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Harmonic functions

A continuous function u : Ω � Rn ! R is harmonic if its value u(X) at

any point X is the average of u in a neighborhood of X :

u(X) =
1

vol(BX (r))

∫
BX (r)

u(Y ) dY for every ball BX (r) � Ω

Theorem

u is harmonic if and only if u is C2 and it satisfies the PDE

∆u � ux1x1 + ux2x2 + � � �+ uxnxn = 0 (Laplace’s equation) throughout Ω

Examples

I (n = 1): every harmonic function u : (a; b)! R is linear,

u(x) = cx + d for some c and d , since u00(x) = 0 for all x 2 (a; b)
I (n = 2): u(x ; y) = sin(x)ey and u(x ; y) = x3 � 3xy2 are examples

of nonlinear harmonic functions on R2
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An example in the upper half plane

Let Ω = fX = (x ; y) : y > 0g be the upper half plane.
Let (a; b) be an interval on x -axis.

The angle function �(X) is harmonic.



Another important example: hitting probabilities

Fix an open region Ω � Rn (picture n = 2 or n = 3). Draw a random

curve Bt , t � 0 starting from some point B0 = X inside Ω

This is called Brownian motion started from X

Let � = �Ωc denote the first (random) time such that B� 62 Ω.

As t 7! Bt is continuous, the exit location B� 2 @Ω, the boundary of Ω

Fix a set E � @Ω. The function !E : Ω! [0; 1] defined by

!E (X) = Prob(B� 2 E : B0 = X) is called harmonic measure of E
“Probability that random curve started at X first hits @Ω in E ”

Theorem

With E � @Ω fixed, X 7! !E (X) is a harmonic function.

With X 2 Ω fixed, E 7! !E (X) is a Borel probability measure with

support in the boundary of the domain: !@Ω(X) = 1.
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Brownian motion / harmonic measure demos



Physical interpretations

Diffusion describes the net movement of molecules from regions of

higher concentration to regions of lower concentration.

Brownian motionmodels the trajectory of a single molecule

undergoing diffusion

Examples of physical phenomena controlled by diffusion

I Heat transfer

I Electric charge on a metallic surface

I Passivation / fouling / poisoning / restricted absorbtion

I Transfer of nutrients from digestive system to blood

I Transfer of oxygen from air to blood during respiration



Passiviation of irregular surfaces (Filoche et al.)



Interlude: What is dimension?

3d Reconstruction of Human Lungs from CT-scans

Andreas Heinemann (CC BY 2.5), Wikimedia



Cantor sets

C(�), 0 < � < 1=2:

C(�) =

1⋂
k=0

Ck(�)

1. At stage k : Ck(�) has 2k intervals of length �k

2. Lebesgue measure (total length) L(Ck(�)) = (2�)k , 0 < 2� < 1

3. Lebesgue measure

L(C(�)) = limk!1 L(Ck(�)) = limk!1(2�)k = 0
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Cantor sets

Length cannot distinguish C(1=3), C(1=4), C(9=20)



Cantor sets

But our intuition says that C(1=4) “<” C(1=3) “<” C(9=20)



s-dimensional Hausdorff measuresHs on Rn

Let A � Rn be any set. Let s � 0 be any nonnegative real number

1. For any � > 0 cover A by cubes Q1;Q2; : : : of side length � �

2. Weight each cube in the cover by its side length to power s

3. Optimize over all such covers

Hs
�(A) := inf

{
1∑

i=1
(side Qi)

s : A �

1⋃
i=1

Qi ; side Qi � �

}

4. Use only finer and finer covers

Hs(A) := lim
�!0

Hs
�(A)

Hs is called the (cubical) s-dimensional Hausdorff measure
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Some examples / properties of Hausdorff measure

1. Open balls BRn(x ; r) in Rn haveHn(B(x ; r)) = c(n)rn

2. If s < n < t , thenHs(BRn(x ; r)) =1 andHt(B(Rn(x ; r)) = 0

3. Line segments [a; b] in Rn haveH1([a; b]) = jb � aj

4. If s < 1 < t , thenHs([a; b]) =1 andHt([a; b]) = 0

5. If A � Rn andHd(A) > 0, thenHs(A) =1 for all s < d

6. If A � Rn andHd(A) <1, thenHt(A) = 0 for all d < t
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Hausdorff dimension

For any set A � Rn , there is a unique number d 2 [0; n] such that

1. Hs(A) =1 for all s < d

2. Hs(A) = 0 for all s > d

The number d = dimH(A) where the transition happens is called

the Hausdorff dimension of A.



Hausdorff dimension of Cantor sets

For all � 2 (0; 1=2), the Cantor set C(�) has Hausdorff dimension

dimH C(�) =
log(2)

log(1=�) 2 (0; 1)

I dimH C(1=4) = log(2)= log(4) = 0:5000000:::

I dimH C(1=3) = log(2)= log(3) = 0:6309292:::

I dimH C(9=20) = log(2)= log(20=9) = 0:8680532:::

I dimH C(�) # 0 as � # 0

I dimH C(�) " 1 as � " 1=2



Dimension of human lungs

Estimates of “Fractal Dimension” in the Literature

Approximation of scaling laws for different measurements of lungs

along branching pathways (airway length, airway diameter) from

experimental data leads to:

I Nelson and Machester (1988): dimension is � 2:64 and � 2:76
I Nelson, West, and Golden (1990): dimension is � 2:26 and � 2:4
I Weibel (1991): dimension is � 2:35
I Lamrini Uahabi and Atounti (2017): dimension is � 2:88.



Harmonic measure on the Koch snowflake domain

Theorem

dimH @Ω = log(4)= log(3) =
1:26185:::

Theorem (Kaufman and Wu 1985)

There is a subset E � @Ω with

dimH E < dimH @Ω such that !E (X) = 1
and !@ΩnE (X) = 0 for every X 2 Ω.

We call this phenomena dimension drop

Theorem (Carleson 1985)

There is a subset E � @Ω with dimH E = 1
such that !E (X) = 1 and !@ΩnE (X) = 0
for every X 2 Ω. That is, Brownian motion

only hits the boundary of the snowflake in

a subset of dimension 1.
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Dimension of harmonic measure
The dimension of harmonic measure on a domain Ω � Rn is the

smallest dimension dimH E of a subset E � @Ω with

!E (X) = 1 and !@ΩnE (X) = 0 for all X 2 Ω

The dimension of harmonic measure in Rn is the largest dimension

of harmonic measure witnessed across all bounded domains Ω � Rn

Theorem (Makarov 1985)

Let Ω � R2 be a simply connected domain. The dimension of harmonic

measure is 1, and moreover, any set Hausdorff dimension less than 1

has harmonic measure zero.

Theorem (Jones and Wolff 1988)

No matter how large the dimension of the boundary @Ω is,

the dimension of harmonic measure on Ω � R2 is at most 1.

Corollary

The dimension of harmonic measure in R2 is 1.
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What is the dimension of harmonic measure in R3?

We do not know. This question is open!

Random curves do not favor any particular direction, so the

dimension of harmonic measure on a ball in R3 is 2. Hence the

dimension of harmonic measure in R3 is � 2.

Theorem (Wolff 1995)

The dimension of harmonic measure in R3 is > 2.
(This doesn’t say how much greater than 2.)

Theorem (Bourgain 1987)

The dimension of harmonic measure in R3 is < 3.
(This doesn’t say how much less than 3.)

Conjecture (Bishop 1992)

The dimension of harmonic measure in R3 is 2.5.
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What is the dimension of harmonic measure in R3?

Numerical Experiment (Grebenkov et al. 2005)

The dimension of harmonic measure in R3 is � 2:005

I This estimate is made by simulating Brownian motion on the fifth

iteration of a cubical Koch snowflake surface.

I This bound is not yet mathematically verified.

Theorem (Badger and Genschaw 2023)

The dimension of harmonic measure in R3 is < 2:99999 99999 99999

I This bound is established by tracking through all estimates in

Bourgain’s proof and optimizing discrete parameters
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Main idea: Bourgain’s alternative

Theorem (Bourgain 1987, Badger-Genschaw 2021)

Suppose you can find constants � = �(n) > 0 and � = �(n) > 0 such that for

every domain Ω � Rn and every cube Q , either:

I Alternative 1: At the resolution of Q , the boundary of the domain inside

the cube looks at most n� � dimensional: Hn��
1
2 side Q

(@Ω\Q) < (side Q)n��

I Alternative 2: The boundary of the domain inside of Q is uniformly spread

throughout the cube, which makes it unlikely that Brownian motion

started outside the cube will first hit @Ω near the center of the cube.

Quantify this using the constant �.

Then the dimension of harmonic measure in Rn is at most n � ��

�+� .

Theorem (Bourgain 1987)

For any n � 3, the constants � = �(n) > 0 and � = �(n) > 0 exist. Therefore,

the dimension of harmonic measure in Rn is < n.
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Dimension of harmonic measure in R3 is

< 2:99999 99999 99999
Idea: Introduce a model of Bourgain’s alternative in which we are able

to rigorously compute admissible pairs of constants � and �.

We then optimize over several discrete parameters in the the model

to find the best possible bound for the dimension of harmonic

measure in R3.



Dimension of harmonic measure in R3 is

< 2:99999 99999 99999



Coda

There is a large gap between the experimental lower bound 2:005 and

the rigorous upper bound 2:99999 99999 99999 on the dimension of

harmonic measure in R3.

Both bounds are far away from Bishop’s conjectural value of 2.5.

The current methods are not optimal and there aremany possible

directions to get improved estimates or compute the dimension of

harmonic measure in R3.

Theorem (Badger and Genschaw 2023)

Dimension of harmonic measure in Rn is < n � 0:6n�2n2
for n � 3.
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Coda

We need a better understanding of the dimension drop phenomena.

What about harmonic-type measures for other operators?

A first step... David and Mayboroda (2021) and Perstneva (2023) give

examples of elliptic measures associated to variable coefficient

operators on fractal planar domains which have zero dimension drop.

—End—
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Thank you for your attention!

Glimpse of Connecticut on Tuesday last week


