Harmonic Measure from Two Sides (and Tools from Geometric Measure Theory)

Matthew Badger

Department of Mathematics Stony Brook University

April 12, 2012

Simons Postdoctoral Fellows Meeting

Research Partially Supported by NSF Grants DMS-0838212 and DMS-0856687

(ロ) (御) (唐) (唐) (唐) 20 のQO

Dirichlet Problem

Let $n \geq 2$ and let $\Omega \subset \mathbb{R}^n$ be a domain.

∃! family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$
u(X) = \int_{\partial\Omega} f(Q)d\omega^X(Q) \quad \text{is the solution of (D)}
$$

 2990

Dirichlet Problem

∃! family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$
u(X) = \int_{\partial \Omega} f(Q) d\omega^X(Q) \quad \text{is the solution of (D)}
$$

イロト 不優 トメ 差 トメ 差 トー 差し

 2990

Dirichlet Problem

∃! family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called **harmonic measure** of Ω with pole at $X \in \Omega$ such that

$$
u(X) = \int_{\partial \Omega} f(Q) d\omega^X(Q) \quad \text{is the solution of (D)}
$$

KORK EXTERNE PROVIDE

Free Boundary Problem 1

イロン イ部ン イ君ン イ君ン

 2990

Let $\Omega \subset \mathbb{R}^n$ be a domain of locally finite perimeter, with harmonic measure ω and surface measure $\sigma = \mathcal{H}^{n-1} |_{\partial \Omega}$. If the **Poisson kernel** $\frac{d\omega}{d\sigma}$ is sufficiently regular, then how regular is the boundary $\partial\Omega$?

FBP 1 Results

 \blacktriangleright (Kinderlehrer and Nirenberg 1977) Let $Ω ⊂ ℝⁿ$ be of class $C¹$.

1.
$$
\log \frac{d\omega}{d\sigma} \in C^{1+m,\alpha}
$$
 for $m \ge 0$, $\alpha \in (0,1) \implies \partial\Omega$ is $C^{2+m,\alpha}$.

2.
$$
\log \frac{d\omega}{d\sigma} \in C^{\infty} \implies \partial \Omega
$$
 is C^{∞}

- 3. log $\frac{d\omega}{d\sigma}$ is real analytic \Longrightarrow ∂Ω is real analytic.
- \blacktriangleright (Alt and Caffarelli 1981) Assume Ω $\subset \mathbb{R}^n$ satisfies necessary "weak conditions" (that includes C^1 as a special case). Then: $\log \frac{d\omega}{d\sigma} \in C^{0,\alpha}$ for $\alpha > 0 \Longrightarrow \partial \Omega$ is $C^{1,\beta}, \ \beta = \beta(\alpha) > 0$.
- In (Jerison 1987) In Alt and Caffarelli's Theorem, $\beta = \alpha$.
- ► (Jerison 1987) log $\frac{d\omega}{d\sigma} \in C^0 \Longrightarrow \partial \Omega$ is VMO₁.
- ► (Kenig and Toro 2003) Studied FBP 1 with log $\frac{d\omega}{d\sigma} \in$ VMO.

AD A RELATE LE A RELATE DE

Examples of NTA Domains

(e.g. snowflake)

 2990

KID KIND KEY KEY LE

Question: How should we measure regularity of harmonic measure on domains which do not have surface measure?

Free Boundary Problem 2

 $\Omega \subset \mathbb{R}^n$ is a 2-sided domain if:

- 1. $\Omega^+ = \Omega$ is open and connected
- 2. $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ is open and connected
- 3. $\partial \Omega^+ = \partial \Omega^-$

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided domain, equipped with interior harmonic measure ω^+ and exterior harmonic measure ω^- If the two-sided kernel $\frac{d\omega^{-}}{dt}$ $\frac{d\omega}{d\omega^+}$ is sufficiently regular, then how regular is the boundary $\partial\Omega$?

An Unexpected Example

Figure: The zero set of the harmonic polynomial $h(x, y, z) = x^2(y - z) + y^2(z - x) + z^2(x - y) - 10xyz$

 $\Omega^{\pm}=\{h^{\pm}>0\}$ is a 2-sided domain, $\omega^{+}=\omega^{-}$ (pole at infinity), $\log \frac{d\omega^-}{d\omega^+} \equiv 0$ but $\partial \Omega^\pm = \{h=0\}$ is not smooth at the origin.

KORK EXTERNE PROVIDE

Structure Theorem for FBP 2

Theorem (B) Assume $\Omega \subset \mathbb{R}^n$ is a 2-sided NTA domain, $\omega^+\ll\omega^-\ll\omega^+$ and log $\frac{d\omega^-}{d\omega^+}\in VMO(d\omega^+)$ or log $\frac{d\omega^-}{d\omega^+}\in\mathcal{C}^0(\partial\Omega).$

There exists $d \geq 1$ (depending on the NTA constants) such that $\partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

- 1. Every **blow-up** of $\partial\Omega$ about a point $Q \in \Gamma_k$ is the zero set $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.
- 2. The "flat points" Γ_1 is a dense open subset of $\partial\Omega$ with Hausdorff dimension $n - 1$.
- 3. The "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.

Ingredients in the Proof

- 1. FBP 2 was studied by Kenig and Toro (2006) who showed that blow-ups of $\partial\Omega$ are zero sets of harmonic polynomials.
	- \triangleright We show that only zero sets of homogeneous harmonic polynomials appear as blow-ups.
	- \triangleright We show the degree of polynomials appearing in blow-ups is unique at every $Q \in \partial \Omega$. Hence $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.
	- \triangleright We study topology and size of the sets Γ_k .
- 2. To classify geometric blow-ups of the boundary, we study measure-theoretic blow-ups of ω^{\pm} (tangent measures).
- 3. To show Γ_1 is open, we study local flatness properties of the zero sets of harmonic polynomials.

Polynomial Harmonic Measures

$$
h: \mathbb{R}^n \to \mathbb{R} \text{ be a polynomial, } \Delta h = 0
$$

$$
\Omega^+ = \{X: h(X) > 0\}, \Omega^- = \{X: h(X) < 0\}
$$

(i.e. h^{\pm} is the Green function for Ω^{\pm})

The harmonic measure ω_h associated to h is the harmonic measure of Ω^{\pm} with pole at infinity; i.e., for all $\varphi\in \mathcal{C}^{\infty}_c(\mathbb{R}^n)$,

$$
\int_{h^{-1}(0)} \varphi d\omega_h = -\int_{\partial \Omega^\pm} \varphi \frac{\partial h^\pm}{\partial \nu} d\sigma = \int_{\Omega^\pm} h^\pm \Delta \varphi
$$

Two Collections of Measures Associated to Polynomials $P_d = \{\omega_h : h$ harmonic polynomial of degree $\leq d\}$ $\mathcal{F}_k = \{\omega_h : h \text{ homogeneous harmonic polynomial of degree } = k\}$

KORK EXTERNE PROVIDE

Blow-ups of the Boundary \longleftrightarrow Tangent Measures of ω

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided NTA domain, let $Q \in \partial \Omega$ and let $r_i \downarrow 0$.

Theorem: (KT) There is subsequence of r_i (which we relabel) and an unbounded 2-sided NTA domain Ω_{∞} such that

 \triangleright Blow-ups of Boundary at Q Converge:

$$
\partial \Omega_i = \frac{\partial \Omega - Q}{r_i} \rightarrow \partial \Omega_{\infty} \text{ in Hausdorff metric}
$$

 \triangleright Blow-ups of Harmonic Measure at Q Converge:

$$
\omega_i^{\pm}(E) = \frac{\omega^{\pm}(Q + r_i E)}{\omega^{\pm}(B(Q, r_i))}
$$
 satisfy $\omega_i^{\pm} \rightarrow \omega_{\infty}^{\pm}$

where ω^{\pm}_{∞} is the harmonic measure of Ω^{\pm}_{∞} with pole at infinity.

KORK (FRAGE) ASSESSED

Each blow-up ω^{\pm}_{∞} is called a $\underline{\text{tangent measure}}$ of ω^{\pm} at $Q.$

Tangent Measures of ω^\pm when $\omega^+ \ll \omega^- \ll \omega^+$

Theorem (Kenig and Toro) If $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in VMO(d\omega^+),$ then $\text{Tan}(\omega^{\pm}, Q) \subset \mathcal{P}_d$.

Goal: Show $\text{Tan}(\omega^{\pm}, Q) \subset \mathcal{F}_k$ for some $1 \leq k = k(Q) \leq d$.

KORK (FRAGE) KEY GE YORN

 $P_d = \{\omega_h : h$ harmonic polynomial of degree $\leq d\}$ $\mathcal{F}_k = {\omega_h : h \text{ homogeneous harmonic of degree } = k}$

Tangent Measures of ω^\pm when $\omega^+ \ll \omega^- \ll \omega^+$

Theorem (Kenig and Toro) If $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in VMO(d\omega^+),$ then $\operatorname{Tan}(\omega^{\pm},Q) \subset \mathcal{P}_d$.

Goal: Show $\mathrm{Tan}(\omega^{\pm}, Q) \subset \mathcal{F}_k$ for some $1 \leq k = k(Q) \leq d$.

KORK (FRAGE) KEY GE YORN

 $P_d = \{\omega_h : h$ harmonic polynomial of degree $\leq d\}$ $\mathcal{F}_k = {\omega_h : h \text{ homogeneous harmonic of degree } = k}$

Cones of Measures

A collection M of non-zero Radon measures is a d-cone if it preserved under scaling and dilation of \mathbb{R}^n :

1. If $\nu \in M$ and $c > 0$, then $c\nu \in M$.

2. If $\nu \in \mathcal{M}$ and $r > 0$, then $T_{0,r\sharp} \nu \in \mathcal{M}$. $[T_{0,r}(y) = y/r]$

Examples

- Tangent Measures: $Tan(\mu, x)$
- Polynomial Harmonic Measures: P_d and F_k

Size of a Measure and Distance to a Cone

- $-$ Let ψ be Radon measure on \mathbb{R}^n . The "size" of ψ on $B(0,r)$ is $F_r(\psi) = \int_0^r \psi(B(0, s)) ds.$
- $-$ Let ψ be a Radon measure on \mathbb{R}^n and $\mathcal M$ a d-cone. There is a ["distance"](#page-23-0) $d_r(\psi, \mathcal{M})$ from ψ to $\mathcal M$ on $B(0, r)$ compatible with weak convergence of measures.

Connectedness of Tangent Measures

Let F and M be d-cones such that $\mathcal{F} \subset \mathcal{M}$. Assume that:

 $-$ F and M have compact bases $(\{\psi : F_1(\psi) = 1\})$,

− (Property P) There exists $\epsilon_0 > 0$ such that whenever $\mu \in \mathcal{M}$ and $d_r(\mu, \mathcal{F}) < \epsilon_0$ for all $r \ge r_0$ then $\mu \in \mathcal{F}$.

Theorem

If $\text{Tan}(\nu, x) \subset \mathcal{M}$ and $\text{Tan}(\nu, x) \cap \mathcal{F} \neq \emptyset$, then $\text{Tan}(\nu, x) \subset \mathcal{F}$.

Key Point: (Under technical hypotheses) If one tangent measure at a point belongs to F then all tangent measures belong to F.

First proved in [P], the theorem was stated in this form in [KPT].

- $-$ Preiss used the theorem to show Radon measures in \mathbb{R}^n with positive and finite m-density almost everywhere are m-rectifiable.
- Kenig, Preiss and Toro used the theorem to compute Hausdorff dimension of harmonic measure when $\omega^+ \ll \omega^- \ll \omega^+.$ **K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^**

Checking the Hypotheses: Rate of Doubling

If $\omega \in \mathcal{F}_k$, then $\omega(B(0, r)) = cr^{n+k-2}$ where c depends on n, k and $\|h\|_{L^1(S^{n-1})}$. Thus \mathcal{F}_k is uniformly doubling: if $\omega\in \mathcal{F}_k$ then

$$
\frac{\omega(B(0,2r))}{\omega(B(0,r))}=2^{n+k-2} \quad \text{for all } r>0
$$

independent of the associated polynomial h. **Lemma:** \mathcal{F}_k has compact basis for all $k \geq 1$.

If $\omega \in \mathcal{P}_d$ is associated to a polynomial of degree $j \leq d$ (not necessarily homogeneous), then for all $\tau > 1$

$$
\frac{\omega(B(0,\tau r))}{\omega(B(0,r))}\sim \tau^{n+j-2} \quad \text{as } r\to\infty.
$$

[Theorem:](#page-24-0) The comparison constant depends only on *n* and *i*! **Corollary:** If $d_r(\omega, \mathcal{F}_k) < \varepsilon_0(n, d)$ $\forall r > r_0(\omega)$, then $k = j$.

KORKAR KERKER EL POLO

Checking the Hypotheses: Rate of Doubling

If $\omega \in \mathcal{F}_k$, then $\omega(B(0,r)) = cr^{n+k-2}$ where c depends on n, k and $\|h\|_{L^1(S^{n-1})}$. Thus \mathcal{F}_k is uniformly doubling: if $\omega\in \mathcal{F}_k$ then

$$
\frac{\omega(B(0,2r))}{\omega(B(0,r))}=2^{n+k-2} \quad \text{for all } r>0
$$

independent of the associated polynomial h. **Lemma:** \mathcal{F}_k has compact basis for all $k \geq 1$.

If $\omega \in \mathcal{P}_d$ is associated to a polynomial of degree $j \leq d$ (not necessarily homogeneous), then for all $\tau > 1$

$$
\frac{\omega(B(0,\tau r))}{\omega(B(0,r))}\sim \tau^{n+j-2}\quad\text{as }r\to\infty.
$$

[Theorem:](#page-24-0) The comparison constant depends only on *n* and *i*! **Corollary:** If $d_r(\omega, \mathcal{F}_k) < \varepsilon_0(n, d)$ $\forall r > r_0(\omega)$, then $k = j$.

KORKAR KERKER EL POLO

Polynomial Blow-ups are Homogeneous

Theorem (B) Let Ω be a 2-sided NTA domain. If $\text{Tan}(\omega^+,\mathcal{Q})\subset \mathcal{P}_d$, then $\mathrm{Tan}(\omega^{\pm}, \pmb{Q}) \subset \mathcal{F}_k$ for some $1 \leq k \leq d$.

Steps in the Proof

- 1. Since $\text{Tan}(\omega^+,\mathcal{Q})\subset \mathcal{P}_d$, there is a smallest degree $k\leq d$ such that $\text{Tan}(\omega^+,\mathit{Q})\cap \mathcal{P}_\mathit{k}\neq \emptyset.$ Show that $\text{Tan}(\omega^+, Q) \cap \mathcal{P}_k \subset \mathcal{F}_k$.
- 2. Let $\mathcal{F} = \mathcal{F}_k$ and $\mathcal{M} = \text{Tan}(\omega^+, \mathcal{Q}) \cup \mathcal{F}_k$. By the previous slide the hypotheses of the connectedness theorem are satisfied. Therefore, $\text{Tan}(\omega^+,\mathcal{Q})\subset \mathcal{F}_k$.

KORKAR KERKER EL POLO

Open Questions

$\log \frac{d\omega^-}{d\omega^+} \in VMO(d\omega^+) \Rightarrow \partial\Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

- 1. Find an upper bound on dimension of the "singularities" $\Gamma_2 \cup \cdots \cup \Gamma_d$. (Conjecture: dim_H $\leq n-3$)
- 2. (Higher Regularity) For example, if log $\frac{d\omega^-}{d\omega^+}\in \mathcal{C}^{0,\alpha}$, then at $Q \in \Gamma_k$ is $\partial \Omega$ locally the $C^{1,\alpha}$ image of the zero set of a harmonic polynomial of degree k ?
- 3. (Rectifiability) Does $\Gamma_1 = G \cup N$ where G is $(n-1)$ -rectifiable and $\omega^{\pm}(N)=0$?
	- \triangleright The answer is yes if one assumes that $\partial\Omega$ has locally finite perimeter (Kenig-Preiss-Toro, B).

KORKAR KERKER DRAM

4. Find other applications of the connectedness of tangent measures.

REFERENCES

M. Badger, Harmonic polynomials and tangent measures of harmonic measure, Rev. Mat. Iberoam. 27 (2011), no. 3, 841–870. arXiv:0910.2591

M. Badger, Flat points in zero sets of harmonic polynomials and harmonic measure from two sides, preprint. arXiv:1109.1427

K ロ K K 優 K K 활 K K 활 K … 활

 298

APPENDIX

メロト メタト メミト メミト

 \equiv 990

Distance from Measure to a Cone

Let $\mathcal{L}(r) = \{f : \mathbb{R}^n \to \mathbb{R} \mid f \geq 0, \text{ Lip } f \leq 1, \text{ spt } f \subset B(0,r)\}.$

If μ and ν are two Radon measures in \mathbb{R}^n and $r > 0$, we set

$$
F_r(\mu,\nu)=\sup\left\{\left|\int fd\mu-\int fd\nu\right|: f\in\mathcal{L}(r)\right\}.
$$

When
$$
\nu = 0
$$
,
\n
$$
F_r(\mu, 0) = \int_0^r \mu(B(0, s)) ds =: F_r(\mu).
$$

Note that $\mu_i \rightharpoonup \mu$ if and only if lim $_{i\to\infty}$ $\mathcal{F}_r(\mu_i,\mu)=0$ for all $r>0.$

If ψ is a Radon measure and $\mathcal M$ is a d-cone, we define a scaled version of F_r as follows:

$$
d_r(\psi, \mathcal{M}) = \inf \left\{ F_r\left(\frac{\psi}{F_r(\psi)}, \mu\right) : \mu \in \mathcal{M} \text{ and } F_r(\mu) = 1 \right\},\
$$

i.e., norm[a](#page-22-0)liz[e](#page-24-1) ψ s[o](#page-1-0) $\mathcal{F}_r(\psi)=1$ $\mathcal{F}_r(\psi)=1$ $\mathcal{F}_r(\psi)=1$ & then tak[e d](#page-22-0)[ist](#page-24-1)a[nc](#page-23-1)e [t](#page-0-0)o $\mathcal M$ $\mathcal M$ o[n](#page-25-0) $\mathcal B_r.$ $\mathcal B_r.$ $\mathcal B_r.$ $\mathcal B_r.$ 2990 Homogeneous Harmonic Polynomials – "Big Piece" Lemma

Let $h: \mathbb{R}^n \to \mathbb{R}$ be homogenous harmonic polynomial of degree k.

Key Lemma (B): There is a constant $\ell_{n,k} > 0$ with the following property. For all $t \in (0,1)$,

$$
\mathcal{H}^{n-1}\{\theta\in S^{n-1}:|h(\theta)|\geq t\|h\|_{L^{\infty}(S^{n-1})}\}\geq \ell_{n,k}(1-t)^{n-1}.
$$

Interpretation: If h is homogeneous harmonic polynomial, then h takes big values on a big piece of the unit sphere.

Bounds for $\omega(B(0, r))$ as $r \to \infty$

Given $h : \mathbb{R}^n \to \mathbb{R}$ harmonic polynomial of degree d, $h(0) = 0$, $h = h_d + h_{d-1} + \cdots + h_1$

where h_k is homogeneous harmonic polynomial of degree k . In polar coordinates,

$$
h(r\theta)=r^dh_d(\theta)+r^{d-1}h_{d-1}(\theta)+\cdots+rh_1(\theta),
$$

$$
\frac{dh}{dr}(r\theta)=dr^{d-1}h_d(\theta)+(d-1)r^{d-2}h_{d-1}(\theta)+\cdots+h_1(\theta).
$$

Fact: Recall $\Omega^+ = \{X : h(X) > 0\}$. For all $r > 0$,

$$
\omega(B(0,r))=\int_{\partial B(0,r)\cap\Omega^+}\frac{dh^+}{dr}d\sigma
$$

The $r^{d-1}h_d(\theta)$ term dominates as $r\rightarrow\infty$. Upper bounds for $\omega(B_r)$ are easy. Use "Big Piece" Lemma for lower bounds.