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Decomposition of Measures

Let µ be a measure on a measurable space (X ,M).

Let N ⊆M be a family of measurable sets.

I µ is carried by N if there exist countably many sets Γi ∈ N such

that µ (X \
⋃

i Γi ) = 0.

I µ is singular to N if µ(Γ) = 0 for every Γ ∈ N .

Exercise (Decomposition Lemma)

If µ is σ-finite, then µ can be written uniquely as µN + µ⊥N , where

µN is carried by N and µ⊥N is singular to N .

I e.g. N = {A ∈M : ν(A) = 0}: µ = σ + ρ where σ ⊥ ν and ρ� ν

I Proof of the Decomposition Theorem is abstract nonsense.

Identification Problem: Find measure-theoretic and/or

geometric characterizations or constructions of µN and µ⊥N ?



PSA: Don’t Think About Support
Three Measures. Let ai > 0 be weights with

∑∞
i=1 ai = 1.

Let {xi : i ≥ 1}, {`i : i ≥ 1}, {Si : i ≥ 1} be a dense set of points,

unit line segments, unit squares in the plane.

µ0 =
∑∞

i=1 ai δxi µ1 =
∑∞

i=1 ai L
1 `i µ2 =

∑∞
i=1 ai L

2 Si

I µ0, µ1, µ2 are probability measures on R2

I sptµ is smallest closed set carrying µ; sptµ0 = sptµ1 = sptµ2 = R2

I µi is carried by i-dimensional sets (points, lines, squares)

I The support of a measure is a rough approximation that hides

underlying structure of a measure



Rectifiable Measures: Identification Problem Solved for

Absolute Continuous Measures

Let 1 ≤ m ≤ n − 1 integers. A Radon measure µ on Rn is m-rectifiable

if µ is carried by images of Lipschitz maps [0, 1]m → Rn.

µ is purely m-unrectifiable if µ is singular to Lipschitz images of [0, 1]m

Theorem (Azzam, Mattila, Preiss, Tolsa, Toro)

Assume that µ� Hm (⇔ limr↓0
µ(B(x,r))

rm <∞ µ-a.e.) TFAE:

1. µ is m-rectifiable

2. limr↓0
µ(B(x,r))

rm > 0, Tan(µ, x) ⊆ {cHm V : V ∈ G (n,m)} µ-a.e.

3. limr↓0
µ(B(x,r))

rm > 0 µ-a.e.

4. limr↓0
µ(B(x,r))

rm > 0, limr↓0

(
µ(B(x,r))

rm − µ(B(x,2r))
(2r)m

)
= 0 µ-a.e.

5. limr↓0
µ(B(x,r))

rm > 0,
∫ 1

0
β2(µ,B(x , r))2 dr

r <∞ µ-a.e., where

β2(µ,B(x , r)) records “flatness” of µ in B(x , r)

Earlier contributions: Besicovitch, Federer, Marstrand, Morse, Randolph



The study of rectifiability is not done because...

Theorem (Garnett-Killip-Schul 2010)

There exist Radon measures µ on R2 with sptµ = R2 such that µ is

1-rectifiable, µ ⊥ H1, and µ is doubling (µ(B(x , 2r)) . µ(B(x , r))).

I limr↓0
µ(B(x , r))

r
=∞ µ-a.e.

I

∫ 1

0

(
µ(B(x,r))

r

)−1 dr

r
<∞ µ-a.e.

(see B-Schul 2016)

I µ(Γ) = 0 whenever Γ = f ([0, 1]) and

f : [0, 1]→ R2 is bi-Lipschitz

I Nevertheless there exist Lipschitz maps

fi : [0, 1]→ R2 such that

µ

(
R2 \

∞⋃
i=1

fi ([0, 1])

)
= 0
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Identification Problem Solved for 1-Rectifiable Measures

Let 1 ≤ m ≤ n − 1 integers. A Radon measure µ on Rn is 1-rectifiable

if µ is carried by rectifiable curves (images of Lipschitz maps [0, 1]→ Rn)

µ is purely 1-unrectifiable if µ is singular to rectifiable curves

Theorem (B, Schul 2017)

Assume that µ is a Radon measure on Rn. TFAE:

1. µ is 1-rectifiable

2. limr↓0
µ(B(x,r))

r > 0 µ-a.e. and

∑
Q∈∆

β∗2 (µ, 3000Q)2 diamQ

µ(Q)
χQ(x) <∞ µ-a.e.,

where β∗2 (µ, 3000Q) records “flatness” of µ in large dilate of a

dyadic cube “nonhomogeneously” and “anisotropically”

One new ingredient: L2 extension of Jones’ traveling salesman theorem

that works with non-doubling measures. Also see Martikainen and Orponen.



What about m-rectifiable measures for m ≥ 2?

Recent preprints by Azzam-Schul, Edelen-Naber-Valtorta, Ghinassi based on

the Reifenberg algorithm give some partial results, but a characterization of

2-rectifiable Radon measures is currently out of reach.

Missing a good characterization of subsets of Lipschitz images of squares.

In fact, even the following basic question is wide open.

Open: Find extra metric, geometric, and/or topological conditions

which ensure a compact, connected set K ⊆ Rn with H2(K) <∞ is

contained in the image of a Lipschitz map f : [0, 1]2 → Rn.

A basic enemy: Let C be the planar four corner Cantor set of dimension 1.

Then

K = ([0, 1]2 × {0}) ∪ (C × [0, 1]) ⊂ R3

is connected, compact, and 0 < H2(K) <∞, but the subset K ′ = C × [0, 1] is

purely 2-unrectifiable.



Current Project (w/ Vellis): Non-integral Dimensions

For each s ∈ [1, n], let Ns denote all (1/s)-Hölder curves in Rn,

i.e. all images Γ of (1/s)-Hölder continuous maps f : [0, 1]→ Rn.

Decomposition: Every Radon measure µ on Rn can be uniquely written

as µ = µNs + µN⊥
s
, where

I µNs is carried by (1/s)-Hölder curves

I µN⊥
s

is singular to (1/s)-Hölder curves

Notes

I Every measure µ on Rn is carried by (1/n)-Hölder curves

(space-filling curves).

I If µ is m-rectifiable, then µ is carried by (1/m)-Hölder curves.

I A measure µ is 1-rectifiable iff µ is carried by 1-Hölder curves.

I Mart́ın and Mattila (1988,1993,2000) studied this concept for

measures µ of the form µ = Hs E , where 0 < Hs(E ) <∞



Essential Examples

“Rectifiable s-sets”

I Let Γ be a generalized von Koch curve of Hausdorff dimension s.

Then there exists a (1/s)-Hölder map [0, 1]� Γ.

I µ = Hs Γ is carried by (1/s)-Hölder curves

“Purely unrectifiable s-sets”

Theorem (Mart́ın and Mattila 1993)

Let K ⊆ Rn be a self-similar Cantor set of Hausdorff dimension s.

Then µ = Hs K is singular to (1/s)-Hölder curves.

I This extends a result of Hutchinson (1981) who showed self-similar

Cantor sets of Hausdorff dimension m are purely m-unrectifiable.

Open Problem (Identification Problem for s-sets)

Let s ∈ (1, n). Characterize s-sets E ⊆ Rn such that µ = Hs E is

carried by (1/s)-Hölder curves. (This is even open when s = 2.)



New Results: Measures with Extreme Lower Densities

Theorem (B-Vellis, arXiv 2017)

Let µ be a Radon measure on Rn and let s ∈ [1, n). Then the measure

µs

0
:= µ

{
x ∈ Rn : limr↓0

µ(B(x , r))

r s
= 0

}
is singular to (1/s)-Hölder curves, i.e. µs

0
(Γ) = 0 for all (1/s)-Hölder curves Γ.

The measure

µs

∞
:= µ

{
x ∈ Rn :

∫ 1

0

(
µ(B(x , r))

r s

)−1
dr

r
<∞ and limr↓0

µ(B(x , 2r))

µ(B(x , r))
<∞

}

is carried by (1/s)-Hölder curves, i.e. µs

∞
(Rn \

⋃∞
i=1 Γi ) = 0 for some sequence

of (1/s)-Hölder curves Γi .

I At each x ,

∫ 1

0

(
µ(B(x , r))

r s

)−1
dr

r
<∞ implies limr↓0

µ(B(x , r))

r s
=∞.

We might call these points of “rapidly infinite” density

I The case s = 1 obtained earlier by B-Schul (2015, 2016).



Measures with Positive Lower and Finite Upper Density

Corollary

Let µ be a Radon measure on Rn, let s ∈ [1, n) and t < s. Then

µt
+ := µ

{
x ∈ Rn : 0 < limr↓0

µ(B(x , r))

r t
≤ limr↓0

µ(B(x , r))

r t
<∞

}
is carried by (1/s)-Hölder curves. (Proof: t < s implies µt

+ � µs
∞)

Two Refinements

Theorem (B-Vellis, arXiv 2017)

Let µ be a Radon measure on Rn, let s ∈ [m, n) and t < s.

Then µt
+ is carried by images of (m/s)-Hölder maps [0, 1]m → Rn.

Theorem (B-Vellis, arXiv 2017)

Let µ be a Radon measure on Rn and let t < 1.

Then µt
+ is carried by images of bi-Lipschitz maps [0, 1]→ Rn.



Example: 2n-corner Cantor sets

Let Kt ⊂ [0, 1]n be the self-similar 2n-corner Cantor set of Hausdorff

dimension t ∈ (0, n). Let 1 ≤ m ≤ n − 1 be integers.

I If t ∈ [m, n), then Ht Kt is singular to (m/t)-Hölder images of [0, 1]m

[Mart́ın and Mattila 1993]

I If t ∈ [m, n), then Ht Kt is carried by (m/s)-Hölder images of [0, 1]m

for all s > t [Mart́ın and Mattila 2000] or [B-Vellis]

I If t ∈ (0, 1), then Ht Kt is carried by bi-Lipschitz curves [B-Vellis]



Hölder Parameterization of Leaves of Summable Trees

A tree off dyadic cube T is a collection of dyadic cubes with

maximal element Q0 such that if Q ∈ T and Q ( Q0, then Q↑ ∈ T .

A leaf of T is a limit of a sequence sampled from an infinite branch of T .

Theorem (B-Vellis arXiv 2017)

Let T be a tree of dyadic cubes (or similar tree of sets). If s ≥ 1 and∑
Q∈T

(diamQ)s <∞,

then Hs(Leaves(T )) = 0 and there is a (1/s)-Hölder curve Γ such that

Leaves(T ) ⊆ Γ.

I When s = 1 this was proved by B-Schul (2016) using the special fact that

every connected, compact set with finite H1 measure is a rectifiable curve.

I When s > 1, have to construct the Hölder parameterizations by hand.



Hölder and Bi-Lipschitz Parameterization of

Sets of “Small” Assouad Dimension

For E ⊆ Rn, let dimA(E ) denote its Assouad dimension

Theorem (B-Vellis arXiv 2017)

Let s ∈ [m, n). If E ⊆ Rn is a bounded set with dimA(E ) < s, then there

is an (m/s)-Hölder map f : [0, 1]m → Rn such that E ⊆ f ([0, 1]m).

Theorem (B-Vellis arXiv 2017)

If E ⊆ Rn is a bounded set with dimA(E ) < m and if the set E is

uniformly disconnected in sense of David and Semmes, then there exists

a bi-Lipschitz map f : [0, 1]m → Rn such that E ⊆ f ([0, 1]m).

I When dimA(E) < 1, the set E is always uniformly disconnected.

I Proof of these results is constructive. Borrows ideas from MacManus’

construction of quasicircles passing through uniformly disconnected sets.



Proof of Bi-Lipschitz Parameterization

1. Simple reduction: enough to consider compact sets in the

codimension 1 case

2. Use uniform disconnectedness to approximate set by a sequence of

manifolds with boundary, ∂M contained in faces of standard grid

3. Construct tree-like surfaces passing through successive

approximations:



Takeaways

1. General Problem in Geometry of Measures:

Let (X ,M) be a measure space and let N be a family of

measurable sets. Find geometric and/or measure-theoretic

characterizations of measures that are

I carried by N (rectifiable measures), or

I singular to N (purely unrectifiable measures).

While this problem has been well-studied in Rn under certain

regularity assumptions (absolutely continuous measures), there are

many open questions when we drop regularity (Radon measures) or

change the space X or choose different sets N .

2. Non-integral Rectifiability:

One candidate for rectifiability in non-integral dimensions based on

Hölder continuous images. Some preliminary results have been

obtained, but as above there is still more to do!



Thank you


