Joint work with Max Engelstein Tatiana Toro

Matthew Badger

University of Connecticut

December 8, 2015

SIAM PDE 2015 New Trends in Elliptic PDE

Research partially supported by NSF DMS 1203497 and NSF DMS 1500382.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○ ○

Dirichlet Problem and Harmonic Measure

Let $n \geq 2$ and let $\Omega \subset \mathbb{R}^n$ be a domain.

 $\exists !$ family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$u(X) = \int_{\partial\Omega} f(Q) d\omega^X(Q)$$
 solves (D)

By Harnack's inequality, $\omega^X \ll \omega^Y \ll \Omega^X$ for all $X, Y \in \Omega$. By an abuse of notation, we refer to the harmonic measure ω of Ω .

Two-Phase Problems for Harmonic Measure – Matthew Badger – University of Connecticut

Dirichlet Problem and Harmonic Measure

Let $n \geq 2$ and let $\Omega \subset \mathbb{R}^n$ be a domain.

 $\exists !$ family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$u(X) = \int_{\partial\Omega} f(Q) d\omega^X(Q)$$
 solves (D)

By Harnack's inequality, $\omega^X \ll \omega^Y \ll \Omega^X$ for all $X, Y \in \Omega$. By an abuse of notation, we refer to the harmonic measure ω of Ω .

Examples of NTA Domains

NTA domains introduced by Jerison and Kenig 1982: Quantitative Openness + Quantitative Path Connectedness

Smooth Domains

Lipschitz Domains

Quasispheres

(e.g. snowflake)

Two-Phase Problems for Harmonic Measure

Matthew Badger – University of Connecticut

Examples of NTA Domains

NTA domains introduced by Jerison and Kenig 1982: Quantitative Openness + Quantitative Path Connectedness

Smooth Domains

Lipschitz Domains

Quasispheres

(e.g. snowflake)

Question: How should we measure regularity of harmonic measure on domains which do not have surface measure?

Two-Phase Problems for Harmonic Measure – Matthew Badger – University of Connecticut

Two-Phase Free Boundary Problem for Harmonic Measure

 $\Omega \subset \mathbb{R}^n$ is a **2-sided domain** if:

1 $\Omega^+ = \Omega$ is open and connected

2 $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ is open and connected

$$\partial \Omega^+ = \partial \Omega^-$$

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided domain, equipped with interior harmonic measure ω^+ and exterior harmonic measure ω^- If the **two-sided kernel** $f = \frac{d\omega^-}{d\omega^+}$ is sufficiently regular, then how regular is the boundary $\partial\Omega$?

An Important Example: Polynomial Type Singularities

Figure : The zero set of Szulkin's degree 3 harmonic polynomial $p(x, y, z) = x^3 - 3xy^2 + z^3 - 1.5(x^2 + y^2)z$

 $\Omega^{\pm} = \{p^{\pm} > 0\}$ is a 2-sided domain, $\omega^{+} = \omega^{-}$ (pole at infinity), $\log \frac{d\omega^{-}}{d\omega^{+}} \equiv 0$ but $\partial \Omega^{\pm} = \{p = 0\}$ is not smooth at the origin.

Blowups and Pseudo-blowups under Weak Regularity

Theorem (Kenig and Toro 2006)

Assume that $\Omega^+ = \Omega \subset \mathbb{R}^n$ and $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ are NTA domains. If $f = \frac{d\omega^-}{d\omega^+}$ satisfies log $f \in \text{VMO}(d\omega^+)$, then for all sequences $Q_i \in \partial \Omega$ and $r_i > 0$ with $Q_i \to Q \in \partial \Omega$ and $r_i \to 0$, there exists a harmonic polynomial $p : \mathbb{R}^n \to \mathbb{R}$ of degree at most d = d(n, NTA) and a subsequence (Q'_i, r'_i) of (Q_i, r_i) such that

$$rac{\partial \Omega - Q_i'}{r_i'} o \Sigma_{oldsymbol{
ho}} = \{x \in \mathbb{R}^n : p(x) = 0\}$$
 as $i o \infty.$

Moreover, the zero set Σ_p separates \mathbb{R}^n into complimentary 2-sided NTA domains.

Theorem (B 2011)

 $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$: for $Q \in \Gamma_k$, each blowup $\Sigma_p = \lim_i \frac{\partial \Omega - Q}{r_i}$ is the zero set of a homogeneous harmonic polynomial of degree k. Moreover, $\omega^{\pm}(\partial \Omega \setminus \Gamma_1) = 0$.

Two-Phase Problems for Harmonic Measure – Matthew Badger – University of Connecticut

Blowups and Pseudo-blowups under Weak Regularity

Theorem (Kenig and Toro 2006)

Assume that $\Omega^+ = \Omega \subset \mathbb{R}^n$ and $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ are NTA domains. If $f = \frac{d\omega^-}{d\omega^+}$ satisfies log $f \in \text{VMO}(d\omega^+)$, then for all sequences $Q_i \in \partial \Omega$ and $r_i > 0$ with $Q_i \to Q \in \partial \Omega$ and $r_i \to 0$, there exists a harmonic polynomial $p : \mathbb{R}^n \to \mathbb{R}$ of degree at most d = d(n, NTA) and a subsequence (Q'_i, r'_i) of (Q_i, r_i) such that

$$rac{\partial \Omega - Q_i'}{r_i'} o \Sigma_{m{
ho}} = \{x \in \mathbb{R}^n : m{
ho}(x) = 0\}$$
 as $i o \infty.$

Moreover, the zero set Σ_p separates \mathbb{R}^n into complimentary 2-sided NTA domains.

Theorem (B 2011)

 $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$: for $Q \in \Gamma_k$, each blowup $\Sigma_p = \lim_i \frac{\partial \Omega - Q}{r_i}$ is the zero set of a homogeneous harmonic polynomial of degree k. Moreover, $\omega^{\pm}(\partial \Omega \setminus \Gamma_1) = 0$.

Prior Results: Flat Points

2-sided NTA + log $\frac{d\omega^-}{d\omega^+} \in \text{VMO}(d\omega^+) \Longrightarrow \partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$

Theorem (B 2013)

• Γ_1 is relatively open in $\partial\Omega$

• All pseudo-blowups $\Sigma_p = \lim rac{\partial \Omega - Q_i}{r_i}$ at $Q \in \Gamma_1$ are hyperplanes

• Γ_1 has Hausdorff dimension n-1

Theorem (B and Lewis 2015)

• Γ_1 and $\partial \Omega$ have Minkowski dimension n-1 (dim_H \leq dim_M)

• $\partial \Omega \setminus \Gamma_1 = \Gamma_2 \cup \cdots \cup \Gamma_d$ has Minkowski dimension $\leq n-2$

Theorem (Engelstein arXiv:1409.4460)

- Hölder regularity: If $\log \frac{d\omega^-}{d\omega^+} \in C^{0,\alpha}$, then Γ_1 is $C^{1,\alpha}$.
- Higher regularity: If $\log \frac{d\omega^-}{d\omega^+} \in C^\infty$, then Γ_1 is C^∞ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

New Results: Singular Points

2-sided NTA + log $\frac{d\omega^-}{d\omega^+} \in \text{VMO}(d\omega^+) \Longrightarrow \partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$

Theorem (B-Engelstein-Toro arXiv:1509.03211)

- For all $1 \leq k \leq d$, $U_k := \Gamma_1 \cup \cdots \cup \Gamma_k$ is relatively open in $\partial \Omega$
- All pseudo-blowups $\Sigma_p = \lim \frac{\partial \Omega Q_i}{r}$ at $Q \in \Gamma_k$ are zero sets of harmonic polynomials of degree at most k such that $\Omega_p^{\pm} = \{\pm p > 0\}$ are NTA domains.
- $\partial \Omega \setminus \Gamma_1 = \Gamma_2 \cup \cdots \cup \Gamma_d$ has Minkowski dimension $\leq n-3$
- "Even degree singular set" $\Gamma_2 \cup \Gamma_4 \cup \ldots$ has Hausdorff dimension < n - 4.
- When n > 3, $\partial \Omega \setminus \Gamma_1$ has Newtonian capacity zero.

Two-Phase Problems for Harmonic Measure - Matthew Badger - University of Connecticut

イロト イポト イヨト イヨト 二日

New Results: Singular Points

2-sided NTA + log $\frac{d\omega^-}{d\omega^+} \in \text{VMO}(d\omega^+) \Longrightarrow \partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$

Theorem (B-Engelstein-Toro arXiv:1509.03211)

- For all $1 \le k \le d$, $U_k := \Gamma_1 \cup \cdots \cup \Gamma_k$ is relatively open in $\partial \Omega$
- All pseudo-blowups Σ_p = lim ∂Ω-Q_i/r_i at Q ∈ Γ_k are zero sets of harmonic polynomials of degree at most k such that Ω[±]_p = {±p > 0} are NTA domains.
- $\partial \Omega \setminus \Gamma_1 = \Gamma_2 \cup \cdots \cup \Gamma_d$ has Minkowski dimension $\leq n-3$
- "Even degree singular set" Γ₂ ∪ Γ₄ ∪ ... has Hausdorff dimension ≤ n − 4.
- When $n \ge 3$, $\partial \Omega \setminus \Gamma_1$ has Newtonian capacity zero.

Theorem (B-Engelstein-Toro, in preparation) Assume that $\log \frac{d\omega^-}{d\omega^+} \in C^{0,\alpha}$. At every boundary point $Q \in \partial\Omega$, there is a unique blowup $\Sigma_p = \lim_{r \to 0} \frac{\partial\Omega - Q}{r}$.

イロト イポト イヨト イヨト 二日

2-sided NTA + log $\frac{d\omega^-}{d\omega^+} \in \text{VMO}(d\omega^+) \Longrightarrow \partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$

Theorem (B-Engelstein-Toro arXiv:1509.03211)

- $\partial \Omega \setminus \Gamma_1 = \Gamma_2 \cup \cdots \cup \Gamma_d$ has Minkowski dimension $\leq n-3$
- "Even degree singular set" Γ₂ ∪ Γ₄ ∪ ... has Hausdorff dimension ≤ n − 4.

Remarks

- Dimension estimates are sharp by example: $\Omega_p^{\pm} = \{\pm p > 0\}$
 - p is Szulkin's polynomial in \mathbb{R}^3 , $\Gamma_3 = \{0\}$
 - $p(x_1, y_1, x_2, y_2) = x_1^2 y_1^2 + x_2^2 y_2^2$ in \mathbb{R}^4 , $\Gamma_2 = \{0\}$.
- Do not have monotonicity nor a definite rate of convergence of (∂Ω - Q_i)/r_i to Σ_p.
- **Do not know that blowups of** $\partial \Omega$ are unique.
- Instead: we use Local Set Approximation framework (B-Lewis) + prove "excess improvement" type lemma for pseudoblowups

2-sided NTA + log $\frac{d\omega^-}{d\omega^+} \in \text{VMO}(d\omega^+) \Longrightarrow \partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$

Theorem (B-Engelstein-Toro arXiv:1509.03211)

- $\partial \Omega \setminus \Gamma_1 = \Gamma_2 \cup \cdots \cup \Gamma_d$ has Minkowski dimension $\leq n-3$
- "Even degree singular set" Γ₂ ∪ Γ₄ ∪ ... has Hausdorff dimension ≤ n − 4.

Remarks

- Dimension estimates are sharp by example: $\Omega_p^{\pm} = \{\pm p > 0\}$
 - p is Szulkin's polynomial in \mathbb{R}^3 , $\Gamma_3 = \{0\}$
 - $p(x_1, y_1, x_2, y_2) = x_1^2 y_1^2 + x_2^2 y_2^2$ in \mathbb{R}^4 , $\Gamma_2 = \{0\}$.
- Do not have monotonicity nor a definite rate of convergence of (∂Ω - Q_i)/r_i to Σ_p.
- **Do not know that blowups of** $\partial \Omega$ are unique.
- Instead: we use Local Set Approximation framework (B-Lewis) + prove "excess improvement" type lemma for pseudoblowups

2-sided NTA + log $\frac{d\omega^-}{d\omega^+} \in \text{VMO}(d\omega^+) \Longrightarrow \partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$

Theorem (B-Engelstein-Toro arXiv:1509.03211)

- $\partial \Omega \setminus \Gamma_1 = \Gamma_2 \cup \cdots \cup \Gamma_d$ has Minkowski dimension $\leq n-3$
- "Even degree singular set" Γ₂ ∪ Γ₄ ∪ ... has Hausdorff dimension ≤ n − 4.

Remarks

- Dimension estimates are sharp by example: $\Omega_p^{\pm} = \{\pm p > 0\}$
 - p is Szulkin's polynomial in \mathbb{R}^3 , $\Gamma_3 = \{0\}$
 - $p(x_1, y_1, x_2, y_2) = x_1^2 y_1^2 + x_2^2 y_2^2$ in \mathbb{R}^4 , $\Gamma_2 = \{0\}$.
- Do not have monotonicity nor a definite rate of convergence of (∂Ω - Q_i)/r_i to Σ_p.
- **Do not know that blowups of** $\partial \Omega$ are unique.

Instead: we use Local Set Approximation framework (B-Lewis)
 + prove "excess improvement" type lemma for pseudoblowups

2-sided NTA + log $\frac{d\omega^-}{d\omega^+} \in \text{VMO}(d\omega^+) \Longrightarrow \partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$

Theorem (B-Engelstein-Toro arXiv:1509.03211)

- $\partial \Omega \setminus \Gamma_1 = \Gamma_2 \cup \cdots \cup \Gamma_d$ has Minkowski dimension $\leq n-3$
- "Even degree singular set" Γ₂ ∪ Γ₄ ∪ ... has Hausdorff dimension ≤ n − 4.

Remarks

- Dimension estimates are sharp by example: $\Omega_p^{\pm} = \{\pm p > 0\}$
 - p is Szulkin's polynomial in \mathbb{R}^3 , $\Gamma_3 = \{0\}$
 - $p(x_1, y_1, x_2, y_2) = x_1^2 y_1^2 + x_2^2 y_2^2$ in \mathbb{R}^4 , $\Gamma_2 = \{0\}$.
- Do not have monotonicity nor a definite rate of convergence of (∂Ω - Q_i)/r_i to Σ_p.
- Do not know that blowups of $\partial \Omega$ are unique.

Instead: we use Local Set Approximation framework (B-Lewis)
 + prove "excess improvement" type lemma for pseudoblowups

2-sided NTA + log $\frac{d\omega^-}{d\omega^+} \in \text{VMO}(d\omega^+) \Longrightarrow \partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$

Theorem (B-Engelstein-Toro arXiv:1509.03211)

- $\partial \Omega \setminus \Gamma_1 = \Gamma_2 \cup \cdots \cup \Gamma_d$ has Minkowski dimension $\leq n-3$
- "Even degree singular set" $\Gamma_2 \cup \Gamma_4 \cup \ldots$ has Hausdorff dimension < n - 4.

Remarks

- Dimension estimates are sharp by example: $\Omega_p^{\pm} = \{\pm p > 0\}$
 - p is Szulkin's polynomial in \mathbb{R}^3 , $\Gamma_3 = \{0\}$
 - $p(x_1, y_1, x_2, y_2) = x_1^2 y_1^2 + x_2^2 y_2^2$ in \mathbb{R}^4 , $\Gamma_2 = \{0\}$.
- Do not have monotonicity nor a definite rate of convergence of $(\partial \Omega - Q_i)/r_i$ to Σ_p .
- **Do not know that blowups of** $\partial \Omega$ are unique.
- Instead: we use Local Set Approximation framework (B-Lewis) + prove "excess improvement" type lemma for pseudoblowups (B)

- 3

Local Set Approximation: Approximation Numbers

 $\mathcal{H}_{n,d} = \{\text{zero sets } \Sigma_p = \{p = 0\} \text{ of nonconstant} \\ \text{harmonic polynomial } p : \mathbb{R}^n \to \mathbb{R} \text{ of degree} \leq d, 0 \in \Sigma_p\}$

For any $A \subseteq \mathbb{R}^n$ nonempty set, $x \in \mathbb{R}^n$, r > 0, we define the **bilateral approximation number** $\Theta_A^{\mathcal{H}_{n,d}}(x,r) \in [0,1]$, which measures how well A resembles some $\Sigma_p \in \mathcal{H}_{n,d}$ in B(x,r):

$$\Theta_{A}^{\mathcal{H}_{n,d}}(x,r) = \inf_{\Sigma_{p} \in \mathcal{H}_{n,d}} \max \left\{ \sup_{a \in A \cap B(x,r)} r^{-1} \operatorname{dist}(a, x + \Sigma_{p}), \\ \sup_{z \in (x + \Sigma_{p}) \cap B(x,r)} r^{-1} \operatorname{dist}(z, A) \right\}$$

All blowups of A at x belong to $\mathcal{H}_{n,d}$ ("x is a $\mathcal{H}_{n,d}$ point of A") if and only if $\lim_{r\to 0} \Theta_A^{\mathcal{H}_{n,d}}(x,r) = 0$ [see B-Lewis 2015]

Two-Phase Problems for Harmonic Measure – Matthew Badger – University of Connecticut

Local Set Approximation: Approximation Numbers

 $\mathcal{H}_{n,d} = \{\text{zero sets } \Sigma_p = \{p = 0\} \text{ of nonconstant} \\ \text{harmonic polynomial } p : \mathbb{R}^n \to \mathbb{R} \text{ of degree} \leq d, 0 \in \Sigma_p\}$

For any $A \subseteq \mathbb{R}^n$ nonempty set, $x \in \mathbb{R}^n$, r > 0, we define the **bilateral approximation number** $\Theta_A^{\mathcal{H}_{n,d}}(x,r) \in [0,1]$, which measures how well A resembles some $\Sigma_p \in \mathcal{H}_{n,d}$ in B(x,r):

$$\Theta_{A}^{\mathcal{H}_{n,d}}(x,r) = \inf_{\Sigma_{p} \in \mathcal{H}_{n,d}} \max \left\{ \sup_{a \in A \cap B(x,r)} r^{-1} \operatorname{dist}(a, x + \Sigma_{p}), \\ \sup_{z \in (x + \Sigma_{p}) \cap B(x,r)} r^{-1} \operatorname{dist}(z, A) \right\}$$

All blowups of A at x belong to $\mathcal{H}_{n,d}$ ("x is a $\mathcal{H}_{n,d}$ point of A") if and only if $\lim_{r\to 0} \Theta_A^{\mathcal{H}_{n,d}}(x,r) = 0$ [see B-Lewis 2015]

Two-Phase Problems for Harmonic Measure – Matthew Badger – University of Connecticut

イロト 不得下 イヨト イヨト 二日

Local Set Approximation: Approximation Numbers

 $\mathcal{H}_{n,d} = \{\text{zero sets } \Sigma_p = \{p = 0\} \text{ of nonconstant} \\ \text{harmonic polynomial } p : \mathbb{R}^n \to \mathbb{R} \text{ of degree} \leq d, 0 \in \Sigma_p\}$

For any $A \subseteq \mathbb{R}^n$ nonempty set, $x \in \mathbb{R}^n$, r > 0, we define the **bilateral approximation number** $\Theta_A^{\mathcal{H}_{n,d}}(x,r) \in [0,1]$, which measures how well A resembles some $\Sigma_p \in \mathcal{H}_{n,d}$ in B(x,r):

$$\Theta_{A}^{\mathcal{H}_{n,d}}(x,r) = \inf_{\Sigma_{p} \in \mathcal{H}_{n,d}} \max \left\{ \sup_{a \in A \cap B(x,r)} r^{-1} \operatorname{dist}(a, x + \Sigma_{p}), \\ \sup_{z \in (x + \Sigma_{p}) \cap B(x,r)} r^{-1} \operatorname{dist}(z, A) \right\}$$

All blowups of A at x belong to $\mathcal{H}_{n,d}$ ("x is a $\mathcal{H}_{n,d}$ point of A") if and only if $\lim_{r\to 0} \Theta_A^{\mathcal{H}_{n,d}}(x,r) = 0$ [see B-Lewis 2015]

Key Ingredient: an "Excess Improvement" Type Lemma

 $\mathcal{H}_{n,d} = \{\text{zero sets } \Sigma_p = \{p = 0\} \text{ of nonconstant}$

harmonic polynomial $p : \mathbb{R}^n \to \mathbb{R}$ of degree $\leq d, 0 \in \Sigma_p$ }

Theorem (B-Engelstein-Toro arXiv:1509.03211)

Let $n \ge 2$ and let $1 \le k < d$ (so that $\mathcal{H}_{n,k} \subsetneq \mathcal{H}_{n,d}$). There exists a constant $\delta = \delta(n, k, d) > 0$ such that for any harmonic polynomial $p : \mathbb{R}^n \to \mathbb{R}$ of degree d and, for any $x \in \Sigma_p$,

$$\begin{split} D^{\alpha} p(x) &= 0 \text{ for all } |\alpha| \leq k \quad \Leftrightarrow \, \Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x,r) \geq \delta \text{ for all } r > 0, \\ D^{\alpha} p(x) \neq 0 \text{ for some } |\alpha| \leq k \Leftrightarrow \, \Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x,r) < \delta \text{ for some } r > 0. \end{split}$$

Moreover, there exists a constant C = C(n, k, d) > 1 such that $\Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x, r) < \delta$ for some r > 0 $\Rightarrow \Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x, sr) < C s^{1/k}$ for all $s \in (0, 1)$. (*)

The special case k = 1 first appeared in B 2013.

Two-Phase Problems for Harmonic Measure – Matthew Badger – University of Connecticut

• • = • • = • = =

 $\mathcal{H}_{n,d} = \{\text{zero sets } \Sigma_p = \{p = 0\} \text{ of nonconstant} \\ \text{harmonic polynomial } p : \mathbb{R}^n \to \mathbb{R} \text{ of degree} \leq d, 0 \in \Sigma_p\}$

For all $n \ge 2$ and $1 \le k \le d$, there are $\delta > 0$ and C > 1 such that if $\Sigma_p \in \mathcal{H}_{n,d}$, $x \in \Sigma_p$ and r > 0, then $\Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x,r) < \delta \implies \Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x,sr) < C s^{1/k} \ \forall s \in (0,1).$ (*)

Remarks

- $\mathcal{H}_{n,k}$ points can be detected in zero sets $\Sigma_p \in \mathcal{H}_{n,d}$ by finding a good enough approximation at a single, coarse scale.
- At $\mathcal{H}_{n,k}$ points in $\Sigma_p \in \mathcal{H}_{n,d}$, blow-ups $(\Sigma_p x)/r$ converge as $r \to 0$ at a uniform rate for all sufficiently small r.
- Proof: Lojasiewicz type inequalities for harmonic polynomials.
- In LSA framework, property (*) is called "detectability".
 Gives structure theorems for sets with pseudoblowups in *H_{n,d}*

 $\mathcal{H}_{n,d} = \{\text{zero sets } \Sigma_p = \{p = 0\} \text{ of nonconstant} \\ \text{harmonic polynomial } p : \mathbb{R}^n \to \mathbb{R} \text{ of degree} \leq d, 0 \in \Sigma_p\}$

For all $n \ge 2$ and $1 \le k \le d$, there are $\delta > 0$ and C > 1 such that if $\Sigma_p \in \mathcal{H}_{n,d}$, $x \in \Sigma_p$ and r > 0, then $\Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x,r) < \delta \implies \Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x,sr) < C s^{1/k} \ \forall s \in (0,1).$ (*)

Remarks

- $\mathcal{H}_{n,k}$ points can be detected in zero sets $\Sigma_p \in \mathcal{H}_{n,d}$ by finding a good enough approximation at a single, coarse scale.
- At H_{n,k} points in Σ_p ∈ H_{n,d}, blow-ups (Σ_p − x)/r converge as r → 0 at a uniform rate for all sufficiently small r.

Proof: Lojasiewicz type inequalities for harmonic polynomials.

In LSA framework, property (*) is called "detectability".
 Gives structure theorems for sets with pseudoblowups in *H_{n,d}*

 $\mathcal{H}_{n,d} = \{\text{zero sets } \Sigma_p = \{p = 0\} \text{ of nonconstant} \\ \text{harmonic polynomial } p : \mathbb{R}^n \to \mathbb{R} \text{ of degree} \leq d, 0 \in \Sigma_p\}$

For all $n \ge 2$ and $1 \le k \le d$, there are $\delta > 0$ and C > 1 such that if $\Sigma_p \in \mathcal{H}_{n,d}$, $x \in \Sigma_p$ and r > 0, then $\Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x,r) < \delta \implies \Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x,sr) < C s^{1/k} \ \forall s \in (0,1).$ (*)

Remarks

- $\mathcal{H}_{n,k}$ points can be detected in zero sets $\Sigma_p \in \mathcal{H}_{n,d}$ by finding a good enough approximation at a single, coarse scale.
- At H_{n,k} points in Σ_p ∈ H_{n,d}, blow-ups (Σ_p − x)/r converge as r → 0 at a uniform rate for all sufficiently small r.

Proof: Lojasiewicz type inequalities for harmonic polynomials.

In LSA framework, property (*) is called "detectability".
 Gives structure theorems for sets with pseudoblowups in H_{n,a}

 $\mathcal{H}_{n,d} = \{\text{zero sets } \Sigma_p = \{p = 0\} \text{ of nonconstant} \\ \text{harmonic polynomial } p : \mathbb{R}^n \to \mathbb{R} \text{ of degree} \leq d, 0 \in \Sigma_p\}$

For all $n \ge 2$ and $1 \le k \le d$, there are $\delta > 0$ and C > 1 such that if $\Sigma_p \in \mathcal{H}_{n,d}$, $x \in \Sigma_p$ and r > 0, then $\Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x,r) < \delta \implies \Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x,sr) < C s^{1/k} \ \forall s \in (0,1).$ (*)

Remarks

- $\mathcal{H}_{n,k}$ points can be detected in zero sets $\Sigma_p \in \mathcal{H}_{n,d}$ by finding a good enough approximation at a single, coarse scale.
- At *H_{n,k}* points in Σ_p ∈ *H_{n,d}*, blow-ups (Σ_p − x)/r converge as r → 0 at a uniform rate for all sufficiently small r.
- Proof: Lojasiewicz type inequalities for harmonic polynomials.

In LSA framework, property (*) is called "detectability".
 Gives structure theorems for sets with pseudoblowups in H_{n,d}.

 $\mathcal{H}_{n,d} = \{\text{zero sets } \Sigma_p = \{p = 0\} \text{ of nonconstant} \\ \text{harmonic polynomial } p : \mathbb{R}^n \to \mathbb{R} \text{ of degree} \leq d, 0 \in \Sigma_p\}$

For all $n \ge 2$ and $1 \le k \le d$, there are $\delta > 0$ and C > 1 such that if $\Sigma_p \in \mathcal{H}_{n,d}$, $x \in \Sigma_p$ and r > 0, then $\Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x,r) < \delta \implies \Theta_{\Sigma_p}^{\mathcal{H}_{n,k}}(x,sr) < C s^{1/k} \ \forall s \in (0,1).$ (*)

Remarks

- $\mathcal{H}_{n,k}$ points can be detected in zero sets $\Sigma_p \in \mathcal{H}_{n,d}$ by finding a good enough approximation at a single, coarse scale.
- At H_{n,k} points in Σ_p ∈ H_{n,d}, blow-ups (Σ_p − x)/r converge as r → 0 at a uniform rate for all sufficiently small r.
- Proof: Lojasiewicz type inequalities for harmonic polynomials.
- In LSA framework, property (*) is called "detectability".
 Gives structure theorems for sets with pseudoblowups in *H_{n,d}*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Sets Which are Locally Well Approximated by $\mathcal{H}_{n,d}$ Theorem (B-Engelstein-Toro arXiv:1509.03211) Let $A \subseteq \mathbb{R}^n$ be closed. Assume that all pseudo-blowups

$$\lim_{i\to\infty} (A-x_i)/r_i \quad (x_i\to x\in A, \ r_i\to 0)$$

of A belong to $\mathcal{H}_{n,d}$, or equivalently, assume that $\lim_{r \to 0} \sup_{x \in K} \Theta_A^{\mathcal{H}_{n,d}}(x,r) = 0 \quad \forall K \subset \subset A.$

Then $A = A_1 \cup A_2 \cup \cdots \cup A_d$ where

For all $1 \le k \le d$, $U_k := A_1 \cup \cdots \cup A_k$ is relatively open in A

- $x \in A_k$ if and only if all blowups $\lim_i \frac{A-x}{r_i}$ of A at x are zero sets of homogeneous harmonic polynomials of degree k.
- All pseudo-blowups $\lim_{i} \frac{A-x_i}{r_i}$ of A at $x \in A_k$ belong to $\mathcal{H}_{n,k}$.

For $k \ge 2$, all **pseudo-blowups** $\lim_{i} \frac{A_k - x}{r_i}$ of A_k are contained in "degree k" singular set of harmonic polynomial of degree k.

Two-Phase Problems for Harmonic Measure – Matthew Badger – University of Connecticut

Sets Which are Locally Well Approximated by $\mathcal{H}_{n,d}$ Theorem (B-Engelstein-Toro arXiv:1509.03211) Let $A \subseteq \mathbb{R}^n$ be closed. Assume that all pseudo-blowups

$$\lim_{i\to\infty} (A-x_i)/r_i \quad (x_i\to x\in A, \ r_i\to 0)$$

of A belong to $\mathcal{H}_{n,d}$, or equivalently, assume that $\lim_{r \to 0} \sup_{x \in K} \Theta_A^{\mathcal{H}_{n,d}}(x,r) = 0 \quad \forall K \subset \subset A.$

Then $A = A_1 \cup A_2 \cup \cdots \cup A_d$ where

• For all $1 \le k \le d$, $U_k := A_1 \cup \cdots \cup A_k$ is relatively open in A

- $x \in A_k$ if and only if all blowups $\lim_i \frac{A-x}{r_i}$ of A at x are zero sets of homogeneous harmonic polynomials of degree k.
- All pseudo-blowups $\lim_{i} \frac{A-x_i}{r_i}$ of A at $x \in A_k$ belong to $\mathcal{H}_{n,k}$.

For $k \ge 2$, all **pseudo-blowups** $\lim_{i} \frac{A_k - x}{r_i}$ of A_k are contained in "degree k" singular set of harmonic polynomial of degree k.

Two-Phase Problems for Harmonic Measure – Matthew Badger – University of Connecticut

Sets Which are Locally Well Approximated by $\mathcal{H}_{n,d}$ Theorem (B-Engelstein-Toro arXiv:1509.03211) Let $A \subseteq \mathbb{R}^n$ be closed. Assume that all pseudo-blowups

$$\lim_{i\to\infty} (A-x_i)/r_i \quad (x_i\to x\in A, \ r_i\to 0)$$

of A belong to $\mathcal{H}_{n,d}$, or equivalently, assume that $\lim_{r \to 0} \sup_{x \in K} \Theta_A^{\mathcal{H}_{n,d}}(x,r) = 0 \quad \forall K \subset \subset A.$

Then $A = A_1 \cup A_2 \cup \cdots \cup A_d$ where

• For all $1 \le k \le d$, $U_k := A_1 \cup \cdots \cup A_k$ is relatively open in A

- $x \in A_k$ if and only if all blowups $\lim_i \frac{A-x}{r_i}$ of A at x are zero sets of homogeneous harmonic polynomials of degree k.
- All pseudo-blowups $\lim_{i} \frac{A-x_i}{r_i}$ of A at $x \in A_k$ belong to $\mathcal{H}_{n,k}$.
- For $k \ge 2$, all pseudo-blowups $\lim_{i} \frac{A_k x}{r_i}$ of A_k are contained in "degree k" singular set of harmonic polynomial of degree k.

Minkowski Type Volume Estimates

Theorem (Naber and Valtorta arXiv:1403.4176) For all $\Sigma_p \in \mathcal{H}_{n,d}$, $\operatorname{Vol}\left(\{x \in B(0, 1/2) : \operatorname{dist}(x, \Sigma_p) \leq r\}\right) \leq (C(n)d)^d r$. For all $S_p \in \mathcal{SH}_{n,d} := \{S_p = \Sigma_p \cap |Dp|^{-1}(0) : \Sigma_p \in \mathcal{H}_{n,d}, 0 \in S_p\}$ $\operatorname{Vol}\left(\{x \in B(0, 1/2) : \operatorname{dist}(x, S_p) \leq r\}\right) \leq C(n)^{d^2} r^2$.

Using prior work Cheeger, Naber, and Valtorta (2015), we prove: Theorem (B-Engelstein-Toro arXiv:1509.03211) Let $\mathcal{H}_{n,d}^* = \{\Sigma_p \in \mathcal{H}_{n,d} : \Omega_p^{\pm} = \{\pm p > 0\} \text{ are NTA domains}\}.$ For all $S_p \in S\mathcal{H}_{n,d}^* := \{S_p = \Sigma_p \cap |Dp|^{-1}(0) : \Sigma_p \in \mathcal{H}_{n,d}^*, 0 \in S_p\},$ Vol $(\{x \in B(0, 1/2) : \operatorname{dist}(x, S_p) \le r\}) \le C(n, NTA, \varepsilon)r^{3-\varepsilon}.$ Transfers to estimate $\dim_M \partial\Omega \setminus \Gamma_1 = \Gamma_2 \cup \cdots \cup \Gamma_d \le n-3$ using Local Set Approximation framework [B-Lewis 2015].

Minkowski Type Volume Estimates

Theorem (Naber and Valtorta arXiv:1403.4176) For all $\Sigma_p \in \mathcal{H}_{n,d}$, $\operatorname{Vol}\left(\{x \in B(0, 1/2) : \operatorname{dist}(x, \Sigma_p) \leq r\}\right) \leq (C(n)d)^d r$. For all $S_p \in \mathcal{SH}_{n,d} := \{S_p = \Sigma_p \cap |Dp|^{-1}(0) : \Sigma_p \in \mathcal{H}_{n,d}, 0 \in S_p\}$ $\operatorname{Vol}\left(\{x \in B(0, 1/2) : \operatorname{dist}(x, S_p) \leq r\}\right) \leq C(n)^{d^2} r^2$.

Using prior work Cheeger, Naber, and Valtorta (2015), we prove: Theorem (B-Engelstein-Toro arXiv:1509.03211) Let $\mathcal{H}_{n,d}^* = \{\Sigma_p \in \mathcal{H}_{n,d} : \Omega_p^{\pm} = \{\pm p > 0\} \text{ are NTA domains}\}.$ For all $S_p \in S\mathcal{H}_{n,d}^* := \{S_p = \Sigma_p \cap |Dp|^{-1}(0) : \Sigma_p \in \mathcal{H}_{n,d}^*, 0 \in S_p\},$ Vol $(\{x \in B(0, 1/2) : \operatorname{dist}(x, S_p) \le r\}) \le C(n, NTA, \varepsilon)r^{3-\varepsilon}.$ Transfers to estimate $\dim_M \partial \Omega \setminus \Gamma_1 = \Gamma_2 \cup \cdots \cup \Gamma_d \le n-3$ using Local Set Approximation framework [B-Lewis 2015].

Minkowski Type Volume Estimates

Theorem (Naber and Valtorta arXiv:1403.4176) For all $\Sigma_p \in \mathcal{H}_{n,d}$, $\operatorname{Vol} \left(\{ x \in B(0, 1/2) : \operatorname{dist}(x, \Sigma_p) \leq r \} \right) \leq (C(n)d)^d r$. For all $S_p \in \mathcal{SH}_{n,d} := \{ S_p = \Sigma_p \cap |Dp|^{-1}(0) : \Sigma_p \in \mathcal{H}_{n,d}, 0 \in S_p \}$ $\operatorname{Vol} \left(\{ x \in B(0, 1/2) : \operatorname{dist}(x, S_p) \leq r \} \right) \leq C(n)^{d^2} r^2$.

Using prior work Cheeger, Naber, and Valtorta (2015), we prove: Theorem (B-Engelstein-Toro arXiv:1509.03211) Let $\mathcal{H}_{n,d}^* = \{\Sigma_p \in \mathcal{H}_{n,d} : \Omega_p^{\pm} = \{\pm p > 0\} \text{ are NTA domains}\}.$ For all $S_p \in S\mathcal{H}_{n,d}^* := \{S_p = \Sigma_p \cap |Dp|^{-1}(0) : \Sigma_p \in \mathcal{H}_{n,d}^*, 0 \in S_p\},$ $\operatorname{Vol}(\{x \in B(0, 1/2) : \operatorname{dist}(x, S_p) \leq r\}) \leq C(n, NTA, \varepsilon)r^{3-\varepsilon}.$ Transfers to estimate $\dim_M \partial \Omega \setminus \Gamma_1 = \Gamma_2 \cup \cdots \cup \Gamma_d \leq n-3$ using Local Set Approximation framework [B-Lewis 2015].

Open Problems

2-sided NTA + log $\frac{d\omega^-}{d\omega^+} \in \text{VMO}(d\omega^+) \Longrightarrow \partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$

- Are blowups of $\partial \Omega$ unique? This is open for Γ_1 too.
- Is Γ_k closed when $k \ge 2$? (Would imply dim_M $\Gamma_{2k} \le n 4$.)

2-sided NTA + log
$$\frac{d\omega^-}{d\omega^+} \in C^0 \Longrightarrow \partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$$

Does Γ₁ have locally finite (n - 1)-Hausdorff measure?
Is Γ₁ countably (n - 1)-rectifiable?

2-sided NTA + log $\frac{d\omega^-}{d\omega^+} \in C^{0,\alpha} \Longrightarrow \partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$

- For k ≥ 2, are pseudo-blowups of Γ_k equal to the "degree k" singular set of a degree k harmonic polynomial?
- Can we give C^{1,α} local parameterizations of ∂Ω at x ∈ ∂Ω \ Γ₁ by open subsets of zero sets of harmonic polynomials?