Matthew Badger

Department of Mathematics Stony Brook University

September 28, 2011

Research Partially Supported by NSF Grants DMS-0838212 and DMS-0856687

・ロト ・日ト ・ヨト ・ヨー うへで

Part | Harmonic Measure

Part II Dimension of Harmonic Measure

Part III Free Boundary Problems for Harmonic Measure

Part IV Interlude: Geometric Measure Theory

Part V Structure Theorem for FBP 2

Dirichlet Problem

Let $n \geq 2$ and let $\Omega \subset \mathbb{R}^n$ be a domain.

 $\exists !$ family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$u(X) = \int_{\partial\Omega} f(Q) d\omega^X(Q)$$
 solves (D)

Dirichlet Problem

 \exists ! family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$u(X) = \int_{\partial\Omega} f(Q) d\omega^X(Q)$$
 solves (D)

・ロト ・ 同 ・ ・ ミ ト ・ ミ ・ うへつ

Dirichlet Problem

 \exists ! family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$u(X) = \int_{\partial\Omega} f(Q) d\omega^X(Q)$$
 solves (D)

・ロト ・ 同 ・ ・ ミ ト ・ ミ ・ うへつ

Brownian Motion Demonstrations

<ロト < @ ト < 臣 ト < 臣 ト 臣 の < @ </p>

Examples of Harmonic Measure

• If
$$\Omega = \mathbb{B}^n$$
 unit ball and $X \in \Omega$, then

$$\omega^{X}(E) = \int_{E} \frac{1-|X|^2}{|X-Y|^n} \frac{d\sigma(Y)}{\sigma_{n-1}} \quad E \subset S^{n-1}$$

where $\sigma_{n-1} = \sigma(S^{n-1})$.

If Ω ⊂ ℝⁿ is bounded domain of class C¹, then ∃ K(X, Y) : Ω × ∂Ω → ℝ such that

$$\omega^X(E) = \int_E K(X,Y) d\sigma(Y) \quad E \subset \partial \Omega.$$

• We call the Radon-Nikodym derivative $\frac{d\omega^{X}}{d\sigma} = K(X, \cdot) \text{ the Poisson kernel of } \Omega.$

・ロト・日本・モート モー うへぐ

Examples of Harmonic Measure

• If $\Omega = \mathbb{B}^n$ unit ball and $X \in \Omega$, then

$$\omega^{X}(E) = \int_{E} \frac{1-|X|^2}{|X-Y|^n} \frac{d\sigma(Y)}{\sigma_{n-1}} \quad E \subset S^{n-1}$$

where $\sigma_{n-1} = \sigma(S^{n-1})$.

 If Ω ⊂ ℝⁿ is bounded domain of class C¹, then ∃ K(X, Y) : Ω × ∂Ω → ℝ such that

$$\omega^X(E) = \int_E K(X,Y) d\sigma(Y) \quad E \subset \partial \Omega.$$

• We call the Radon-Nikodym derivative $\frac{d\omega^{X}}{d\sigma} = K(X, \cdot) \text{ the Poisson kernel of } \Omega.$

Examples of Harmonic Measure

• If
$$\Omega = \mathbb{B}^n$$
 unit ball and $X \in \Omega$, then

$$\omega^{X}(E) = \int_{E} \frac{1-|X|^2}{|X-Y|^n} \frac{d\sigma(Y)}{\sigma_{n-1}} \quad E \subset S^{n-1}$$

where $\sigma_{n-1} = \sigma(S^{n-1})$.

If Ω ⊂ ℝⁿ is bounded domain of class C¹, then ∃ K(X, Y) : Ω × ∂Ω → ℝ such that

$$\omega^{X}(E) = \int_{E} K(X, Y) d\sigma(Y) \quad E \subset \partial \Omega.$$

• We call the Radon-Nikodym derivative $\frac{d\omega^{X}}{d\sigma} = K(X, \cdot) \text{ the Poisson kernel of } \Omega.$

More Examples of Harmonic Measure

If Ω ⊂ ℝ² is a simply connected and ∂Ω is a Jordan curve, then

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

▶ If $\Omega = A(0, r, R) \subset \mathbb{R}^n$ is an annular region, then the harmonic measure of "the inner shell" S(0, r) is

$$\omega^{X}(S(0,r)) = \begin{cases} \frac{\log R - \log |X|}{\log R - \log r} & \text{if } n = 2\\ \frac{|X|^{2-n} - R^{2-n}}{r^{2-n} - R^{2-n}} & \text{if } n \ge 3 \end{cases}$$

More Examples of Harmonic Measure

If Ω ⊂ ℝ² is a simply connected and ∂Ω is a Jordan curve, then

If Ω = A(0, r, R) ⊂ ℝⁿ is an annular region, then the harmonic measure of "the inner shell" S(0, r) is

$$\omega^{X}(S(0,r)) = \begin{cases} \frac{\log R - \log |X|}{\log R - \log r} & \text{if } n = 2\\ \frac{|X|^{2-n} - R^{2-n}}{r^{2-n} - R^{2-n}} & \text{if } n \ge 3 \end{cases}$$

◆□▶ ◆□▶ ★∃▶ ★∃▶ = 三 - のへで

Harmonic Measure at Different Poles

For every Borel set $E \subset \partial \Omega$, $X \mapsto \omega^X(E)$ is a nonnegative harmonic function in Ω

Harmonic measures ω^{X_1} and ω^{X_2} at different poles are mutually absolutely continuous $(\omega^{X_1}(E) = 0 \Leftrightarrow \omega^{X_2}(E) = 0).$

"Drop the pole" to get "the harmonic measure" ω of Ω

・ロト ・ 同 ・ ・ ミ ト ・ ミ ・ うへつ

Harmonic Measure at Different Poles

 $c\omega^{X_2}(E) \le \omega^{X_1}(E) \le C\omega^{X_2}(E)$

For every Borel set $E \subset \partial \Omega$, $X \mapsto \omega^X(E)$ is a nonnegative harmonic function in Ω

Harmonic measures ω^{X_1} and ω^{X_2} at different poles are mutually absolutely continuous $(\omega^{X_1}(E) = 0 \Leftrightarrow \omega^{X_2}(E) = 0).$

"Drop the pole" to get "the harmonic measure" ω of Ω

・ロト・(型)・(ヨ)・(ヨ)・(ロ)

Harmonic Measure at Different Poles

 $c\omega^{X_2}(E) \le \omega^{X_1}(E) \le C\omega^{X_2}(E)$

For every Borel set $E \subset \partial \Omega$, $X \mapsto \omega^X(E)$ is a nonnegative harmonic function in Ω

Harmonic measures ω^{X_1} and ω^{X_2} at different poles are mutually absolutely continuous $(\omega^{X_1}(E) = 0 \Leftrightarrow \omega^{X_2}(E) = 0).$

"Drop the pole" to get "the harmonic measure" ω of Ω

・ロト・(型)・(ヨ)・(ヨ)・(ロ)

Part I Harmonic Measure

Part II Dimension of Harmonic Measure

Part III Free Boundary Problems for Harmonic Measure

Part IV Interlude: Geometric Measure Theory

Part V Structure Theorem for FBP 2

Theorem: If $\Omega \subset \mathbb{R}^n$ and $\mathcal{H}^{n-2}(E) = 0$, then $\omega(E) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem: If $\Omega \subset \mathbb{R}^n$ and $\mathcal{H}^{n-2}(E) = 0$, then $\omega(E) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem: If $\Omega \subset \mathbb{R}^n$ and $\mathcal{H}^{n-2}(E) = 0$, then $\omega(E) = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Theorem: If $\Omega \subset \mathbb{R}^n$ and $\mathcal{H}^{n-2}(E) = 0$, then $\omega(E) = 0$.

Theorem: If $\Omega \subset \mathbb{R}^n$ and $\mathcal{H}^{n-2}(E) = 0$, then $\omega(E) = 0$.

< = > < = > = <> < ⊂

Let dim *E* denote the Hausdorff dimension of a set $E \subset \mathbb{R}^n$.

The (upper) Hausdorff dimension of harmonic measure is smallest dimension of a set with full harmonic measure:

$$\dim \omega = \inf \{\dim E : \omega(\mathbb{R}^n \setminus E) = 0\}.$$

On a general domain $\Omega \subset \mathbb{R}^n$ we have the bounds:

 $n-2 \leq \dim \omega \leq n-b_n$ for some $b_n > 0$

- The lower bound is easy (previous slide)
- ▶ The upper bound is a contribution of Bourgain from 1987.

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ うへつ

Let dim *E* denote the Hausdorff dimension of a set $E \subset \mathbb{R}^n$.

The (upper) Hausdorff dimension of harmonic measure is smallest dimension of a set with full harmonic measure:

$$\dim \omega = \inf \{\dim E : \omega(\mathbb{R}^n \setminus E) = 0\}.$$

On a general domain $\Omega \subset \mathbb{R}^n$ we have the bounds:

$$n-2 \leq \dim \omega \leq n-b_n$$
 for some $b_n > 0$

- The lower bound is easy (previous slide)
- The upper bound is a contribution of Bourgain from 1987.

Let dim *E* denote the Hausdorff dimension of a set $E \subset \mathbb{R}^n$.

The (upper) Hausdorff dimension of harmonic measure is smallest dimension of a set with full harmonic measure:

$$\dim \omega = \inf \{\dim E : \omega(\mathbb{R}^n \setminus E) = 0\}.$$

On a general domain $\Omega \subset \mathbb{R}^n$ we have the bounds:

$$n-2 \leq \dim \omega \leq n-b_n$$
 for some $b_n > 0$

- The lower bound is easy (previous slide)
- The upper bound is a contribution of Bourgain from 1987.

Let dim *E* denote the Hausdorff dimension of a set $E \subset \mathbb{R}^n$.

The (upper) Hausdorff dimension of harmonic measure is smallest dimension of a set with full harmonic measure:

$$\dim \omega = \inf \{\dim E : \omega(\mathbb{R}^n \setminus E) = 0\}.$$

On a general domain $\Omega \subset \mathbb{R}^n$ we have the bounds:

$$n-2 \leq \dim \omega \leq n-b_n$$
 for some $b_n > 0$

- The lower bound is easy (previous slide)
- The upper bound is a contribution of Bourgain from 1987.

• (Bourgain 1987) dim $\omega \leq n - b_n$ for some $b_n > 0$

- (F. and M. Riesz 1916) If $\Omega \subset \mathbb{R}^2$ simply connected, $\partial \Omega$ Jordan curve and $\mathcal{H}^1(\partial \Omega) < \infty$, then $\omega \ll \mathcal{H}^1|_{\partial \Omega} \ll \omega$. Thus dim $\omega = 1$.
- (Makarov 1985) If $\Omega \subset \mathbb{R}^2$ is simply connected, dim $\omega = 1$.
- (Jones and Wolff 1988) If Ω ⊂ ℝ² is any domain, dim ω ≤ 1 Thus b₂ = 1.
- (Bishop and Jones 1990) "Local F. and M. Riesz theorem": if Ω ⊂ ℝ² is simply connected, Γ = γ([0,1]) is a curve of finite length, then ω|_Γ ≪ H¹|_Γ.

- (Bourgain 1987) dim $\omega \leq n b_n$ for some $b_n > 0$
- ► (F. and M. Riesz 1916) If $\Omega \subset \mathbb{R}^2$ simply connected, $\partial \Omega$ Jordan curve and $\mathcal{H}^1(\partial \Omega) < \infty$, then $\omega \ll \mathcal{H}^1|_{\partial \Omega} \ll \omega$. Thus dim $\omega = 1$.
- (Makarov 1985) If $\Omega \subset \mathbb{R}^2$ is simply connected, dim $\omega = 1$.
- (Jones and Wolff 1988) If Ω ⊂ ℝ² is any domain, dim ω ≤ 1 Thus b₂ = 1.
- (Bishop and Jones 1990) "Local F. and M. Riesz theorem": if Ω ⊂ ℝ² is simply connected, Γ = γ([0,1]) is a curve of finite length, then ω|_Γ ≪ H¹|_Γ.

- (Bourgain 1987) dim $\omega \leq n b_n$ for some $b_n > 0$
- ► (F. and M. Riesz 1916) If $\Omega \subset \mathbb{R}^2$ simply connected, $\partial \Omega$ Jordan curve and $\mathcal{H}^1(\partial \Omega) < \infty$, then $\omega \ll \mathcal{H}^1|_{\partial \Omega} \ll \omega$. Thus dim $\omega = 1$.
- (Makarov 1985) If $\Omega \subset \mathbb{R}^2$ is simply connected, dim $\omega = 1$.
- (Jones and Wolff 1988) If Ω ⊂ ℝ² is any domain, dim ω ≤ 1 Thus b₂ = 1.
- (Bishop and Jones 1990) "Local F. and M. Riesz theorem": if Ω ⊂ ℝ² is simply connected, Γ = γ([0,1]) is a curve of finite length, then ω|_Γ ≪ H¹|_Γ.

- (Bourgain 1987) dim $\omega \leq n b_n$ for some $b_n > 0$
- ► (F. and M. Riesz 1916) If $\Omega \subset \mathbb{R}^2$ simply connected, $\partial \Omega$ Jordan curve and $\mathcal{H}^1(\partial \Omega) < \infty$, then $\omega \ll \mathcal{H}^1|_{\partial \Omega} \ll \omega$. Thus dim $\omega = 1$.
- (Makarov 1985) If $\Omega \subset \mathbb{R}^2$ is simply connected, dim $\omega = 1$.
- (Jones and Wolff 1988) If Ω ⊂ ℝ² is any domain, dim ω ≤ 1 Thus b₂ = 1.
- (Bishop and Jones 1990) "Local F. and M. Riesz theorem": if Ω ⊂ ℝ² is simply connected, Γ = γ([0,1]) is a curve of finite length, then ω|_Γ ≪ H¹|_Γ.

- (Bourgain 1987) dim $\omega \leq n b_n$ for some $b_n > 0$
- ► (F. and M. Riesz 1916) If $\Omega \subset \mathbb{R}^2$ simply connected, $\partial \Omega$ Jordan curve and $\mathcal{H}^1(\partial \Omega) < \infty$, then $\omega \ll \mathcal{H}^1|_{\partial \Omega} \ll \omega$. Thus dim $\omega = 1$.
- (Makarov 1985) If $\Omega \subset \mathbb{R}^2$ is simply connected, dim $\omega = 1$.
- (Jones and Wolff 1988) If Ω ⊂ ℝ² is any domain, dim ω ≤ 1 Thus b₂ = 1.
- (Bishop and Jones 1990) "Local F. and M. Riesz theorem": if Ω ⊂ ℝ² is simply connected, Γ = γ([0,1]) is a curve of finite length, then ω|_Γ ≪ H¹|_Γ.

- (Bourgain 1987) dim $\omega \leq n b_n$ for some $b_n > 0$
- (Wolff 1995) There exist Jordan domains $\Omega \subset \mathbb{R}^3$ with "good geometry" such that dim $\omega > 2$ or dim $\omega < 2$. These are now called Wolff snowflakes.
- (Lewis, Verchota and Vogel 2005) There exist complementary domains $\Omega^+ = \Omega \subset \mathbb{R}^n$ and $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ such that
 - dim $\omega^+ > n-1$ and dim $\omega^- > n-1$
 - dim $\omega^+ > n-1$ and dim $\omega^- < n-1$
 - dim $\omega^+ < n-1$ and dim $\omega^- < n-1$
- ▶ (Kenig, Preiss, Toro 2009) On 2-sided NTA domains $\Omega \subset \mathbb{R}^n$ if $\omega^+ \ll \omega^- \ll \omega^+$ then dim $\omega^{\pm} = n 1$.
- ► (Badger) "F. and M. Riesz Theorem for NTA domains": If $\Omega \subset \mathbb{R}^n$ NTA and if $\mathcal{H}^{n-1}(\partial \Omega) < \infty$, then $\mathcal{H}^{n-1}|_{\partial \Omega} \ll \omega$. Thus dim $\omega = n - 1$.

- (Bourgain 1987) dim $\omega \leq n b_n$ for some $b_n > 0$
- (Wolff 1995) There exist Jordan domains Ω ⊂ ℝ³ with "good geometry" such that dim ω > 2 or dim ω < 2. These are now called Wolff snowflakes.
- (Lewis, Verchota and Vogel 2005) There exist complementary domains $\Omega^+ = \Omega \subset \mathbb{R}^n$ and $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ such that
 - dim $\omega^+ > n-1$ and dim $\omega^- > n-1$
 - dim $\omega^+ > n-1$ and dim $\omega^- < n-1$
 - dim $\omega^+ < n-1$ and dim $\omega^- < n-1$
- ▶ (Kenig, Preiss, Toro 2009) On 2-sided NTA domains $\Omega \subset \mathbb{R}^n$ if $\omega^+ \ll \omega^- \ll \omega^+$ then dim $\omega^{\pm} = n 1$.
- ► (Badger) "F. and M. Riesz Theorem for NTA domains": If $\Omega \subset \mathbb{R}^n$ NTA and if $\mathcal{H}^{n-1}(\partial \Omega) < \infty$, then $\mathcal{H}^{n-1}|_{\partial \Omega} \ll \omega$. Thus dim $\omega = n - 1$.

- (Bourgain 1987) dim $\omega \leq n b_n$ for some $b_n > 0$
- (Wolff 1995) There exist Jordan domains $\Omega \subset \mathbb{R}^3$ with "good geometry" such that dim $\omega > 2$ or dim $\omega < 2$. These are now called Wolff snowflakes.
- (Lewis, Verchota and Vogel 2005) There exist complementary domains $\Omega^+ = \Omega \subset \mathbb{R}^n$ and $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ such that
 - dim $\omega^+ > n-1$ and dim $\omega^- > n-1$
 - dim $\omega^+ > n-1$ and dim $\omega^- < n-1$
 - dim $\omega^+ < n-1$ and dim $\omega^- < n-1$
- ▶ (Kenig, Preiss, Toro 2009) On 2-sided NTA domains $\Omega \subset \mathbb{R}^n$ if $\omega^+ \ll \omega^- \ll \omega^+$ then dim $\omega^{\pm} = n 1$.
- ► (Badger) "F. and M. Riesz Theorem for NTA domains": If $\Omega \subset \mathbb{R}^n$ NTA and if $\mathcal{H}^{n-1}(\partial \Omega) < \infty$, then $\mathcal{H}^{n-1}|_{\partial \Omega} \ll \omega$. Thus dim $\omega = n - 1$.

- (Bourgain 1987) dim $\omega \leq n b_n$ for some $b_n > 0$
- (Wolff 1995) There exist Jordan domains $\Omega \subset \mathbb{R}^3$ with "good geometry" such that dim $\omega > 2$ or dim $\omega < 2$. These are now called Wolff snowflakes.
- (Lewis, Verchota and Vogel 2005) There exist complementary domains $\Omega^+ = \Omega \subset \mathbb{R}^n$ and $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ such that
 - dim $\omega^+ > n-1$ and dim $\omega^- > n-1$
 - dim $\omega^+ > n-1$ and dim $\omega^- < n-1$
 - dim $\omega^+ < n-1$ and dim $\omega^- < n-1$
- ► (Kenig, Preiss, Toro 2009) On 2-sided NTA domains $\Omega \subset \mathbb{R}^n$ if $\omega^+ \ll \omega^- \ll \omega^+$ then dim $\omega^{\pm} = n - 1$.
- ► (Badger) "F. and M. Riesz Theorem for NTA domains": If $\Omega \subset \mathbb{R}^n$ NTA and if $\mathcal{H}^{n-1}(\partial \Omega) < \infty$, then $\mathcal{H}^{n-1}|_{\partial \Omega} \ll \omega$. Thus dim $\omega = n - 1$.

- (Bourgain 1987) dim $\omega \leq n b_n$ for some $b_n > 0$
- (Wolff 1995) There exist Jordan domains $\Omega \subset \mathbb{R}^3$ with "good geometry" such that dim $\omega > 2$ or dim $\omega < 2$. These are now called Wolff snowflakes.
- (Lewis, Verchota and Vogel 2005) There exist complementary domains $\Omega^+ = \Omega \subset \mathbb{R}^n$ and $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ such that
 - dim $\omega^+ > n-1$ and dim $\omega^- > n-1$
 - dim $\omega^+ > n-1$ and dim $\omega^- < n-1$
 - dim $\omega^+ < n-1$ and dim $\omega^- < n-1$
- ► (Kenig, Preiss, Toro 2009) On 2-sided NTA domains $\Omega \subset \mathbb{R}^n$ if $\omega^+ \ll \omega^- \ll \omega^+$ then dim $\omega^{\pm} = n - 1$.
- ► (Badger) "F. and M. Riesz Theorem for NTA domains": If $\Omega \subset \mathbb{R}^n$ NTA and if $\mathcal{H}^{n-1}(\partial \Omega) < \infty$, then $\mathcal{H}^{n-1}|_{\partial \Omega} \ll \omega$. Thus dim $\omega = n - 1$.

Open Problems

• Compute Bourgain's constant b_n for $n \ge 3$.

• Does
$$b_n \to 0$$
 as $n \to \infty$ or is $\inf_n b_n > 0$?

► Let $\Omega \subset \mathbb{R}^n$ be an NTA domain such that $\mathcal{H}^{n-1}(\partial \Omega) < \infty$. Show $\omega \ll \mathcal{H}^{n-1}|_{\partial \Omega}$ (or find a counterexample).

Part I Harmonic Measure

Part II Dimension of Harmonic Measure

Part III Free Boundary Problems for Harmonic Measure

Part IV Interlude: Geometric Measure Theory

Part V Structure Theorem for FBP 2
Regularity of Harmonic Measure

Recall if $\Omega \subset \mathbb{R}^n$ is bounded domain and $\partial \Omega$ is at least C^1 , then

$$\omega^{X}(E) = \int_{E} \frac{d\omega^{X}}{d\sigma}(Y) d\sigma(Y) \quad E \subset \partial \Omega.$$

Regularity of the Boundary \implies Regularity of the Poisson Kernel:

- $\partial \Omega$ is $C^{\infty} \Rightarrow \log \frac{d\omega}{d\sigma} \in C^{\infty}(\partial \Omega)$
- $\partial \Omega$ is C^k and $k \ge 2 \Rightarrow \log \frac{d\omega}{d\sigma} \in C^{k-1}(\partial \Omega)$
- $\partial \Omega$ is $C^{1, \alpha}$ and $\alpha > 0 \Rightarrow \log \frac{d\omega}{d\sigma} \in C^{0, \alpha}(\partial \Omega)$ (Kellogg 1929)
- $\partial \Omega$ is $C^1 \Rightarrow \log \frac{d\omega}{d\sigma} \in \text{VMO}(\partial \Omega)$ (Jerison and Kenig 1982)

Regularity of Harmonic Measure

Recall if $\Omega \subset \mathbb{R}^n$ is bounded domain and $\partial \Omega$ is at least C^1 , then

$$\omega^{X}(E) = \int_{E} \frac{d\omega^{X}}{d\sigma}(Y) d\sigma(Y) \quad E \subset \partial \Omega.$$

Regularity of the Boundary \implies Regularity of the Poisson Kernel:

- $\partial \Omega$ is $C^{\infty} \Rightarrow \log \frac{d\omega}{d\sigma} \in C^{\infty}(\partial \Omega)$
- $\partial \Omega$ is C^k and $k \ge 2 \Rightarrow \log \frac{d\omega}{d\sigma} \in C^{k-1}(\partial \Omega)$
- $\partial \Omega$ is $C^{1,\alpha}$ and $\alpha > 0 \Rightarrow \log \frac{d\omega}{d\sigma} \in C^{0,\alpha}(\partial \Omega)$ (Kellogg 1929)
- ► $\partial \Omega$ is $C^1 \Rightarrow \log \frac{d\omega}{d\sigma} \in \text{VMO}(\partial \Omega)$ (Jerison and Kenig 1982)

Free Boundary Problem 1

Let $\Omega \subset \mathbb{R}^n$ be a domain of locally finite perimeter, with harmonic measure ω and surface measure $\sigma = \mathcal{H}^{n-1}|_{\partial\Omega}$. If the **Poisson kernel** $\frac{d\omega}{d\sigma}$ is sufficiently regular, then how regular is the boundary $\partial\Omega$?

• (Kinderlehrer and Nirenberg 1977) Let $\Omega \subset \mathbb{R}^n$ be of class C^1 .

1.
$$\log \frac{d\omega}{d\sigma} \in C^{1+m,\alpha}$$
 for $m \ge 0$, $\alpha \in (0,1) \Longrightarrow \partial \Omega$ is $C^{2+m,\alpha}$.

2.
$$\log \frac{d\omega}{d\sigma} \in C^{\infty} \Longrightarrow \partial\Omega$$
 is C^{∞}

- 3. log $\frac{d\omega}{d\sigma}$ is real analytic $\Longrightarrow \partial \Omega$ is real analytic.
- (Alt and Caffarelli 1981) Assume $\Omega \subset \mathbb{R}^n$ satisfies necessary "weak conditions" (that includes C^1 as a special case). Then: $\log \frac{d\omega}{d\sigma} \in C^{0,\alpha}$ for $\alpha > 0 \Longrightarrow \partial\Omega$ is $C^{1,\beta}$, $\beta = \beta(\alpha) > 0$.
- (Jerison 1987) In Alt and Caffarelli's Theorem, $\beta = \alpha$.
- (Jerison 1987) $\log \frac{d\omega}{d\sigma} \in C^0 \Longrightarrow \partial\Omega$ is VMO₁.
- ▶ (Kenig and Toro 2003) Studied FBP 1 with log $\frac{d\omega}{d\sigma} \in VMO$.

• (Kinderlehrer and Nirenberg 1977) Let $\Omega \subset \mathbb{R}^n$ be of class C^1 .

1.
$$\log \frac{d\omega}{d\sigma} \in C^{1+m,\alpha}$$
 for $m \ge 0$, $\alpha \in (0,1) \Longrightarrow \partial \Omega$ is $C^{2+m,\alpha}$.

2.
$$\log \frac{d\omega}{d\sigma} \in C^{\infty} \Longrightarrow \partial\Omega$$
 is C^{∞}

3. log $\frac{d\omega}{d\sigma}$ is real analytic $\Longrightarrow \partial \Omega$ is real analytic.

- (Alt and Caffarelli 1981) Assume $\Omega \subset \mathbb{R}^n$ satisfies necessary "weak conditions" (that includes C^1 as a special case). Then: $\log \frac{d\omega}{d\sigma} \in C^{0,\alpha}$ for $\alpha > 0 \Longrightarrow \partial\Omega$ is $C^{1,\beta}$, $\beta = \beta(\alpha) > 0$.
- (Jerison 1987) In Alt and Caffarelli's Theorem, $\beta = \alpha$.
- (Jerison 1987) $\log \frac{d\omega}{d\sigma} \in C^0 \Longrightarrow \partial\Omega$ is VMO₁.
- (Kenig and Toro 2003) Studied FBP 1 with log $\frac{d\omega}{d\sigma} \in VMO$.

• (Kinderlehrer and Nirenberg 1977) Let $\Omega \subset \mathbb{R}^n$ be of class C^1 .

1.
$$\log \frac{d\omega}{d\sigma} \in C^{1+m,\alpha}$$
 for $m \ge 0$, $\alpha \in (0,1) \Longrightarrow \partial \Omega$ is $C^{2+m,\alpha}$.

2.
$$\log \frac{d\omega}{d\sigma} \in C^{\infty} \Longrightarrow \partial\Omega$$
 is C^{∞}

3. log $\frac{d\omega}{d\sigma}$ is real analytic $\Longrightarrow \partial \Omega$ is real analytic.

- (Alt and Caffarelli 1981) Assume $\Omega \subset \mathbb{R}^n$ satisfies necessary "weak conditions" (that includes C^1 as a special case). Then: $\log \frac{d\omega}{d\sigma} \in C^{0,\alpha}$ for $\alpha > 0 \Longrightarrow \partial\Omega$ is $C^{1,\beta}$, $\beta = \beta(\alpha) > 0$.
- (Jerison 1987) In Alt and Caffarelli's Theorem, $\beta = \alpha$.
- (Jerison 1987) $\log \frac{d\omega}{d\sigma} \in C^0 \Longrightarrow \partial\Omega$ is VMO₁.
- (Kenig and Toro 2003) Studied FBP 1 with log $\frac{d\omega}{d\sigma} \in VMO$.

• (Kinderlehrer and Nirenberg 1977) Let $\Omega \subset \mathbb{R}^n$ be of class C^1 .

1.
$$\log \frac{d\omega}{d\sigma} \in C^{1+m,\alpha}$$
 for $m \ge 0$, $\alpha \in (0,1) \Longrightarrow \partial \Omega$ is $C^{2+m,\alpha}$.

2.
$$\log \frac{d\omega}{d\sigma} \in C^{\infty} \Longrightarrow \partial\Omega$$
 is C^{∞}

3. log $\frac{d\omega}{d\sigma}$ is real analytic $\Longrightarrow \partial \Omega$ is real analytic.

- (Alt and Caffarelli 1981) Assume $\Omega \subset \mathbb{R}^n$ satisfies necessary "weak conditions" (that includes C^1 as a special case). Then: $\log \frac{d\omega}{d\sigma} \in C^{0,\alpha}$ for $\alpha > 0 \Longrightarrow \partial\Omega$ is $C^{1,\beta}$, $\beta = \beta(\alpha) > 0$.
- (Jerison 1987) In Alt and Caffarelli's Theorem, $\beta = \alpha$.
- (Jerison 1987) $\log \frac{d\omega}{d\sigma} \in C^0 \Longrightarrow \partial\Omega$ is VMO₁.

▶ (Kenig and Toro 2003) Studied FBP 1 with log $\frac{d\omega}{d\sigma} \in VMO$.

• (Kinderlehrer and Nirenberg 1977) Let $\Omega \subset \mathbb{R}^n$ be of class C^1 .

1.
$$\log \frac{d\omega}{d\sigma} \in C^{1+m,\alpha}$$
 for $m \ge 0$, $\alpha \in (0,1) \Longrightarrow \partial \Omega$ is $C^{2+m,\alpha}$.

2.
$$\log \frac{d\omega}{d\sigma} \in C^{\infty} \Longrightarrow \partial\Omega$$
 is C^{∞}

3. log $\frac{d\omega}{d\sigma}$ is real analytic $\Longrightarrow \partial \Omega$ is real analytic.

- (Alt and Caffarelli 1981) Assume $\Omega \subset \mathbb{R}^n$ satisfies necessary "weak conditions" (that includes C^1 as a special case). Then: $\log \frac{d\omega}{d\sigma} \in C^{0,\alpha}$ for $\alpha > 0 \Longrightarrow \partial\Omega$ is $C^{1,\beta}$, $\beta = \beta(\alpha) > 0$.
- (Jerison 1987) In Alt and Caffarelli's Theorem, $\beta = \alpha$.
- (Jerison 1987) $\log \frac{d\omega}{d\sigma} \in C^0 \Longrightarrow \partial\Omega$ is VMO₁.
- (Kenig and Toro 2003) Studied FBP 1 with log $\frac{d\omega}{d\sigma} \in VMO$.

Examples of NTA Domains

Question: How should we measure regularity of harmonic measure on domains which do not have surface measure?

・ロト ・得ト ・ヨト ・ヨト

Examples of NTA Domains

(e.g. snowflake)

◆□▶ ◆□▶ ★∃▶ ★∃▶ = 三 - のへで

Question: How should we measure regularity of harmonic measure on domains which do not have surface measure?

Free Boundary Problem 2

- $\Omega \subset \mathbb{R}^n$ is a **2-sided domain** if:
 - 1. $\Omega^+=\Omega$ is open and connected
 - 2. $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ is open and connected
 - 3. $\partial \Omega^+ = \partial \Omega^-$

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided domain, equipped with interior harmonic measure ω^+ and exterior harmonic measure ω^- If the **two-sided kernel** $\frac{d\omega^-}{d\omega^+}$ is sufficiently regular, then how regular is the boundary $\partial\Omega$?

An Unexpected Example

Figure: The zero set of the harmonic polynomial $h(x, y, z) = x^{2}(y - z) + y^{2}(z - x) + z^{2}(x - y) - 10xyz$

 $\Omega^{\pm} = \{h^{\pm} > 0\}$ is a 2-sided domain, $\omega^{+} = \omega^{-}$ (pole at infinity), $\log \frac{d\omega^{-}}{d\omega^{+}} \equiv 0$ but $\partial \Omega^{\pm} = \{h = 0\}$ is not smooth at the origin.

Part I Harmonic Measure

Part II Dimension of Harmonic Measure

Part III Free Boundary Problems for Harmonic Measure

Part IV Interlude: Geometric Measure Theory

Part V Structure Theorem for FBP 2

Local Flatness

- ▶ Always have $\theta_A(x, r) \leq 1$ only get information if θ is small
- $A \subset \mathbb{R}^n$ is δ -Reifenberg flat, if $\theta_A(x, r) \leq \delta \ \forall x \in A, \ r \leq r_0$

A ⊂ ℝⁿ is Reifenberg flat with vanishing constant if A is δ-Reifenberg flat for all δ > 0

Local Flatness

- ▶ Always have $\theta_A(x, r) \leq 1$ only get information if θ is small
- $A \subset \mathbb{R}^n$ is δ -Reifenberg flat, if $\theta_A(x, r) \leq \delta \ \forall x \in A, r \leq r_0$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

A ⊂ ℝⁿ is Reifenberg flat with vanishing constant if A is δ-Reifenberg flat for all δ > 0

Local Flatness

► Always have $\theta_A(x, r) \leq 1$ — only get information if θ is small

◆□▶ ◆□▶ ★∃▶ ★∃▶ = 三 - のへで

- $A \subset \mathbb{R}^n$ is δ -Reifenberg flat, if $\theta_A(x, r) \leq \delta \ \forall x \in A, r \leq r_0$
- A ⊂ ℝⁿ is Reifenberg flat with vanishing constant if A is δ-Reifenberg flat for all δ > 0

Blow-up of a Set (= Zooming In on a Set)

Let $A \subset \mathbb{R}^n$ be a closed set and let $x \in A$. We say *B* is a **blow-up** of *A* at $x \in A$ if \exists radii $r_i \downarrow 0$ so that

 $\frac{A-x}{r_i} \to B \quad \text{in Hausdorff distance, uniformly on compact sets.}$

Figure: A blow-up of S^{n-1} at the north pole is the plane $\mathbb{R}^{n-1} \times \{0\}$

Part I Harmonic Measure

Part II Dimension of Harmonic Measure

Part III Free Boundary Problems for Harmonic Measure

Part IV Interlude: Geometric Measure Theory

Part V Structure Theorem for FBP 2

Theorem (Badger) Assume $\Omega \subset \mathbb{R}^n$ is a 2-sided NTA domain, $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C^0(\partial\Omega)$.

There exists $d \ge 1$ (depending on the NTA constants) such that $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

- 1. Every **blow-up** of $\partial\Omega$ about a point $Q \in \Gamma_k$ is the **zero set** $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.
- 2. The "flat points" Γ_1 is an open subset of $\partial \Omega$ and is (locally) Reifenberg flat with vanishing constant.
- 3. The "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.

・ロト ・ 同 ・ ・ ミ ト ・ ミ ・ うへつ

Theorem (Badger) Assume $\Omega \subset \mathbb{R}^n$ is a 2-sided NTA domain, $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C^0(\partial\Omega)$.

There exists $d \ge 1$ (depending on the NTA constants) such that $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

1. Every **blow-up** of $\partial\Omega$ about a point $Q \in \Gamma_k$ is the **zero set** $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.

- 2. The "flat points" Γ_1 is an open subset of $\partial \Omega$ and is (locally) Reifenberg flat with vanishing constant.
- 3. The "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.

Theorem (Badger) Assume $\Omega \subset \mathbb{R}^n$ is a 2-sided NTA domain, $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C^0(\partial\Omega)$.

There exists $d \ge 1$ (depending on the NTA constants) such that $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

- 1. Every **blow-up** of $\partial\Omega$ about a point $Q \in \Gamma_k$ is the **zero set** $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.
- 2. The "flat points" Γ_1 is an open subset of $\partial \Omega$ and is (locally) Reifenberg flat with vanishing constant.
- 3. The "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.

Theorem (Badger) Assume $\Omega \subset \mathbb{R}^n$ is a 2-sided NTA domain, $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C^0(\partial\Omega)$.

There exists $d \ge 1$ (depending on the NTA constants) such that $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

- 1. Every **blow-up** of $\partial\Omega$ about a point $Q \in \Gamma_k$ is the **zero set** $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.
- 2. The "flat points" Γ_1 is an open subset of $\partial \Omega$ and is (locally) Reifenberg flat with vanishing constant.

3. The "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.

Theorem (Badger) Assume $\Omega \subset \mathbb{R}^n$ is a 2-sided NTA domain, $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in C^0(\partial\Omega)$.

There exists $d \ge 1$ (depending on the NTA constants) such that $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

- 1. Every **blow-up** of $\partial\Omega$ about a point $Q \in \Gamma_k$ is the **zero set** $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.
- 2. The "flat points" Γ_1 is an open subset of $\partial \Omega$ and is (locally) Reifenberg flat with vanishing constant.
- 3. The "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.

Figure: $h^{-1}(0)$ when *h* homogeneous harmonic polynomial of degree 1, i.e. a plane through the origin

Remarks

- Γ_1 has full measure: $\omega^{\pm}(\partial \Omega \setminus \Gamma_1) = 0$.
- ▶ Γ₁ is open in ∂ Ω and Reifenberg flat with vanishing constant. Thus dim Γ₁ = *n* − 1.
- ► At $Q \in \Gamma_1$ one can see different planes as $\lim_{i\to\infty} \frac{\partial \Omega Q}{r_i}$ along different sequences of scales $r_i \downarrow 0$.

・ロト ・ 同 ・ ・ ミ ト ・ ミ ・ うへつ

• In dimension n = 2, $\partial \Omega = \Gamma_1$.

Figure: $h^{-1}(0)$ when *h* homogeneous harmonic polynomial of degree 1, i.e. a plane through the origin

Remarks

- Γ_1 has full measure: $\omega^{\pm}(\partial\Omega\setminus\Gamma_1)=0.$
- F₁ is open in ∂Ω and Reifenberg flat with vanishing constant. Thus dim Γ₁ = n − 1.
- ► At $Q \in \Gamma_1$ one can see different planes as $\lim_{i\to\infty} \frac{\partial \Omega Q}{r_i}$ along different sequences of scales $r_i \downarrow 0$.

・ロト ・ 同 ・ ・ ミ ト ・ ミ ・ うへつ

• In dimension n = 2, $\partial \Omega = \Gamma_1$.

Figure: $h^{-1}(0)$ when *h* homogeneous harmonic polynomial of degree 1, i.e. a plane through the origin

- Γ_1 has full measure: $\omega^{\pm}(\partial \Omega \setminus \Gamma_1) = 0$.
- F₁ is open in ∂Ω and Reifenberg flat with vanishing constant. Thus dim Γ₁ = n − 1.
- ► At $Q \in \Gamma_1$ one can see different planes as $\lim_{i\to\infty} \frac{\partial \Omega Q}{r_i}$ along different sequences of scales $r_i \downarrow 0$.
- ▶ In dimension n = 2, $\partial \Omega = \Gamma_1$.

Figure: $h^{-1}(0)$ when *h* homogeneous harmonic polynomial of degree 1, i.e. a plane through the origin

- Γ_1 has full measure: $\omega^{\pm}(\partial\Omega \setminus \Gamma_1) = 0.$
- F₁ is open in ∂Ω and Reifenberg flat with vanishing constant. Thus dim Γ₁ = n − 1.
- ► At $Q \in \Gamma_1$ one can see different planes as $\lim_{i\to\infty} \frac{\partial \Omega Q}{r_i}$ along different sequences of scales $r_i \downarrow 0$.
- In dimension n = 2, $\partial \Omega = \Gamma_1$.

Singularities $Q \in \Gamma_2 \cup \cdots \cup \Gamma_d$

Figure: $h^{-1}(0)$ where $h(x, y, z) = x^2(y-z) + y^2(z-x) + z^2(x-y) - xyz$ is an example blow-up of $\partial\Omega$ about $Q \in \Gamma_3$, $\Omega \subset \mathbb{R}^3$.

- $\Gamma_2 \cup \cdots \cup \Gamma_d \subset \partial \Omega$ is closed and $\omega^{\pm}(\Gamma_2 \cup \cdots \cup \Gamma_d) = 0$.
- Examples shows that dim(Γ₂ ∪ · · · ∪ Γ_d) = n − 3 is possible. Upper bound is unknown.
- In dimension n = 3, ∂Ω = Γ₁ ∪ Γ₃ ∪ Γ₅ ∪ · · · ∪ Γ_{2k+1}.
 (by a Result about Spherical Harmonics by Lewy 1977)

Singularities $Q \in \Gamma_2 \cup \cdots \cup \Gamma_d$

Figure: $h^{-1}(0)$ where $h(x, y, z) = x^2(y-z) + y^2(z-x) + z^2(x-y) - xyz$ is an example blow-up of $\partial\Omega$ about $Q \in \Gamma_3$, $\Omega \subset \mathbb{R}^3$.

- $\Gamma_2 \cup \cdots \cup \Gamma_d \subset \partial \Omega$ is closed and $\omega^{\pm}(\Gamma_2 \cup \cdots \cup \Gamma_d) = 0$.
- Examples shows that dim(Γ₂ ∪ · · · ∪ Γ_d) = n − 3 is possible. Upper bound is unknown.
- In dimension n = 3, ∂Ω = Γ₁ ∪ Γ₃ ∪ Γ₅ ∪ · · · ∪ Γ_{2k+1}.
 (by a Result about Spherical Harmonics by Lewy 1977)

Singularities $Q \in \Gamma_2 \cup \cdots \cup \Gamma_d$

Figure: $h^{-1}(0)$ where $h(x, y, z) = x^2(y-z) + y^2(z-x) + z^2(x-y) - xyz$ is an example blow-up of $\partial\Omega$ about $Q \in \Gamma_3$, $\Omega \subset \mathbb{R}^3$.

- $\Gamma_2 \cup \cdots \cup \Gamma_d \subset \partial \Omega$ is closed and $\omega^{\pm}(\Gamma_2 \cup \cdots \cup \Gamma_d) = 0$.
- Examples shows that dim(Γ₂ ∪ · · · ∪ Γ_d) = n − 3 is possible. Upper bound is unknown.
- In dimension n = 3, ∂Ω = Γ₁ ∪ Γ₃ ∪ Γ₅ ∪ · · · ∪ Γ_{2k+1}.
 (by a Result about Spherical Harmonics by Lewy 1977)

Ingredients in the Proof

- 1. FBP 2 was studied by Kenig and Toro (2006) who showed that blow-ups of $\partial\Omega$ are zero sets of harmonic polynomials.
 - We show that only zero sets of homogeneous harmonic polynomials appear as blow-ups.
 - ► We show the degree of polynomials appearing in blow-ups is unique at every $Q \in \partial \Omega$. Hence $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.
 - We study topology and size of the sets Γ_k .
- 2. To classify geometric blow-ups of the boundary, we study measure-theoretic blow-ups of ω (tangent measures).
- 3. To show Γ_1 is open, we study local flatness properties of the zero sets of harmonic polynomials.

Ingredients in the Proof

- 1. FBP 2 was studied by Kenig and Toro (2006) who showed that blow-ups of $\partial\Omega$ are zero sets of harmonic polynomials.
 - We show that only zero sets of homogeneous harmonic polynomials appear as blow-ups.
 - ▶ We show the degree of polynomials appearing in blow-ups is unique at every $Q \in \partial \Omega$. Hence $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.
 - We study topology and size of the sets Γ_k .
- 2. To classify geometric blow-ups of the boundary, we study measure-theoretic blow-ups of ω (tangent measures).
- 3. To show Γ_1 is open, we study local flatness properties of the zero sets of harmonic polynomials.

Ingredients in the Proof

- 1. FBP 2 was studied by Kenig and Toro (2006) who showed that blow-ups of $\partial\Omega$ are zero sets of harmonic polynomials.
 - We show that only zero sets of homogeneous harmonic polynomials appear as blow-ups.
 - ▶ We show the degree of polynomials appearing in blow-ups is unique at every $Q \in \partial \Omega$. Hence $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.
 - We study topology and size of the sets Γ_k .
- 2. To classify geometric blow-ups of the boundary, we study measure-theoretic blow-ups of ω (tangent measures).
- To show Γ₁ is open, we study local flatness properties of the zero sets of harmonic polynomials.

Open Problems

Open Problems

- 1. Are each of the sets Γ_k , $k \ge 2$ closed separately?
- Find a sharp upper bound on dim Γ_k for k ≥ 2. (Conjecture: dim Γ_k ≤ n − 3.)
- 3. If log $\frac{d\omega^{-}}{d\omega^{+}}$ is $C^{0,\alpha}$, then is Γ_1 locally the $C^{1,\alpha}$ image of a hyperplane?
- If log dω⁻/dω⁺ is C^{0,α}, then at Q ∈ Γ_k is ∂Ω locally the C^{1,α} image of the zero set of a homogeneous harmonic polynomial of degree k separating ℝⁿ into two components?

Open Problems

Open Problems

- 1. Are each of the sets Γ_k , $k \ge 2$ closed separately?
- 2. Find a sharp upper bound on dim Γ_k for $k \ge 2$. (Conjecture: dim $\Gamma_k \le n-3$.)
- 3. If log $\frac{d\omega^{-}}{d\omega^{+}}$ is $C^{0,\alpha}$, then is Γ_1 locally the $C^{1,\alpha}$ image of a hyperplane?
- If log dω⁻/dω⁺ is C^{0,α}, then at Q ∈ Γ_k is ∂Ω locally the C^{1,α} image of the zero set of a homogeneous harmonic polynomial of degree k separating ℝⁿ into two components?

Open Problems

Open Problems

- 1. Are each of the sets Γ_k , $k \ge 2$ closed separately?
- 2. Find a sharp upper bound on dim Γ_k for $k \ge 2$. (Conjecture: dim $\Gamma_k \le n-3$.)
- 3. If log $\frac{d\omega^{-}}{d\omega^{+}}$ is $C^{0,\alpha}$, then is Γ_1 locally the $C^{1,\alpha}$ image of a hyperplane?
- If log dω⁻/dω⁺ is C^{0,α}, then at Q ∈ Γ_k is ∂Ω locally the C^{1,α} image of the zero set of a homogeneous harmonic polynomial of degree k separating ℝⁿ into two components?
Open Problems

Open Problems

- 1. Are each of the sets Γ_k , $k \ge 2$ closed separately?
- 2. Find a sharp upper bound on dim Γ_k for $k \ge 2$. (Conjecture: dim $\Gamma_k \le n-3$.)
- 3. If log $\frac{d\omega^{-}}{d\omega^{+}}$ is $C^{0,\alpha}$, then is Γ_1 locally the $C^{1,\alpha}$ image of a hyperplane?
- If log dω⁻/dω⁺ is C^{0,α}, then at Q ∈ Γ_k is ∂Ω locally the C^{1,α} image of the zero set of a homogeneous harmonic polynomial of degree k separating ℝⁿ into two components?

Flat Points

If $p : \mathbb{R}^n \to \mathbb{R}$ is a polynomial (with real coefficients), then $\Sigma_p = \{X \in \mathbb{R}^n : p(X) = 0\}$ is its zero set.

We say $X \in \Sigma_p$ is a **flat point** if $\lim_{r \downarrow 0} \theta_{\Sigma_p}(X, r) = 0$.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

▶ If $X \in \Sigma_p$ and $Dp(X) \neq 0$, then X is a flat point.

Converse is not true for general polynomials!

Flat Points

If $p : \mathbb{R}^n \to \mathbb{R}$ is a polynomial (with real coefficients), then $\Sigma_p = \{X \in \mathbb{R}^n : p(X) = 0\}$ is its zero set.

We say $X \in \Sigma_p$ is a **flat point** if $\lim_{r \downarrow 0} \theta_{\Sigma_p}(X, r) = 0$.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

- If $X \in \Sigma_p$ and $Dp(X) \neq 0$, then X is a flat point.
- Converse is not true for general polynomials!

Flat Points

If $p : \mathbb{R}^n \to \mathbb{R}$ is a polynomial (with real coefficients), then $\Sigma_p = \{X \in \mathbb{R}^n : p(X) = 0\}$ is its zero set.

We say $X \in \Sigma_p$ is a **flat point** if $\lim_{r \downarrow 0} \theta_{\Sigma_p}(X, r) = 0$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• If $X \in \Sigma_p$ and $Dp(X) \neq 0$, then X is a flat point.

Converse is not true for general polynomials!

Converse for Harmonic Polynomials

Theorem (Badger) For each $n \ge 2$ and $d \ge 2$, there exists $\delta_{n,d} > 0$ with the following property:

If $p : \mathbb{R}^n \to \mathbb{R}$ is a harmonic polynomial of degree d, then $X \in \Sigma_p$ and $Dp(X) = 0 \Rightarrow \theta_{\Sigma_p}(X, r) \ge \delta_{n,d}$ for all r > 0.

Corollary (Badger) If $p : \mathbb{R}^n \to \mathbb{R}$ is a harmonic polynomial, then $\{X \in \Sigma_p : X \text{ is flat}\} = \{X \in \Sigma_p : Dp(X) \neq 0\}.$

Open Problem Find all polynomials $p : \mathbb{R}^n \to \mathbb{R}$ whose zero set Σ_p has the feature that its flat points and regular points coincide.

Converse for Harmonic Polynomials

Theorem (Badger) For each $n \ge 2$ and $d \ge 2$, there exists $\delta_{n,d} > 0$ with the following property:

If $p : \mathbb{R}^n \to \mathbb{R}$ is a harmonic polynomial of degree d, then $X \in \Sigma_p$ and $Dp(X) = 0 \Rightarrow \theta_{\Sigma_p}(X, r) \ge \delta_{n,d}$ for all r > 0.

Corollary (Badger) If $p : \mathbb{R}^n \to \mathbb{R}$ is a harmonic polynomial, then $\{X \in \Sigma_p : X \text{ is flat}\} = \{X \in \Sigma_p : Dp(X) \neq 0\}.$

Open Problem Find all polynomials $p : \mathbb{R}^n \to \mathbb{R}$ whose zero set Σ_p has the feature that its flat points and regular points coincide.

Converse for Harmonic Polynomials

Theorem (Badger) For each $n \ge 2$ and $d \ge 2$, there exists $\delta_{n,d} > 0$ with the following property:

If $p : \mathbb{R}^n \to \mathbb{R}$ is a harmonic polynomial of degree d, then $X \in \Sigma_p$ and $Dp(X) = 0 \Rightarrow \theta_{\Sigma_p}(X, r) \ge \delta_{n,d}$ for all r > 0.

Corollary (Badger) If $p : \mathbb{R}^n \to \mathbb{R}$ is a harmonic polynomial, then $\{X \in \Sigma_p : X \text{ is flat}\} = \{X \in \Sigma_p : Dp(X) \neq 0\}.$

Open Problem Find all polynomials $p : \mathbb{R}^n \to \mathbb{R}$ whose zero set Σ_p has the feature that its flat points and regular points coincide.