 1$
	- \blacktriangleright dim $\omega^+ > n 1$ and dim $\omega^- < n 1$
	- \blacktriangleright dim $\omega^+ < n-1$ and dim $\omega^- < n-1$
- \blacktriangleright (Kenig, Preiss, Toro 2009) On 2-sided NTA domains Ω $\subset \mathbb{R}^n$ if $\omega^+ \ll \omega^- \ll \omega^+$ then $\dim \omega^{\pm} = n-1$.
- \triangleright (Badger) "F. and M. Riesz Theorem for NTA domains": If $\Omega\subset \mathbb{R}^n$ NTA and if $\mathcal{H}^{n-1}(\partial \Omega)<\infty$, then $\mathcal{H}^{n-1}|_{\partial \Omega}\ll\omega.$ Thus dim $\omega = n - 1$. **KORKAR KERKER EL POLO**

- ► (Bourgain 1987) dim $\omega \le n b_n$ for some $b_n > 0$
- \blacktriangleright (Wolff 1995) There exist Jordan domains $\Omega\subset\mathbb{R}^3$ with "good geometry" such that dim $\omega > 2$ or dim $\omega < 2$. These are now called Wolff snowflakes.
- \blacktriangleright (Lewis, Verchota and Vogel 2005) There exist complementary domains $\Omega^+=\Omega\subset \mathbb{R}^n$ and $\Omega^-=\mathbb{R}^n\setminus\overline{\Omega}$ such that
	- \blacktriangleright dim $\omega^+ > n 1$ and dim $\omega^- > n 1$
	- \blacktriangleright dim $\omega^+ > n 1$ and dim $\omega^- < n 1$
	- \blacktriangleright dim $\omega^+ < n-1$ and dim $\omega^- < n-1$
- \blacktriangleright (Kenig, Preiss, Toro 2009) On 2-sided NTA domains Ω $\subset \mathbb{R}^n$ if $\omega^+ \ll \omega^- \ll \omega^+$ then $\dim \omega^{\pm} = n-1$.
- \triangleright (Badger) "F. and M. Riesz Theorem for NTA domains": If $\Omega\subset \mathbb{R}^n$ NTA and if $\mathcal{H}^{n-1}(\partial \Omega)<\infty$, then $\mathcal{H}^{n-1}|_{\partial \Omega}\ll\omega.$ Thus dim $\omega = n - 1$. **KORK (FRAGE) ASSESSED**

- ► (Bourgain 1987) dim $\omega \leq n b_n$ for some $b_n > 0$
- \blacktriangleright (Wolff 1995) There exist Jordan domains $\Omega\subset\mathbb{R}^3$ with "good geometry" such that dim $\omega > 2$ or dim $\omega < 2$. These are now called Wolff snowflakes.
- \blacktriangleright (Lewis, Verchota and Vogel 2005) There exist complementary domains $\Omega^+=\Omega\subset \mathbb{R}^n$ and $\Omega^-=\mathbb{R}^n\setminus\overline{\Omega}$ such that
	- \blacktriangleright dim $\omega^+ > n 1$ and dim $\omega^- > n 1$
	- \blacktriangleright dim $\omega^+ > n 1$ and dim $\omega^- < n 1$
	- \blacktriangleright dim $\omega^+ < n-1$ and dim $\omega^- < n-1$
- ► (Kenig, Preiss, Toro 2009) On 2-sided NTA domains $\Omega \subset \mathbb{R}^n$ if $\omega^+ \ll \omega^- \ll \omega^+$ then $\dim \omega^{\pm} = n-1$.

 \triangleright (Badger) "F. and M. Riesz Theorem for NTA domains": If $\Omega\subset \mathbb{R}^n$ NTA and if $\mathcal{H}^{n-1}(\partial \Omega)<\infty$, then $\mathcal{H}^{n-1}|_{\partial \Omega}\ll\omega.$ Thus dim $\omega = n - 1$. **KORK (FRAGE) ASSESSED**

- ► (Bourgain 1987) dim $\omega \leq n b_n$ for some $b_n > 0$
- \blacktriangleright (Wolff 1995) There exist Jordan domains $\Omega\subset\mathbb{R}^3$ with "good geometry" such that dim $\omega > 2$ or dim $\omega < 2$. These are now called Wolff snowflakes.
- \blacktriangleright (Lewis, Verchota and Vogel 2005) There exist complementary domains $\Omega^+=\Omega\subset \mathbb{R}^n$ and $\Omega^-=\mathbb{R}^n\setminus\overline{\Omega}$ such that
	- \blacktriangleright dim $\omega^+ > n 1$ and dim $\omega^- > n 1$
	- \blacktriangleright dim $\omega^+ > n 1$ and dim $\omega^- < n 1$
	- \blacktriangleright dim $\omega^+ < n-1$ and dim $\omega^- < n-1$
- ► (Kenig, Preiss, Toro 2009) On 2-sided NTA domains $\Omega \subset \mathbb{R}^n$ if $\omega^+ \ll \omega^- \ll \omega^+$ then $\dim \omega^{\pm} = n-1$.
- \blacktriangleright (Badger) "F. and M. Riesz Theorem for NTA domains": If $\Omega\subset \mathbb{R}^n$ NTA and if $\mathcal{H}^{n-1}(\partial\Omega)<\infty$, then $\mathcal{H}^{n-1}|_{\partial\Omega}\ll\omega$. Thus dim $\omega = n - 1$. **KORK (FRAGE) ASSESSED**

Open Problems

► Compute Bourgain's constant b_n for $n > 3$.

Does $b_n \to 0$ as $n \to \infty$ or is inf_n $b_n > 0$?

► Let $\Omega\subset\mathbb{R}^n$ be an NTA domain such that $\mathcal{H}^{n-1}(\partial\Omega)<\infty.$ Show $\omega \ll \mathcal{H}^{n-1}|_{\partial \Omega}$ (or find a counterexample).

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Part I Harmonic Measure

Part II Dimension of Harmonic Measure

Part III Free Boundary Problems for Harmonic Measure

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Part IV Interlude: Geometric Measure Theory

Part V Structure Theorem for FBP 2
Regularity of Harmonic Measure

Recall if $\Omega \subset \mathbb{R}^n$ is bounded domain and $\partial\Omega$ is at least \mathcal{C}^1 , then

$$
\omega^X(E)=\int_E \frac{d\omega^X}{d\sigma}(Y)d\sigma(Y) \quad E\subset \partial \Omega.
$$

 290

Regularity of the Boundary \implies Regularity of the Poisson Kernel:

-
-
-
-

Regularity of Harmonic Measure

Recall if $\Omega \subset \mathbb{R}^n$ is bounded domain and $\partial\Omega$ is at least \mathcal{C}^1 , then

$$
\omega^X(E)=\int_E \frac{d\omega^X}{d\sigma}(Y)d\sigma(Y) \quad E\subset \partial \Omega.
$$

Regularity of the Boundary \implies Regularity of the Poisson Kernel:

- \blacktriangleright ∂Ω is $C^{\infty} \Rightarrow \log \frac{d\omega}{d\sigma} \in C^{\infty}(\partial \Omega)$
- \blacktriangleright ∂Ω is C^k and $k \geq 2 \Rightarrow \log \frac{d\omega}{d\sigma} \in C^{k-1}(\partial \Omega)$
- $▶ \partial Ω$ is $C^{1,\alpha}$ and $\alpha > 0 \Rightarrow \log \frac{d\omega}{d\sigma} \in C^{0,\alpha}(\partial \Omega)$ (Kellogg 1929)
- $▶ \partial Ω$ is $C^1 ⇒ \log \frac{d\omega}{d\sigma} ∈ \text{VMO}(\partial Ω)$ (Jerison and Kenig 1982)

Free Boundary Problem 1

イロン イ部ン イ君ン イ君ン

 2990

Let $\Omega \subset \mathbb{R}^n$ be a domain of locally finite perimeter, with harmonic measure ω and surface measure $\sigma = \mathcal{H}^{n-1} |_{\partial \Omega}$. If the **Poisson kernel** $\frac{d\omega}{d\sigma}$ is sufficiently regular, then how regular is the boundary $\partial\Omega$?

 \blacktriangleright (Kinderlehrer and Nirenberg 1977) Let $Ω ⊂ ℝⁿ$ be of class $C¹$.

- 1. $\log \frac{d\omega}{d\sigma} \in C^{1+m,\alpha}$ for $m \ge 0$, $\alpha \in (0,1) \implies \partial\Omega$ is $C^{2+m,\alpha}$.
- 2. $\log \frac{d\omega}{d\sigma} \in C^{\infty} \Longrightarrow \partial \Omega$ is C^{∞}
- 3. log $\frac{d\omega}{d\sigma}$ is real analytic \Longrightarrow ∂Ω is real analytic.
- \blacktriangleright (Alt and Caffarelli 1981) Assume Ω $\subset \mathbb{R}^n$ satisfies necessary "weak conditions" (that includes C^1 as a special case). Then: $\log \frac{d\omega}{d\sigma} \in C^{0,\alpha}$ for $\alpha > 0 \Longrightarrow \partial \Omega$ is $C^{1,\beta}, \ \beta = \beta(\alpha) > 0$.
- \blacktriangleright (Jerison 1987) In Alt and Caffarelli's Theorem, $\beta = \alpha$.
- ► (Jerison 1987) log $\frac{d\omega}{d\sigma} \in C^0 \implies \partial \Omega$ is VMO₁.
- ► (Kenig and Toro 2003) Studied FBP 1 with log $\frac{d\omega}{d\sigma} \in$ VMO.

 \blacktriangleright (Kinderlehrer and Nirenberg 1977) Let $Ω ⊂ ℝⁿ$ be of class $C¹$.

1.
$$
\log \frac{d\omega}{d\sigma} \in C^{1+m,\alpha}
$$
 for $m \ge 0$, $\alpha \in (0,1) \implies \partial\Omega$ is $C^{2+m,\alpha}$.

2.
$$
\log \frac{d\omega}{d\sigma} \in C^{\infty} \implies \partial \Omega
$$
 is C^{∞}

- 3. log $\frac{d\omega}{d\sigma}$ is real analytic \Longrightarrow ∂Ω is real analytic.
- \blacktriangleright (Alt and Caffarelli 1981) Assume Ω $\subset \mathbb{R}^n$ satisfies necessary "weak conditions" (that includes C^1 as a special case). Then: $\log \frac{d\omega}{d\sigma} \in C^{0,\alpha}$ for $\alpha > 0 \Longrightarrow \partial \Omega$ is $C^{1,\beta}, \ \beta = \beta(\alpha) > 0$.
- \blacktriangleright (Jerison 1987) In Alt and Caffarelli's Theorem, $\beta = \alpha$.
- ► (Jerison 1987) log $\frac{d\omega}{d\sigma} \in C^0 \implies \partial \Omega$ is VMO₁.
- ► (Kenig and Toro 2003) Studied FBP 1 with log $\frac{d\omega}{d\sigma} \in$ VMO.

AD A RELATE LE A RELATE DE

 \blacktriangleright (Kinderlehrer and Nirenberg 1977) Let $Ω ⊂ ℝⁿ$ be of class $C¹$.

1.
$$
\log \frac{d\omega}{d\sigma} \in C^{1+m,\alpha}
$$
 for $m \ge 0$, $\alpha \in (0,1) \implies \partial\Omega$ is $C^{2+m,\alpha}$.

2.
$$
\log \frac{d\omega}{d\sigma} \in C^{\infty} \implies \partial \Omega
$$
 is C^{∞}

- 3. log $\frac{d\omega}{d\sigma}$ is real analytic \Longrightarrow ∂Ω is real analytic.
- \blacktriangleright (Alt and Caffarelli 1981) Assume Ω $\subset \mathbb{R}^n$ satisfies necessary "weak conditions" (that includes C^1 as a special case). Then: $\log \frac{d\omega}{d\sigma} \in C^{0,\alpha}$ for $\alpha > 0 \Longrightarrow \partial \Omega$ is $C^{1,\beta}, \ \beta = \beta(\alpha) > 0$.
- In (Jerison 1987) In Alt and Caffarelli's Theorem, $\beta = \alpha$.
- ► (Jerison 1987) log $\frac{d\omega}{d\sigma} \in C^0 \implies \partial \Omega$ is VMO₁.
- ► (Kenig and Toro 2003) Studied FBP 1 with log $\frac{d\omega}{d\sigma} \in$ VMO.

KORKAR KERKER DRAM

 \blacktriangleright (Kinderlehrer and Nirenberg 1977) Let $Ω ⊂ ℝⁿ$ be of class $C¹$.

1.
$$
\log \frac{d\omega}{d\sigma} \in C^{1+m,\alpha}
$$
 for $m \ge 0$, $\alpha \in (0,1) \implies \partial\Omega$ is $C^{2+m,\alpha}$.

2.
$$
\log \frac{d\omega}{d\sigma} \in C^{\infty} \implies \partial \Omega
$$
 is C^{∞}

- 3. log $\frac{d\omega}{d\sigma}$ is real analytic \Longrightarrow ∂Ω is real analytic.
- \blacktriangleright (Alt and Caffarelli 1981) Assume Ω $\subset \mathbb{R}^n$ satisfies necessary "weak conditions" (that includes C^1 as a special case). Then: $\log \frac{d\omega}{d\sigma} \in C^{0,\alpha}$ for $\alpha > 0 \Longrightarrow \partial \Omega$ is $C^{1,\beta}, \ \beta = \beta(\alpha) > 0$.
- In (Jerison 1987) In Alt and Caffarelli's Theorem, $\beta = \alpha$.
- ► (Jerison 1987) log $\frac{d\omega}{d\sigma} \in C^0 \Longrightarrow \partial \Omega$ is VMO₁.

► (Kenig and Toro 2003) Studied FBP 1 with log $\frac{d\omega}{d\sigma} \in$ VMO.

AD A RELATE LE A RELATE DE

 \blacktriangleright (Kinderlehrer and Nirenberg 1977) Let $Ω ⊂ ℝⁿ$ be of class $C¹$.

1.
$$
\log \frac{d\omega}{d\sigma} \in C^{1+m,\alpha}
$$
 for $m \ge 0$, $\alpha \in (0,1) \implies \partial\Omega$ is $C^{2+m,\alpha}$.

2.
$$
\log \frac{d\omega}{d\sigma} \in C^{\infty} \implies \partial \Omega
$$
 is C^{∞}

- 3. log $\frac{d\omega}{d\sigma}$ is real analytic \Longrightarrow ∂Ω is real analytic.
- \blacktriangleright (Alt and Caffarelli 1981) Assume Ω $\subset \mathbb{R}^n$ satisfies necessary "weak conditions" (that includes C^1 as a special case). Then: $\log \frac{d\omega}{d\sigma} \in C^{0,\alpha}$ for $\alpha > 0 \Longrightarrow \partial \Omega$ is $C^{1,\beta}, \ \beta = \beta(\alpha) > 0$.
- In (Jerison 1987) In Alt and Caffarelli's Theorem, $\beta = \alpha$.
- ► (Jerison 1987) log $\frac{d\omega}{d\sigma} \in C^0 \Longrightarrow \partial \Omega$ is VMO₁.
- ► (Kenig and Toro 2003) Studied FBP 1 with log $\frac{d\omega}{d\sigma} \in$ VMO.

AD A RELATE LE A RELATE DE

Examples of NTA Domains

Question: How should we measure regularity of harmonic measure on domains which do not have surface measure?

イロメ イ部メ イ君メ イ君メー

 2990

Examples of NTA Domains

(e.g. snowflake)

 2990

KID KIND KEY KEY LE

Question: How should we measure regularity of harmonic measure on domains which do not have surface measure?

Free Boundary Problem 2

 $\Omega \subset \mathbb{R}^n$ is a 2-sided domain if:

- 1. $\Omega^+ = \Omega$ is open and connected
- 2. $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ is open and connected
- 3. $\partial \Omega^+ = \partial \Omega^-$

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided domain, equipped with interior harmonic measure ω^+ and exterior harmonic measure ω^- If the two-sided kernel $\frac{d\omega^{-}}{dt}$ $\frac{d\omega}{d\omega^+}$ is sufficiently regular, then how regular is the boundary $\partial\Omega$?

An Unexpected Example

Figure: The zero set of the harmonic polynomial $h(x, y, z) = x^2(y - z) + y^2(z - x) + z^2(x - y) - 10xyz$

 $\Omega^{\pm}=\{h^{\pm}>0\}$ is a 2-sided domain, $\omega^{+}=\omega^{-}$ (pole at infinity), $\log \frac{d\omega^-}{d\omega^+} \equiv 0$ but $\partial \Omega^\pm = \{h=0\}$ is not smooth at the origin.

Part I Harmonic Measure

Part II Dimension of Harmonic Measure

Part III Free Boundary Problems for Harmonic Measure

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Part IV Interlude: Geometric Measure Theory

Part V Structure Theorem for FBP 2

Local Flatness

- Always have $\theta_A(x, r) \leq 1$ only get information if θ is small
- A $\subset \mathbb{R}^n$ is δ -Reifenberg flat, if $\theta_A(x, r) \leq \delta \ \forall x \in A$, $r \leq r_0$

イロン イ部ン イ君ン イ君ン

 299

 \blacktriangleright $A \subset \mathbb{R}^n$ is Reifenberg flat with vanishing constant if A is δ -Reifenberg flat for all $\delta > 0$

Local Flatness

- Always have $\theta_A(x,r) \leq 1$ only get information if θ is small
- A $\subset \mathbb{R}^n$ is δ -Reifenberg flat, if $\theta_A(x, r) \leq \delta \ \forall x \in A$, $r \leq r_0$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 2990

 \blacktriangleright $A \subset \mathbb{R}^n$ is Reifenberg flat with vanishing constant if A is δ -Reifenberg flat for all $\delta > 0$

Local Flatness

- Always have $\theta_A(x,r) \leq 1$ only get information if θ is small
- A $\subset \mathbb{R}^n$ is δ -Reifenberg flat, if $\theta_A(x, r) \leq \delta \ \forall x \in A$, $r \leq r_0$

K ロンス 御 > ス 할 > ス 할 > 이 할

 2990

 \blacktriangleright $A \subset \mathbb{R}^n$ is Reifenberg flat with vanishing constant if A is δ -Reifenberg flat for all $\delta > 0$

Blow-up of a Set $(=$ Zooming In on a Set)

Let $A \subset \mathbb{R}^n$ be a closed set and let $x \in A$. We say B is a **blow-up** of A at $x \in A$ if \exists radii $r_i \downarrow 0$ so that

 $A - x$ $\overline{}$ \rightarrow B in Hausdorff distance, uniformly on compact sets.

Figure: A blow-up of S^{n-1} at the north pole is the plane $\mathbb{R}^{n-1}\times\{0\}$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Part I Harmonic Measure

Part II Dimension of Harmonic Measure

Part III Free Boundary Problems for Harmonic Measure

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Part IV Interlude: Geometric Measure Theory

Part V Structure Theorem for FBP 2

Theorem (Badger) Assume $\Omega \subset \mathbb{R}^n$ is a 2-sided NTA domain, $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C^0(\partial\Omega).$

There exists $d \geq 1$ (depending on the NTA constants) such that $\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

- 1. Every **blow-up** of $\partial\Omega$ about a point $Q \in \Gamma_k$ is the zero set $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.
- 2. The "flat points" Γ_1 is an open subset of $\partial\Omega$ and is (locally) Reifenberg flat with vanishing constant.
- 3. The "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.

Theorem (Badger) Assume $\Omega \subset \mathbb{R}^n$ is a 2-sided NTA domain, $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C^0(\partial\Omega).$

There exists $d \geq 1$ (depending on the NTA constants) such that $\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

1. Every **blow-up** of $\partial\Omega$ about a point $Q \in \Gamma_k$ is the zero set $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.

- 2. The "flat points" Γ_1 is an open subset of $\partial\Omega$ and is (locally) Reifenberg flat with vanishing constant.
- 3. The "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.

Theorem (Badger) Assume $\Omega \subset \mathbb{R}^n$ is a 2-sided NTA domain, $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C^0(\partial\Omega).$

There exists $d \geq 1$ (depending on the NTA constants) such that $\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

- 1. Every **blow-up** of $\partial\Omega$ about a point $Q \in \Gamma_k$ is the zero set $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.
- 2. The "flat points" Γ_1 is an open subset of $\partial\Omega$ and is (locally) Reifenberg flat with vanishing constant.
- 3. The "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.

Theorem (Badger) Assume $\Omega \subset \mathbb{R}^n$ is a 2-sided NTA domain, $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C^0(\partial\Omega).$

There exists $d \geq 1$ (depending on the NTA constants) such that $\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

- 1. Every **blow-up** of $\partial\Omega$ about a point $Q \in \Gamma_k$ is the zero set $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.
- 2. The "flat points" Γ_1 is an open subset of $\partial\Omega$ and is (locally) Reifenberg flat with vanishing constant.

3. The "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.

Theorem (Badger) Assume $\Omega \subset \mathbb{R}^n$ is a 2-sided NTA domain, $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C^0(\partial\Omega).$

There exists $d \geq 1$ (depending on the NTA constants) such that $\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

- 1. Every **blow-up** of $\partial\Omega$ about a point $Q \in \Gamma_k$ is the zero set $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.
- 2. The "flat points" Γ_1 is an open subset of $\partial\Omega$ and is (locally) Reifenberg flat with vanishing constant.
- 3. The "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.

Figure: $h^{-1}(0)$ when h homogeneous harmonic polynomial of degree 1, i.e. a plane through the origin

Remarks

- ► Γ₁ has full measure: $\omega^{\pm}(\partial\Omega\setminus\Gamma_1)=0.$
- \blacktriangleright Γ₁ is open in $\partial\Omega$ and Reifenberg flat with vanishing constant. Thus dim $\Gamma_1 = n - 1$.
- \blacktriangleright At $Q\in \Gamma_1$ one can see different planes as lim ${}_{i\rightarrow\infty}\frac{\partial\Omega-Q}{\partial\Omega}$ $\frac{n-\mathsf{Q}}{r_i}$ along different sequences of scales $r_i \downarrow 0$.

KORK EXTERNE PROVIDE

 \blacktriangleright In dimension *n* = 2, $\partial\Omega = \Gamma_1$.

Figure: $h^{-1}(0)$ when h homogeneous harmonic polynomial of degree 1, i.e. a plane through the origin

Remarks

- ► Γ₁ has full measure: $\omega^{\pm}(\partial\Omega\setminus\Gamma_1)=0.$
- \blacktriangleright Γ₁ is open in $\partial\Omega$ and Reifenberg flat with vanishing constant. Thus dim $\Gamma_1 = n - 1$.
- \blacktriangleright At $Q\in \Gamma_1$ one can see different planes as lim ${}_{i\rightarrow\infty}\frac{\partial\Omega-Q}{\partial\Omega}$ $\frac{n-\mathsf{Q}}{r_i}$ along different sequences of scales $r_i \downarrow 0$.

KORK EXTERNE PROVIDE

 \blacktriangleright In dimension *n* = 2, $\partial\Omega = \Gamma_1$.

Figure: $h^{-1}(0)$ when h homogeneous harmonic polynomial of degree 1, i.e. a plane through the origin

Remarks

- ► Γ₁ has full measure: $\omega^{\pm}(\partial\Omega\setminus\Gamma_1)=0.$
- \blacktriangleright Γ₁ is open in $\partial\Omega$ and Reifenberg flat with vanishing constant. Thus dim $\Gamma_1 = n - 1$.
- \blacktriangleright At $Q \in \Gamma_1$ one can see different planes as lim ${}_{i\rightarrow\infty}\frac{\partial\Omega-Q}{\partial\Omega}$ $\frac{m}{r_i}$ along different sequences of scales $r_i \downarrow 0$.
- \blacktriangleright In dimension *n* = 2, $\partial\Omega = \Gamma_1$.

Figure: $h^{-1}(0)$ when h homogeneous harmonic polynomial of degree 1, i.e. a plane through the origin

Remarks

- ► Γ₁ has full measure: $\omega^{\pm}(\partial\Omega\setminus\Gamma_1)=0.$
- \blacktriangleright Γ₁ is open in $\partial\Omega$ and Reifenberg flat with vanishing constant. Thus dim $\Gamma_1 = n - 1$.
- \blacktriangleright At $Q \in \Gamma_1$ one can see different planes as lim ${}_{i\rightarrow\infty}\frac{\partial\Omega-Q}{\partial\Omega}$ $\frac{m}{r_i}$ along different sequences of scales $r_i \downarrow 0$.

KORK EXTERNE PROVIDE

 \blacktriangleright In dimension $n = 2$, $\partial\Omega = \Gamma_1$.

Singularities $Q \in \Gamma_2 \cup \cdots \cup \Gamma_d$

Figure: $h^{-1}(0)$ where $h(x, y, z) = x^2(y - z) + y^2(z - x) + z^2(x - y) - xyz$ is an example blow-up of $\partial\Omega$ about $Q\in\mathsf{F}_3$, $\Omega\subset\mathbb{R}^3$.

Remarks

- ► Γ₂ ∪ \cdots ∪ Γ_d $\subset \partial \Omega$ is closed and ω^{\pm} (Γ₂ ∪ \cdots ∪ Γ_d) = 0.
- Examples shows that dim($\lceil 2 \cup \cdots \cup \lceil d \rceil = n 3$ is possible. Upper bound is unknown.
- In dimension $n = 3$, $\partial\Omega = \Gamma_1 \cup \Gamma_3 \cup \Gamma_5 \cup \cdots \cup \Gamma_{2k+1}$. (by a Result about Spherical Harmonics by Lewy 1977)

KORK STRATER STRACK

Singularities $Q \in \Gamma_2 \cup \cdots \cup \Gamma_d$

Figure: $h^{-1}(0)$ where $h(x, y, z) = x^2(y - z) + y^2(z - x) + z^2(x - y) - xyz$ is an example blow-up of $\partial\Omega$ about $Q\in\mathsf{F}_3$, $\Omega\subset\mathbb{R}^3$.

Remarks

- ► Γ₂ ∪ \cdots ∪ Γ_d $\subset \partial \Omega$ is closed and ω^{\pm} (Γ₂ ∪ \cdots ∪ Γ_d) = 0.
- Examples shows that dim($\Gamma_2 \cup \cdots \cup \Gamma_d$) = n 3 is possible. Upper bound is unknown.

In dimension $n = 3$, $\partial\Omega = \Gamma_1 \cup \Gamma_3 \cup \Gamma_5 \cup \cdots \cup \Gamma_{2k+1}$. (by a Result about Spherical Harmonics by Lewy 1977)

KORK STRATER STRACK

Singularities $Q \in \Gamma_2 \cup \cdots \cup \Gamma_d$

Figure: $h^{-1}(0)$ where $h(x, y, z) = x^2(y - z) + y^2(z - x) + z^2(x - y) - xyz$ is an example blow-up of $\partial\Omega$ about $Q\in\mathsf{F}_3$, $\Omega\subset\mathbb{R}^3$.

Remarks

- ► Γ₂ ∪ \cdots ∪ Γ_d $\subset \partial \Omega$ is closed and ω^{\pm} (Γ₂ ∪ \cdots ∪ Γ_d) = 0.
- Examples shows that dim($\Gamma_2 \cup \cdots \cup \Gamma_d$) = n 3 is possible. Upper bound is unknown.
- \triangleright In dimension $n = 3$, $\partial\Omega = \Gamma_1 \cup \Gamma_3 \cup \Gamma_5 \cup \cdots \cup \Gamma_{2k+1}$. (by a Result about Spherical Harmonics by Lewy 1977)

Ingredients in the Proof

- 1. FBP 2 was studied by Kenig and Toro (2006) who showed that blow-ups of $\partial\Omega$ are zero sets of harmonic polynomials.
	- \triangleright We show that only zero sets of homogeneous harmonic polynomials appear as blow-ups.
	- \triangleright We show the degree of polynomials appearing in blow-ups is unique at every $Q \in \partial \Omega$. Hence $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.
	- \triangleright We study topology and size of the sets Γ_k .
- 2. To classify geometric blow-ups of the boundary, we study measure-theoretic blow-ups of ω (tangent measures).
- 3. To show Γ_1 is open, we study local flatness properties of the zero sets of harmonic polynomials.

Ingredients in the Proof

- 1. FBP 2 was studied by Kenig and Toro (2006) who showed that blow-ups of $\partial\Omega$ are zero sets of harmonic polynomials.
	- \triangleright We show that only zero sets of homogeneous harmonic polynomials appear as blow-ups.
	- \triangleright We show the degree of polynomials appearing in blow-ups is unique at every $Q \in \partial \Omega$. Hence $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.
	- \triangleright We study topology and size of the sets Γ_k .
- 2. To classify geometric blow-ups of the boundary, we study measure-theoretic blow-ups of ω (tangent measures).
- 3. To show Γ_1 is open, we study local flatness properties of the zero sets of harmonic polynomials.

Ingredients in the Proof

- 1. FBP 2 was studied by Kenig and Toro (2006) who showed that blow-ups of $\partial\Omega$ are zero sets of harmonic polynomials.
	- \triangleright We show that only zero sets of homogeneous harmonic polynomials appear as blow-ups.
	- \triangleright We show the degree of polynomials appearing in blow-ups is unique at every $Q \in \partial \Omega$. Hence $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.
	- \triangleright We study topology and size of the sets Γ_k .
- 2. To classify geometric blow-ups of the boundary, we study measure-theoretic blow-ups of ω (tangent measures).
- 3. To show Γ_1 is open, we study local flatness properties of the zero sets of harmonic polynomials.

Open Problems

Open Problems

- 1. Are each of the sets Γ_k , $k \geq 2$ closed separately?
- 2. Find a sharp upper bound on dim Γ_k for $k \geq 2$. (Conjecture: dim $\Gamma_k \leq n-3$.)
- 3. If log $\frac{d\omega^-}{d\omega^+}$ is $C^{0,\alpha}$, then is Γ_1 locally the $C^{1,\alpha}$ image of a hyperplane?
- 4. If log $\frac{d\omega^-}{d\omega^+}$ is $C^{0,\alpha}$, then at $Q\in \Gamma_k$ is $\partial\Omega$ locally the $C^{1,\alpha}$ image of the zero set of a homogeneous harmonic polynomial of degree k separating \mathbb{R}^n into two components?

KORK EXTERNE PROVIDE

Open Problems

Open Problems

- 1. Are each of the sets Γ_k , $k \geq 2$ closed separately?
- 2. Find a sharp upper bound on dim Γ_k for $k \geq 2$. (Conjecture: dim $\Gamma_k \leq n-3$.)
- 3. If log $\frac{d\omega^-}{d\omega^+}$ is $C^{0,\alpha}$, then is Γ_1 locally the $C^{1,\alpha}$ image of a hyperplane?
- 4. If log $\frac{d\omega^-}{d\omega^+}$ is $C^{0,\alpha}$, then at $Q\in \Gamma_k$ is $\partial\Omega$ locally the $C^{1,\alpha}$ image of the zero set of a homogeneous harmonic polynomial of degree k separating \mathbb{R}^n into two components?

Open Problems

Open Problems

- 1. Are each of the sets Γ_k , $k \geq 2$ closed separately?
- 2. Find a sharp upper bound on dim Γ_k for $k \geq 2$. (Conjecture: dim $\Gamma_k \leq n-3$.)
- 3. If log $\frac{d\omega^-}{d\omega^+}$ is $C^{0,\alpha}$, then is Γ_1 locally the $C^{1,\alpha}$ image of a hyperplane?
- 4. If log $\frac{d\omega^-}{d\omega^+}$ is $C^{0,\alpha}$, then at $Q\in \Gamma_k$ is $\partial\Omega$ locally the $C^{1,\alpha}$ image of the zero set of a homogeneous harmonic polynomial of degree k separating \mathbb{R}^n into two components?
Open Problems

Open Problems

- 1. Are each of the sets Γ_k , $k \geq 2$ closed separately?
- 2. Find a sharp upper bound on dim Γ_k for $k \geq 2$. (Conjecture: dim $\Gamma_k \leq n-3$.)
- 3. If log $\frac{d\omega^-}{d\omega^+}$ is $C^{0,\alpha}$, then is Γ_1 locally the $C^{1,\alpha}$ image of a hyperplane?
- 4. If log $\frac{d\omega^-}{d\omega^+}$ is $C^{0,\alpha}$, then at $Q\in \Gamma_k$ is $\partial\Omega$ locally the $C^{1,\alpha}$ image of the zero set of a homogeneous harmonic polynomial of degree k separating \mathbb{R}^n into two components?

KORKAR KERKER EL POLO

Flat Points

If $p: \mathbb{R}^n \to \mathbb{R}$ is a polynomial (with real coefficients), then $\Sigma_p = \{X \in \mathbb{R}^n : p(X) = 0\}$ is its zero set.

We say $X\in\Sigma_\rho$ is a **flat point** if $\lim_{r\downarrow 0}\theta_{\Sigma_\rho}(X,r)=0.$

KORK EXTERNE PROVIDE

If $X \in \Sigma_p$ and $Dp(X) \neq 0$, then X is a flat point.

 \triangleright Converse is not true for general polynomials!

Flat Points

If $p: \mathbb{R}^n \to \mathbb{R}$ is a polynomial (with real coefficients), then $\Sigma_p = \{X \in \mathbb{R}^n : p(X) = 0\}$ is its zero set.

We say $X\in\Sigma_\rho$ is a **flat point** if $\lim_{r\downarrow 0}\theta_{\Sigma_\rho}(X,r)=0.$

KORK EXTERNE PROVIDE

- If $X \in \Sigma_p$ and $Dp(X) \neq 0$, then X is a flat point.
- \triangleright Converse is not true for general polynomials!

Flat Points

If $p: \mathbb{R}^n \to \mathbb{R}$ is a polynomial (with real coefficients), then $\Sigma_p = \{X \in \mathbb{R}^n : p(X) = 0\}$ is its zero set.

We say $X\in\Sigma_\rho$ is a **flat point** if $\lim_{r\downarrow 0}\theta_{\Sigma_\rho}(X,r)=0.$

KORK EXTERNE PROVIDE

- If $X \in \Sigma_p$ and $Dp(X) \neq 0$, then X is a flat point.
- \triangleright Converse is not true for general polynomials!

Converse for Harmonic Polynomials

Theorem (Badger) For each $n > 2$ and $d > 2$, there exists $\delta_{n,d} > 0$ with the following property:

If $p : \mathbb{R}^n \to \mathbb{R}$ is a harmonic polynomial of degree d, then $X\in \Sigma_\rho$ and $Dp(X)=0\Rightarrow \theta_{\Sigma_\rho}(X,r)\geq \delta_{n,d}$ for all $r>0.$

Corollary (Badger) If $p : \mathbb{R}^n \to \mathbb{R}$ is a harmonic polynomial, then ${X \in \Sigma_n : X \text{ is flat}} = {X \in \Sigma_n : Dp(X) \neq 0}.$

Open Problem Find all polynomials $p : \mathbb{R}^n \to \mathbb{R}$ whose zero set Σ_p has the feature that its flat points and regular points coincide.

KORKAR KERKER DRAM

Converse for Harmonic Polynomials

Theorem (Badger) For each $n \ge 2$ and $d \ge 2$, there exists $\delta_{n,d} > 0$ with the following property:

If $p : \mathbb{R}^n \to \mathbb{R}$ is a harmonic polynomial of degree d, then $X\in \Sigma_\rho$ and $Dp(X)=0\Rightarrow \theta_{\Sigma_\rho}(X,r)\geq \delta_{n,d}$ for all $r>0.$

Corollary (Badger) If $p : \mathbb{R}^n \to \mathbb{R}$ is a harmonic polynomial, then $\{X \in \Sigma_p : X \text{ is flat}\} = \{X \in \Sigma_p : Dp(X) \neq 0\}.$

Open Problem Find all polynomials $p : \mathbb{R}^n \to \mathbb{R}$ whose zero set Σ_p has the feature that its flat points and regular points coincide.

KORKAR KERKER EL POLO

Converse for Harmonic Polynomials

Theorem (Badger) For each $n > 2$ and $d > 2$, there exists $\delta_{n,d} > 0$ with the following property:

If $p : \mathbb{R}^n \to \mathbb{R}$ is a harmonic polynomial of degree d, then $X\in \Sigma_\rho$ and $Dp(X)=0\Rightarrow \theta_{\Sigma_\rho}(X,r)\geq \delta_{n,d}$ for all $r>0.$

Corollary (Badger) If $p : \mathbb{R}^n \to \mathbb{R}$ is a harmonic polynomial, then $\{X \in \Sigma_p : X \text{ is flat}\} = \{X \in \Sigma_p : Dp(X) \neq 0\}.$

Open Problem Find all polynomials $p : \mathbb{R}^n \to \mathbb{R}$ whose zero set Σ_p has the feature that its flat points and regular points coincide.

KORKAR KERKER DRAM