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Examples of Harmonic Measure

> If Q = B” unit ball and X € 2, then

1—]X|2 do(Y) _
X n—1
w (E) = EcCcS
(E) /E\X—Y|” On_1

where 0,1 = o(S"71).

» If Q ¢ R" is bounded domain of class C!,
then 3 K(X,Y) : Q x 9Q — R such that

wX(E):/ K(X,Y)do(Y) E cCoQ.
E

» We call the Radon-Nikodym derivative
dwX

P K(X,-) the Poisson kernel of .
o



More Examples of Harmonic Measure

» If Q € R? is a simply connected and 99 is a Jordan curve,
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More Examples of Harmonic Measure

» If Q € R? is a simply connected and 99 is a Jordan curve,

h
then fl(E)

f1E

» If Q= A(0,r,R) C R" is an annular region, then the
harmonlc measure of “the inner shell” S(0, r) is

[ —

og R — log | X| o
log R — log r

wX(5(0,r)) =
X2—n7R2—n
XET=R T 0>

2—n _ R27n
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Harmonic Measure at Different Poles

cw™(E) < w(E) < Cw™(E)

For every Borel set E C 09,
X +— wX(E) is a nonnegative
harmonic function in

Harmonic measures w*X! and w*? at
different poles are

mutually absolutely continuous
(WX(E) =0 < w(E) =0).

“Drop the pole” to get
“the harmonic measure” w of Q
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Harmonic Measure and Hausdorff Measure

Theorem: If Q C R"” and H""2(E) =0, then w(E) =0

X (0N B(x.r)) <

rn—2

dist(X. 0Q)

SQNB(x,r)
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Let dim E denote the Hausdorff dimension of a set E C R".

The (upper) Hausdorff dimension of harmonic measure is smallest
dimension of a set with full harmonic measure:

dimw = inf{dim E : w(R" \ E) = 0}.

On a general domain 2 C R"” we have the bounds:

n—2<dimw<n—b>b, forsomeb,>0

» The lower bound is easy (previous slide)

» The upper bound is a contribution of Bourgain from 1987.
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Harmonic Measure in the Plane

v

(Bourgain 1987) dimw < n — b, for some b, >0

v

(F. and M. Riesz 1916) If Q C R? simply connected,
0Q Jordan curve and H1(0Q) < 0o, then w < H!|po < w.
Thus dimw = 1.

v

(Makarov 1985) If Q C R? is simply connected, dimw = 1.

v

(Jones and Wolff 1988) If Q C R? is any domain, dimw < 1
Thus b2 =1.

v

(Bishop and Jones 1990) “Local F. and M. Riesz theorem”:
if Q c R? is simply connected, I = ([0, 1]) is a curve of
finite length, then w|r < H|r.
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Harmonic Measure in Space

» (Bourgain 1987) dimw < n — b, for some b, >0

v

(Wolff 1995) There exist Jordan domains Q C R3 with
“good geometry” such that dimw > 2 or dimw < 2.

These are now called Wolff snowflakes.

v

(Lewis, Verchota and Vogel 2005) There exist complementary
domains QT = Q C R" and Q= = R"\ Q such that

» dimw™ >n—1and dimw™ >n—1

» dimw™ >n—1anddimw™ <n-—1

» dimw™ <n—1anddimw™ <n-—1

v

(Kenig, Preiss, Toro 2009) On 2-sided NTA domains Q C R”
if wm < w™ < w? then dimw® =n—1.

v

(Badger) “F. and M. Riesz Theorem for NTA domains”:
If Q C R” NTA and if H""1(0Q) < oo, then H" 1|50 < w.
Thus dimw =n—1.



Open Problems

» Compute Bourgain’s constant b, for n > 3.

» Does b, — 0 as n— oo oris inf, b, > 07

» Let Q C R” be an NTA domain such that H"1(9Q) < co.
Show w < H" 1| (or find a counterexample).
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Regularity of Harmonic Measure
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Recall if 2 ¢ R" is bounded domain
and 99 is at least C1, then
_ dwX

WwX(E)= | ——(Y)do(Y) E cC Q.
E dO'




Regularity of Harmonic Measure

ST

Recall if 2 ¢ R" is bounded domain
and 99 is at least C1, then
dwX

WwX(E)= | =—(Y)do(Y) E cCoqQ.
E dO'

Regularity of the Boundary = Regularity of the Poisson Kernel:
> Qs C* = log 92 € C*(09Q)
> 9Qis Ckand k > 2 = log 92 € Ck-1(0Q)
» 9Qis C1* and a > 0 = log 92 € CO(9Q) (Kellogg 1929)

> 9Qis C! = log 92 € VMO(0R) (Jerison and Kenig 1982)



Free Boundary Problem 1

\

Let Q C R" be a domain of locally finite perimeter, with
harmonic measure w and surface measure 0 = H"1|5q.

If the Poisson kernel Z—w is sufficiently regular,
o

then how regular is the boundary 027
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v

(Kinderlehrer and Nirenberg 1977) Let Q C R” be of class C*.
1. |Og% c CHma for m >0, ac (071) — 9Q is C2tma,
2. log 92 € € = 9Q is €

3. Iogj—ﬁ is real analytic = 9Q is real analytic.

v

(Alt and Caffarelli 1981) Assume Q C R” satisfies necessary

“weak conditions” (that includes C! as a special case). Then:
log 92 € C%% for a > 0 = 9Q is C1¥, B = B(a) > 0.

v

(Jerison 1987) In Alt and Caffarelli's Theorem, § = a.

v

(Jerison 1987) Iogg—‘; € CY = 9Q is VMO;.

v

(Kenig and Toro 2003) Studied FBP 1 with log ¢ € VMO.
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Examples of NTA Domains

Smooth Domains Lipschitz Domains Quasispheres

(e.g. snowflake)

Question: How should we measure regularity of harmonic measure
on domains which do not have surface measure?



Free Boundary Problem 2

Q C R" is a 2-sided domain if:
1. QF = Q is open and connected
2. Q@ =R"\ Q is open and connected
3. 09T =00~

Let Q C R" be a 2-sided domain, equipped with interior
harmonic measure wt and exterior harmonic measure w™

dw
If the two-sided k |
e two-sided kerne T

then how regular is the boundary 027

is sufficiently regular,



An Unexpected Example

Figure: The zero set of the harmonic polynomial
h(x,y,z) = x*(y — 2) + y*(z — x) + Z%(x — y) — 10xyz

{hi > 0} is a 2-sided domain, w™ = w™ (pole at infinity),
Iog 9 =0 but 9QF = {h = 0} is not smooth at the origin.



Part | Harmonic Measure

Part [I Dimension of Harmonic Measure

Part IIl Free Boundary Problems for Harmonic Measure

Part IV Interlude: Geometric Measure Theory

Part V. Structure Theorem for FBP 2



Local Flatness




Local Flatness

> Always have 0a(x, r) <1 — only get information if 6 is small



Local Flatness

> Always have 0a(x, r) <1 — only get information if 6 is small
» A C R" is §-Reifenberg flat, if O5(x,r) <o Vx €A r<n

» A C R" is Reifenberg flat with vanishing constant
if A is 0-Reifenberg flat for all § > 0



Blow-up of a Set ( = Zooming In on a Set)
Let A C R” be a closed set and let x € A.
We say B is a blow-up of A at x € A if 3 radii r; | 0 so that
A—x

ri

— B in Hausdorff distance, uniformly on compact sets.

Figure: A blow-up of $"~1 at the north pole is the plane R"~! x {0}
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Structure Theorem for FBP 2

Theorem (Badger) Assume Q2 C R” is a 2-sided NTA domain,
wh < w” < w' and log 42 € C0(6Q).

There exists d > 1 (depending on the NTA constants) such that
0=TUlhU---Uly.

1. Every blow-up of 002 about a point Q € ', is the zero set
h=1(0) of a homogeneous harmonic polynomial h of degree k
which separates R” into two components.

2. The “flat points” I is an open subset of Q2 and is (locally)
Reifenberg flat with vanishing constant.

3. The “singularities” o U---UT 4 have harmonic measure zero.
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Flat Points Q € I';

Figure: h=1(0) when h homogeneous harmonic polynomial of degree 1,
i.e. a plane through the origin
Remarks
» 1 has full measure: w*(9Q\ 1) = 0.
» [1 is open in 0N and Reifenberg flat with vanishing constant.
Thusdiml; =n—1.
» At Q € I'1 one can see different planes as lim;_ aﬂn‘Q along
different sequences of scales r; | 0.

» In dimension n =2, 9 = T.
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Figure: h=1(0) where h(x,y, z) = x*(y — z) + y2(z — x) + Z2?(x —y) — xyz
is an example blow-up of 9Q about Q € I's, Q C R3.
Remarks

» TU---Uly C 0N is closed and w* (M, U---UTy) = 0.

» Examples shows that dim(l'o U---UTl4) = n— 3 is possible.

Upper bound is unknown.
> In dimension n =3, 0Q =T Ul UTl5U---UTlokys.
(by a Result about Spherical Harmonics by Lewy 1977)
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Ingredients in the Proof

1. FBP 2 was studied by Kenig and Toro (2006) who showed
that blow-ups of 09 are zero sets of harmonic polynomials.

» We show that only zero sets of homogeneous harmonic
polynomials appear as blow-ups.

» We show the degree of polynomials appearing in blow-ups is
unique at every @ € 9Q. Hence 00 =Ty Ul U---UTy,.

» We study topology and size of the sets [.

2. To classify geometric blow-ups of the boundary, we study
measure-theoretic blow-ups of w (tangent measures).

3. To show I is open, we study local flatness properties of the
zero sets of harmonic polynomials.
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Open Problems

Open Problems
1. Are each of the sets 'y, k > 2 closed separately?

2. Find a sharp upper bound on dim [y for k > 2.
(Conjecture: dimly < n—3.)

3. 1If Iog‘;“’T; is CO then is ' locally the C1® image of a
hyperplane?

4. If log 9= is CO2, then at Q € Iy is 0K locally the C1@
image of the zero set of a homogeneous harmonic polynomial
of degree k separating R" into two components?



Flat Points

If p: R"” — R is a polynomial (with real coefficients), then
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Flat Points

If p: R"” — R is a polynomial (with real coefficients), then
Y, ={X eR":p(X) =0} is its zero set.

We say X € ¥, is a flat point if lim, o 60x,(X,r) = 0.

P(X,y)=xy
p(x,y)=x* +y* - y?

e

not flat flat

» If X € £, and Dp(X) # 0, then X is a flat point.

» Converse is not true for general polynomials!



Converse for Harmonic Polynomials

Theorem (Badger) For each n > 2 and d > 2, there exists
dn,d > 0 with the following property:

If p: R"™ — R is a harmonic polynomial of degree d, then
X € Xpand Dp(X) = 0= 0x,(X,r) > 854 forall r > 0.
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Converse for Harmonic Polynomials

Theorem (Badger) For each n > 2 and d > 2, there exists
dn,d > 0 with the following property:

If p: R"™ — R is a harmonic polynomial of degree d, then
X € Xpand Dp(X) = 0= 0x,(X,r) > 854 forall r > 0.

Corollary (Badger) If p: R” — R is a harmonic polynomial, then
(X eX,: Xisflat}) = {X € £, : Dp(X) # 0}.

Open Problem Find all polynomials p : R” — R whose zero set
> has the feature that its flat points and regular points coincide.



	Harmonic Measure
	Dimension of Harmonic Measure
	Free Boundary Problems for Harmonic Measure
	Interlude: Geometric Measure Theory
	Structure Theorem for FBP 2

