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Dirichlet Problem and Harmonic Measure

Let n ≥ 2 and let Ω ⊂ Rn be a domain.

Dirichlet Problem

(D)

{
∆u = 0 in Ω
u = f on ∂Ω

∆ = ∂x1x1 +∂x2x2 +· · ·+∂xnxn

∃! family of probability measures {ωX}X∈Ω on the boundary ∂Ω
called harmonic measure of Ω with pole at X ∈ Ω such that

u(X ) =

∫
∂Ω

f (Q)dωX (Q) solves (D)

By Harnack’s inequality, ωX � ωY � ΩX for all X ,Y ∈ Ω.
By an abuse of notation, we refer to the harmonic measure ω of Ω.
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Examples of NTA Domains

NTA domains introduced by Jerison and Kenig 1982:
Quantitative Openness + Quantitative Path Connectedness

Smooth Domains Lipschitz Domains Quasispheres

(e.g. snowflake)

Question: How should we measure regularity of harmonic measure
on domains which do not have surface measure?
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Two-Phase Free Boundary Problem for Harmonic Measure

Ω ⊂ Rn is a 2-sided domain if:

1 Ω+ = Ω is open and connected

2 Ω− = Rn \ Ω is open and connected

3 ∂Ω+ = ∂Ω−

Let Ω ⊂ Rn be a 2-sided domain, equipped with interior
harmonic measure ω+ and exterior harmonic measure ω−

If the two-sided kernel f =
dω−

dω+
is sufficiently regular,

then how regular is the boundary ∂Ω?
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An Important Example: Polynomial Type Singularities

log dω−

dω+ is smooth 6⇒ ∂Ω is smooth

Figure : The zero set of Szulkin’s degree 3 harmonic polynomial
p(x , y , z) = x3 − 3xy 2 + z3 − 1.5(x2 + y 2)z

Ω± = {p± > 0} is a 2-sided domain, ω+ = ω− (pole at infinity),

log dω−

dω+ ≡ 0 but ∂Ω± = {p = 0} is not smooth at the origin.
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Blowups and Pseudo-blowups under Weak Regularity

Theorem (Kenig and Toro 2006)

Assume that Ω+ = Ω ⊂ Rn and Ω− = Rn \ Ω are NTA domains.

If f = dω−

dω+ satisfies log f ∈ VMO(dω+), then for all sequences
Qi ∈ ∂Ω and ri > 0 with Qi → Q ∈ ∂Ω and ri → 0, there exists a
harmonic polynomial p : Rn → R of degree at most d = d(n,NTA)
and a subsequence (Q ′i , r

′
i ) of (Qi , ri ) such that

∂Ω−Q′i
r ′i
→ Σp = {x ∈ Rn : p(x) = 0} as i →∞.

Moreover, the zero set Σp separates Rn into complimentary
2-sided NTA domains.

Theorem (B 2011)

∂Ω = Γ1 ∪ Γ2 ∪ · · · ∪ Γd : for Q ∈ Γk , each blowup Σp = limi
∂Ω−Q

ri
is the zero set of a homogeneous harmonic polynomial of degree k.
Moreover, ω±(∂Ω \ Γ1) = 0.
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Prior Results: Flat Points

2-sided NTA + log dω−

dω+ ∈ VMO(dω+) =⇒ ∂Ω = Γ1 ∪ Γ2 ∪ · · · ∪ Γd

Theorem (B 2013)

Γ1 is relatively open in ∂Ω

All pseudo-blowups Σp = lim ∂Ω−Qi
ri

at Q ∈ Γ1 are hyperplanes

Γ1 has Hausdorff dimension n − 1

Theorem (B and Lewis 2015)

Γ1 and ∂Ω have Minkowski dimension n − 1 (dimH ≤ dimM)

∂Ω \ Γ1 = Γ2 ∪ · · · ∪ Γd has Minkowski dimension ≤ n − 2

Theorem (Engelstein arXiv:1409.4460)

Hölder regularity: If log dω−

dω+ ∈ C 0,α, then Γ1 is C 1,α.

Higher regularity: If log dω−

dω+ ∈ C∞, then Γ1 is C∞.
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New Results: Singular Points

2-sided NTA + log dω−

dω+ ∈ VMO(dω+) =⇒ ∂Ω = Γ1 ∪ Γ2 ∪ · · · ∪ Γd

Theorem (B-Engelstein-Toro arXiv:1509.03211)

For all 1 ≤ k ≤ d, Uk := Γ1 ∪ · · · ∪ Γk is relatively open in ∂Ω

All pseudo-blowups Σp = lim ∂Ω−Qi
ri

at Q ∈ Γk are zero sets of
harmonic polynomials of degree at most k such that
Ω±p = {±p > 0} are NTA domains.

∂Ω \ Γ1 = Γ2 ∪ · · · ∪ Γd has Minkowski dimension ≤ n − 3

“Even degree singular set” Γ2 ∪ Γ4 ∪ . . . has Hausdorff
dimension ≤ n − 4.

When n ≥ 3, ∂Ω \ Γ1 has Newtonian capacity zero.

Theorem (B-Engelstein-Toro, in preparation)

Assume that log dω−

dω+ ∈ C 0,α. At every boundary point Q ∈ ∂Ω,

there is a unique blowup Σp = limr→0
∂Ω−Q

r .
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Remarks / Ingredients in the Proof
2-sided NTA + log dω−

dω+ ∈ VMO(dω+) =⇒ ∂Ω = Γ1 ∪ Γ2 ∪ · · · ∪ Γd

Theorem (B-Engelstein-Toro arXiv:1509.03211)

∂Ω \ Γ1 = Γ2 ∪ · · · ∪ Γd has Minkowski dimension ≤ n − 3

“Even degree singular set” Γ2 ∪ Γ4 ∪ . . . has Hausdorff
dimension ≤ n − 4.

Remarks

Dimension estimates are sharp by example: Ω±p = {±p > 0}
- p is Szulkin’s polynomial in R3, Γ3 = {0}
- p(x1, y1, x2, y2) = x2

1 − y 2
1 + x2

2 − y 2
2 in R4, Γ2 = {0}.

Do not have monotonicity nor a definite rate of convergence
of (∂Ω− Qi )/ri to Σp.

Do not know that blowups of ∂Ω are unique.

Instead: we use Local Set Approximation framework (B-Lewis)
+ prove “excess improvement” type lemma for pseudoblowups
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Local Set Approximation: Approximation Numbers

Hn,d = {zero sets Σp = {p = 0} of nonconstant
harmonic polynomial p : Rn → R of degree ≤ d, 0 ∈ Σp}

For any A ⊆ Rn nonempty set, x ∈ Rn, r > 0, we define the

bilateral approximation number Θ
Hn,d

A (x , r) ∈ [0, 1], which
measures how well A resembles some Σp ∈ Hn,d in B(x , r):

Θ
Hn,d

A (x , r) = inf
Σp∈Hn,d

max
{

sup
a∈A∩B(x ,r)

r−1 dist(a, x + Σp),

sup
z∈(x+Σp)∩B(x ,r)

r−1 dist(z ,A)
}

All blowups of A at x belong to Hn,d (“x is a Hn,d point of A”)

if and only if limr→0 Θ
Hn,d

A (x , r) = 0 [see B-Lewis 2015]
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Key Ingredient: an “Excess Improvement” Type Lemma

Hn,d = {zero sets Σp = {p = 0} of nonconstant
harmonic polynomial p : Rn → R of degree ≤ d, 0 ∈ Σp}

Theorem (B-Engelstein-Toro arXiv:1509.03211)

Let n ≥ 2 and let 1 ≤ k < d (so that Hn,k ( Hn,d). There exists a
constant δ = δ(n, k , d) > 0 such that for any harmonic polynomial
p : Rn → R of degree d and, for any x ∈ Σp,

Dαp(x) = 0 for all |α| ≤ k ⇔ Θ
Hn,k

Σp
(x , r) ≥ δ for all r > 0,

Dαp(x) 6= 0 for some |α| ≤ k ⇔ Θ
Hn,k

Σp
(x , r) < δ for some r > 0.

Moreover, there exists a constant C = C (n, k , d) > 1 such that

Θ
Hn,k

Σp
(x , r) < δ for some r > 0

⇒ Θ
Hn,k

Σp
(x , sr) < C s1/k for all s ∈ (0, 1).

(?)

The special case k = 1 first appeared in B 2013.
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Hn,k points are detectable in Hn,d

Hn,d = {zero sets Σp = {p = 0} of nonconstant
harmonic polynomial p : Rn → R of degree ≤ d, 0 ∈ Σp}

For all n ≥ 2 and 1 ≤ k ≤ d , there are δ > 0 and C > 1 such that
if Σp ∈ Hn,d , x ∈ Σp and r > 0, then

Θ
Hn,k

Σp
(x , r) < δ ⇒ Θ

Hn,k

Σp
(x , sr) < C s1/k ∀ s ∈ (0, 1). (?)

Remarks

Hn,k points can be detected in zero sets Σp ∈ Hn,d by finding
a good enough approximation at a single, coarse scale.

At Hn,k points in Σp ∈ Hn,d , blow-ups (Σp − x)/r converge
as r → 0 at a uniform rate for all sufficiently small r .

Proof: Lojasiewicz type inequalities for harmonic polynomials.

In LSA framework, property (?) is called “detectability”.
Gives structure theorems for sets with pseudoblowups in Hn,d .
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Sets Which are Locally Well Approximated by Hn,d

Theorem (B-Engelstein-Toro arXiv:1509.03211)

Let A ⊆ Rn be closed. Assume that all pseudo-blowups

lim
i→∞

(A− xi )/ri (xi → x ∈ A, ri → 0)

of A belong to Hn,d , or equivalently, assume that

limr→0 supx∈K Θ
Hn,d

A (x , r) = 0 ∀K ⊂⊂ A.

Then A = A1 ∪ A2 ∪ · · · ∪ Ad where

For all 1 ≤ k ≤ d, Uk := A1 ∪ · · · ∪ Ak is relatively open in A

x ∈ Ak if and only if all blowups limi
A−x
ri

of A at x are
zero sets of homogeneous harmonic polynomials of degree k.

All pseudo-blowups limi
A−xi
ri

of A at x ∈ Ak belong to Hn,k .

For k ≥ 2, all pseudo-blowups limi
Ak−x
ri

of Ak are contained
in “degree k” singular set of harmonic polynomial of degree k.
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For all 1 ≤ k ≤ d, Uk := A1 ∪ · · · ∪ Ak is relatively open in A

x ∈ Ak if and only if all blowups limi
A−x
ri

of A at x are
zero sets of homogeneous harmonic polynomials of degree k.

All pseudo-blowups limi
A−xi
ri

of A at x ∈ Ak belong to Hn,k .

For k ≥ 2, all pseudo-blowups limi
Ak−x
ri

of Ak are contained
in “degree k” singular set of harmonic polynomial of degree k.
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Minkowski Type Volume Estimates

Theorem (Naber and Valtorta arXiv:1403.4176)

For all Σp ∈ Hn,d ,

Vol
(
{x ∈ B(0, 1/2) : dist(x ,Σp) ≤ r}

)
≤ (C (n)d)d r .

For all Sp ∈ SHn,d := {Sp = Σp ∩ |Dp|−1(0) : Σp ∈ Hn,d , 0 ∈ Sp}

Vol
(
{x ∈ B(0, 1/2) : dist(x , Sp) ≤ r}

)
≤ C (n)d

2
r 2.

Using prior work Cheeger, Naber, and Valtorta (2015), we prove:

Theorem (B-Engelstein-Toro arXiv:1509.03211)

Let H∗n,d = {Σp ∈ Hn,d : Ω±p = {±p > 0} are NTA domains}.
For all Sp ∈ SH∗n,d := {Sp = Σp ∩ |Dp|−1(0) : Σp ∈ H∗n,d , 0 ∈ Sp},

Vol
(
{x ∈ B(0, 1/2) : dist(x , Sp) ≤ r}

)
≤ C (n,NTA, ε)r 3−ε.

Transfers to estimate dimM ∂Ω \ Γ1 = Γ2 ∪ · · · ∪ Γd ≤ n − 3
using Local Set Approximation framework [B-Lewis 2015].
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Open Problems

2-sided NTA + log dω−

dω+ ∈ VMO(dω+) =⇒ ∂Ω = Γ1 ∪ Γ2 ∪ · · · ∪ Γd

Are blowups of ∂Ω unique? This is open for Γ1 too.

Is Γk closed when k ≥ 2? (Would imply dimM Γ2k ≤ n − 4.)

2-sided NTA + log dω−

dω+ ∈ C 0 =⇒ ∂Ω = Γ1 ∪ Γ2 ∪ · · · ∪ Γd

Does Γ1 have locally finite (n − 1)-Hausdorff measure?

Is Γ1 countably (n − 1)-rectifiable?

2-sided NTA + log dω−

dω+ ∈ C 0,α =⇒ ∂Ω = Γ1 ∪ Γ2 ∪ · · · ∪ Γd

For k ≥ 2, are pseudo-blowups of Γk equal to the “degree k”
singular set of a degree k harmonic polynomial?

Can we give C 1,α local parameterizations of ∂Ω at x ∈ ∂Ω \Γ1

by open subsets of zero sets of harmonic polynomials?
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