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Dirichlet Problem

Let n ≥ 2 and let Ω ⊂ Rn be a domain.

Dirichlet Problem

(D)

{
∆u = 0 in Ω
u = f on ∂Ω

∆ = ∂x1x1 +∂x2x2 +· · ·+∂xnxn

∃! family of probability measures {ωX}X∈Ω on the boundary ∂Ω
called harmonic measure of Ω with pole at X ∈ Ω such that

u(X ) =

∫
∂Ω

f (Q)dωX (Q) is the solution of (D)



Dirichlet Problem

Let n ≥ 2 and let Ω ⊂ Rn be a domain.

Dirichlet Problem

(D)

{
∆u = 0 in Ω
u = f on ∂Ω

∆ = ∂x1x1 +∂x2x2 +· · ·+∂xnxn

∃! family of probability measures {ωX}X∈Ω on the boundary ∂Ω
called harmonic measure of Ω with pole at X ∈ Ω such that

u(X ) =

∫
∂Ω

f (Q)dωX (Q) is the solution of (D)



Dirichlet Problem

Let n ≥ 2 and let Ω ⊂ Rn be a domain.

Dirichlet Problem

(D)

{
∆u = 0 in Ω
u = f on ∂Ω

∆ = ∂x1x1 +∂x2x2 +· · ·+∂xnxn

∃! family of probability measures {ωX}X∈Ω on the boundary ∂Ω
called harmonic measure of Ω with pole at X ∈ Ω such that

u(X ) =

∫
∂Ω

f (Q)dωX (Q) is the solution of (D)



Free Boundary Problem 1

Let Ω ⊂ Rn be a domain of locally finite perimeter, with
harmonic measure ω and surface measure σ = Hn−1|∂Ω.

If the Poisson kernel
dω

dσ
is sufficiently regular,

then how regular is the boundary ∂Ω?



FBP 1 Results

I (Kinderlehrer and Nirenberg 1977) Let Ω ⊂ Rn be of class C 1.

1. log dω
dσ ∈ C 1+m,α for m ≥ 0, α ∈ (0, 1) =⇒ ∂Ω is C 2+m,α.

2. log dω
dσ ∈ C∞ =⇒ ∂Ω is C∞

3. log dω
dσ is real analytic =⇒ ∂Ω is real analytic.

I (Alt and Caffarelli 1981) Assume Ω ⊂ Rn satisfies necessary
“weak conditions” (that includes C 1 as a special case). Then:
log dω

dσ ∈ C 0,α for α > 0 =⇒ ∂Ω is C 1,β, β = β(α) > 0.

I (Jerison 1987) In Alt and Caffarelli’s Theorem, β = α.

I (Jerison 1987) log dω
dσ ∈ C 0 =⇒ ∂Ω is VMO1.

I (Kenig and Toro 2003) Studied FBP 1 with log dω
dσ ∈ VMO.



Examples of NTA Domains

Smooth Domains Lipschitz Domains Quasispheres

(e.g. snowflake)

Question: How should we measure regularity of harmonic measure
on domains which do not have surface measure?



Free Boundary Problem 2

Ω ⊂ Rn is a 2-sided domain if:

1. Ω+ = Ω is open and connected

2. Ω− = Rn \ Ω is open and connected

3. ∂Ω+ = ∂Ω−

Let Ω ⊂ Rn be a 2-sided domain, equipped with interior
harmonic measure ω+ and exterior harmonic measure ω−

If the two-sided kernel
dω−

dω+
is sufficiently regular,

then how regular is the boundary ∂Ω?



An Unexpected Example

log dω−

dω+ is smooth does not imply ∂Ω is smooth

Figure: The zero set of the harmonic polynomial
h(x , y , z) = x2(y − z) + y 2(z − x) + z2(x − y)− 10xyz

Ω± = {h± > 0} is a 2-sided domain, ω+ = ω− (pole at infinity),

log dω−

dω+ ≡ 0 but ∂Ω± = {h = 0} is not smooth at the origin.



Structure Theorem for FBP 2

Theorem (B) Assume Ω ⊂ Rn is a 2-sided NTA domain,

ω+ � ω− � ω+ and log dω−

dω+ ∈ VMO(dω+) or log dω−

dω+ ∈ C 0(∂Ω).

There exists d ≥ 1 (depending on the NTA constants) such that
∂Ω = Γ1 ∪ Γ2 ∪ · · · ∪ Γd .

1. Every blow-up of ∂Ω about a point Q ∈ Γk is the zero set
h−1(0) of a homogeneous harmonic polynomial h of degree k
which separates Rn into two components.

2. The “flat points” Γ1 is a dense open subset of ∂Ω with
Hausdorff dimension n − 1.

3. The “singularities” Γ2 ∪ · · · ∪ Γd have harmonic measure zero.



Ingredients in the Proof

1. FBP 2 was studied by Kenig and Toro (2006) who showed
that blow-ups of ∂Ω are zero sets of harmonic polynomials.

I We show that only zero sets of homogeneous harmonic
polynomials appear as blow-ups.

I We show the degree of polynomials appearing in blow-ups is
unique at every Q ∈ ∂Ω. Hence ∂Ω = Γ1 ∪ Γ2 ∪ · · · ∪ Γd .

I We study topology and size of the sets Γk .

2. To classify geometric blow-ups of the boundary, we study
measure-theoretic blow-ups of ω± (tangent measures).

3. To show Γ1 is open, we study local flatness properties of the
zero sets of harmonic polynomials.



Polynomial Harmonic Measures

h : Rn → R be a polynomial, ∆h = 0

Ω+ = {X : h(X ) > 0}, Ω− = {X : h(X ) < 0}
(i.e. h± is the Green function for Ω±)

The harmonic measure ωh associated to h is the harmonic measure
of Ω± with pole at infinity; i.e., for all ϕ ∈ C∞c (Rn),∫

h−1(0)
ϕdωh = −

∫
∂Ω±

ϕ
∂h±

∂ν
dσ =

∫
Ω±

h±∆ϕ

Two Collections of Measures Associated to Polynomials

Pd = {ωh : h harmonic polynomial of degree ≤ d}
Fk = {ωh : h homogenous harmonic polynomial of degree = k}



Blow-ups of the Boundary ←→ Tangent Measures of ω

Let Ω ⊂ Rn be a 2-sided NTA domain, let Q ∈ ∂Ω and let ri ↓ 0.

Theorem: (KT) There is subsequence of ri (which we relabel) and
an unbounded 2-sided NTA domain Ω∞ such that

I Blow-ups of Boundary at Q Converge:

∂Ωi =
∂Ω− Q

ri
→ ∂Ω∞ in Hausdorff metric

I Blow-ups of Harmonic Measure at Q Converge:

ω±i (E ) =
ω±(Q + riE )

ω±(B(Q, ri ))
satisfy ω±i ⇀ ω±∞

where ω±∞ is the harmonic measure of Ω±∞ with pole at infinity.

Each blow-up ω±∞ is called a tangent measure of ω± at Q.



Tangent Measures of ω± when ω+ � ω− � ω+

Theorem (Kenig and Toro)

If ω+ � ω− � ω+ and log dω−

dω+ ∈ VMO(dω+),
then Tan(ω±,Q) ⊂ Pd .

Goal: Show Tan(ω±,Q) ⊂ Fk

for some 1 ≤ k = k(Q) ≤ d .

Pd = {ωh : h harmonic polynomial of degree ≤ d}
Fk = {ωh : h homogenous harmonic of degree = k}
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Cones of Measures

A collection M of non-zero Radon measures is a d-cone if it
preserved under scaling and dilation of Rn:

1. If ν ∈M and c > 0, then cν ∈M.

2. If ν ∈M and r > 0, then T0,r]ν ∈M. [T0,r (y) = y/r ]

Examples

– Tangent Measures: Tan(µ, x)

– Polynomial Harmonic Measures: Pd and Fk

Size of a Measure and Distance to a Cone

– Let ψ be Radon measure on Rn. The “size” of ψ on B(0, r) is

Fr (ψ) =
∫ r

0 ψ(B(0, s))ds.

– Let ψ be a Radon measure on Rn and M a d-cone. There is a
“distance” dr (ψ,M) from ψ to M on B(0, r) compatible
with weak convergence of measures.



Connectedness of Tangent Measures
Let F and M be d-cones such that F ⊂M. Assume that:

− F and M have compact bases ({ψ : F1(ψ) = 1}),

− (Property P) There exists ε0 > 0 such that whenever
µ ∈M and dr (µ,F) < ε0 for all r ≥ r0 then µ ∈ F .

Theorem
If Tan(ν, x) ⊂M and Tan(ν, x) ∩ F 6= ∅, then Tan(ν, x) ⊂ F .

Key Point: (Under technical hypotheses) If one tangent measure
at a point belongs to F then all tangent measures belong to F .

First proved in [P], the theorem was stated in this form in [KPT].

– Preiss used the theorem to show Radon measures in Rn with
positive and finite m-density almost everywhere are m-rectifiable.

– Kenig, Preiss and Toro used the theorem to compute Hausdorff
dimension of harmonic measure when ω+ � ω− � ω+.



Checking the Hypotheses: Rate of Doubling

I If ω ∈ Fk , then ω(B(0, r)) = crn+k−2 where c depends on n,
k and ‖h‖L1(Sn−1). Thus Fk is uniformly doubling: if ω ∈ Fk

then
ω(B(0, 2r))

ω(B(0, r))
= 2n+k−2 for all r > 0

independent of the associated polynomial h.
Lemma: Fk has compact basis for all k ≥ 1.

I If ω ∈ Pd is associated to a polynomial of degree j ≤ d
(not necessarily homogeneous), then for all τ > 1

ω(B(0, τ r))

ω(B(0, r))
∼ τn+j−2 as r →∞.

Theorem: The comparison constant depends only on n and j!

Corollary: If dr (ω,Fk) < ε0(n, d) ∀ r ≥ r0(ω), then k = j .
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Polynomial Blow-ups are Homogeneous

Theorem (B)

Let Ω be a 2-sided NTA domain. If Tan(ω+,Q) ⊂ Pd , then
Tan(ω±,Q) ⊂ Fk for some 1 ≤ k ≤ d.

Steps in the Proof

1. Since Tan(ω+,Q) ⊂ Pd , there is a smallest degree k ≤ d
such that Tan(ω+,Q) ∩ Pk 6= ∅. Show that
Tan(ω+,Q) ∩ Pk ⊂ Fk .

2. Let F = Fk and M = Tan(ω+,Q) ∪ Fk . By the previous
slide the hypotheses of the connectedness theorem are
satisfied. Therefore, Tan(ω+,Q) ⊂ Fk .



Open Questions

log dω−

dω+ ∈ VMO(dω+) ⇒ ∂Ω = Γ1 ∪ Γ2 ∪ · · · ∪ Γd .

1. Find an upper bound on dimension of the “singularities”
Γ2 ∪ · · · ∪ Γd . (Conjecture: dimH ≤ n − 3)

2. (Higher Regularity) For example, if log dω−

dω+ ∈ C 0,α, then at
Q ∈ Γk is ∂Ω locally the C 1,α image of the zero set of a
harmonic polynomial of degree k?

3. (Rectifiability) Does Γ1 = G ∪N where G is (n− 1)-rectifiable
and ω±(N) = 0?

I The answer is yes if one assumes that ∂Ω has locally finite
perimeter (Kenig-Preiss-Toro, B).

4. Find other applications of the connectedness of tangent
measures.
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APPENDIX



Distance from Measure to a Cone

Let L(r) = {f : Rn → R | f ≥ 0, Lipf ≤ 1, spt f ⊂ B(0, r)}.

If µ and ν are two Radon measures in Rn and r > 0, we set

Fr (µ, ν) = sup

{∣∣∣∣∫ fdµ−
∫

fdν

∣∣∣∣ : f ∈ L(r)

}
.

When ν = 0,

Fr (µ, 0) =

∫ r

0
µ(B(0, s))ds =: Fr (µ).

Note that µi ⇀ µ if and only if limi→∞ Fr (µi , µ) = 0 for all r > 0.

If ψ is a Radon measure and M is a d-cone, we define a scaled
version of Fr as follows:

dr (ψ,M) = inf

{
Fr

(
ψ

Fr (ψ)
, µ

)
: µ ∈M and Fr (µ) = 1

}
,

i.e., normalize ψ so Fr (ψ) = 1 & then take distance to M on Br .



Homogeneous Harmonic Polynomials – “Big Piece” Lemma

Let h : Rn → R be homogenous harmonic polynomial of degree k.

Key Lemma (B): There is a constant `n,k > 0 with the following
property. For all t ∈ (0, 1),

Hn−1{θ ∈ Sn−1 : |h(θ)| ≥ t‖h‖L∞(Sn−1)} ≥ `n,k(1− t)n−1.

Interpretation: If h is homogeneous harmonic polynomial,
then h takes big values on a big piece of the unit sphere.



Bounds for ω(B(0, r)) as r →∞
Given h : Rn → R harmonic polynomial of degree d , h(0) = 0,

h = hd + hd−1 + · · ·+ h1

where hk is homogeneous harmonic polynomial of degree k .
In polar coordinates,

h(rθ) = rdhd(θ) + rd−1hd−1(θ) + · · ·+ rh1(θ),

dh

dr
(rθ) = drd−1hd(θ) + (d − 1)rd−2hd−1(θ) + · · ·+ h1(θ).

Fact: Recall Ω+ = {X : h(X ) > 0}. For all r > 0,

ω(B(0, r)) =

∫
∂B(0,r)∩Ω+

dh+

dr
dσ

The rd−1hd(θ) term dominates as r →∞. Upper bounds for
ω(Br ) are easy. Use “Big Piece” Lemma for lower bounds.
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